1
|
Boylan J, Shrem RA, Vallecillo-Viejo IC, Duvall CL, Wadzinski BE, Spiller BW. A Nanobody Toolbox for Recognizing Distinct Epitopes on Cas9. J Mol Biol 2024; 436:168836. [PMID: 39481635 PMCID: PMC11852565 DOI: 10.1016/j.jmb.2024.168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Cas9s and fusions of Cas9s have emerged as powerful tools for genetic manipulations. Fusions of Cas9 with other DNA editing enzymes have led to variants capable of single base editing and catalytically dead Cas9s have emerged as tools to specifically target desired regions of a genome. Here we describe the generation of a panel of nanobodies directed against three unique epitopes on Streptococcus pyogenes Cas9. The nanobodies were identified from a nanobody library derived from an alpaca that had been immunized with Cas9. The most potent binders recognize Cas9 and RNA bound Cas9 equally well and do not inhibit Cas9 cleavage of target DNA. These nanobodies bind non-overlapping epitopes as determined by ELISA based epitope binning experiments and mass photometry. We present the sequences of these clones and supporting biochemical data so the broader scientific community can access these reagents.
Collapse
Affiliation(s)
- Jack Boylan
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Rebecca A Shrem
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Isabel C Vallecillo-Viejo
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Craig L Duvall
- Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Brian E Wadzinski
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Benjamin W Spiller
- Departments of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Departments of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
2
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
3
|
Chen M, Huang X, Shi Y, Wang W, Huang Z, Tong Y, Zou X, Xu Y, Dai Z. CRISPR/Pepper-tDeg: A Live Imaging System Enables Non-Repetitive Genomic Locus Analysis with One Single-Guide RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402534. [PMID: 38924638 PMCID: PMC11348139 DOI: 10.1002/advs.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Indexed: 06/28/2024]
Abstract
CRISPR-based genomic-imaging systems have been utilized for spatiotemporal imaging of the repetitive genomic loci in living cells, but they are still challenged by limited signal-to-noise ratio (SNR) at a non-repetitive genomic locus. Here, an efficient genomic-imaging system is proposed, termed CRISPR/Pepper-tDeg, by engineering the CRISPR sgRNA scaffolds with the degron-binding Pepper aptamers for binding fluorogenic proteins fused with Tat peptide derived degron domain (tDeg). The target-dependent stability switches of both sgRNA and fluorogenic protein allow this system to image repetitive telomeres sensitively with a 5-fold higher SNR than conventional CRISPR/MS2-MCP system using "always-on" fluorescent protein tag. Subsequently, CRISPR/Pepper-tDeg is applied to simultaneously label and track two different genomic loci, telomeres and centromeres, in living cells by combining two systems. Given a further improved SNR by the split fluorescent protein design, CRISPR/Pepper-tDeg system is extended to non-repetitive sequence imaging using only one sgRNA with two aptamer insertions. Neither complex sgRNA design nor difficult plasmid construction is required, greatly reducing the technical barriers to define spatiotemporal organization and dynamics of both repetitive and non-repetitive genomic loci in living cells, and thus demonstrating the large application potential of this genomic-imaging system in biological research, clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Wen Wang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510275China
| | - Zhan Huang
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| | - Xiaoyong Zou
- School of ChemistrySun Yat‐Sen UniversityGuangzhou510275China
| | - Yuzhi Xu
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhen518107China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical InstrumentSchool of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityShenzhen518107China
| |
Collapse
|
4
|
Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J. Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev 2024; 11:nwae118. [PMID: 38742234 PMCID: PMC11089818 DOI: 10.1093/nsr/nwae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
Single-nucleotide variants (SNVs) are the most common type variation of sequence alterations at a specific location in the genome, thus involving significant clinical and biological information. The assay of SNVs has engaged great awareness, because many genome-wide association studies demonstrated that SNVs are highly associated with serious human diseases. Moreover, the investigation of SNV expression levels in single cells are capable of visualizing genetic information and revealing the complexity and heterogeneity of single-nucleotide mutation-related diseases. Thus, developing SNV assay approaches in vitro, particularly in single cells, is becoming increasingly in demand. In this review, we summarized recent progress in the enzyme-free and enzyme-mediated strategies enabling SNV assay transition from sensing interface to the test tube and single cells, which will potentially delve deeper into the knowledge of SNV functions and disease associations, as well as discovering new pathways to diagnose and treat diseases based on individual genetic profiles. The leap of SNV assay achievements will motivate observation and measurement genetic variations in single cells, even within living organisms, delve into the knowledge of SNV functions and disease associations, as well as open up entirely new avenues in the diagnosis and treatment of diseases based on individual genetic profiles.
Collapse
Affiliation(s)
- Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
5
|
Matveeva A, Ryabchenko A, Petrova V, Prokhorova D, Zhuravlev E, Zakabunin A, Tikunov A, Stepanov G. Expression and Functional Analysis of the Compact Thermophilic Anoxybacillus flavithermus Cas9 Nuclease. Int J Mol Sci 2023; 24:17121. [PMID: 38069443 PMCID: PMC10707453 DOI: 10.3390/ijms242317121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Research on Cas9 nucleases from different organisms holds great promise for advancing genome engineering and gene therapy tools, as it could provide novel structural insights into CRISPR editing mechanisms, expanding its application area in biology and medicine. The subclass of thermophilic Cas9 nucleases is actively expanding due to the advances in genome sequencing allowing for the meticulous examination of various microorganisms' genomes in search of the novel CRISPR systems. The most prominent thermophilic Cas9 effectors known to date are GeoCas9, ThermoCas9, IgnaviCas9, AceCas9, and others. These nucleases are characterized by a varying temperature range of the activity and stringent PAM preferences; thus, further diversification of the naturally occurring thermophilic Cas9 subclass presents an intriguing task. This study focuses on generating a construct to express a compact Cas9 nuclease (AnoCas9) from the thermophilic microorganism Anoxybacillus flavithermus displaying the nuclease activity in the 37-60 °C range and the PAM preference of 5'-NNNNCDAA-3' in vitro. Here, we highlight the close relation of AnoCas9 to the GeoCas9 family of compact thermophilic Cas9 effectors. AnoCas9, beyond broadening the repertoire of Cas9 nucleases, suggests application in areas requiring the presence of thermostable CRISPR/Cas systems in vitro, such as sequencing libraries' enrichment, allele-specific isothermal PCR, and others.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grigory Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.M.); (V.P.); (E.Z.); (A.T.)
| |
Collapse
|
6
|
Li Y, Wu Y, Xu R, Guo J, Quan F, Zhang Y, Huang D, Pei Y, Gao H, Liu W, Liu J, Zhang Z, Deng R, Shi J, Zhang K. In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor. Nat Commun 2023; 14:7722. [PMID: 38001092 PMCID: PMC10673915 DOI: 10.1038/s41467-023-43552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) play critical roles in many human diseases. In vivo visualization of cells bearing mtDNA mutations is important for resolving the complexity of these diseases, which remains challenging. Here we develop an integrated nano Cas12a sensor (InCasor) and show its utility for efficient imaging of mtDNA mutations in live cells and tumor-bearing mouse models. We co-deliver Cas12a/crRNA, fluorophore-quencher reporters and Mg2+ into mitochondria. This process enables the activation of Cas12a's trans-cleavage by targeting mtDNA, which efficiently cleave reporters to generate fluorescent signals for robustly sensing and reporting single-nucleotide variations (SNVs) in cells. Since engineered crRNA significantly increase Cas12a's sensitivity to mismatches in mtDNA, we can identify tumor tissue and metastases by visualizing cells with mutant mtDNAs in vivo using InCasor. This CRISPR imaging nanoprobe holds potential for applications in mtDNA mutation-related basic research, diagnostics and gene therapies.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ru Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongyuan Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Huang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Gao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis 2023; 9:1283-1302. [PMID: 37347230 PMCID: PMC10353011 DOI: 10.1021/acsinfecdis.2c00649] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/23/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela
de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170902, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
8
|
Wu X, Ju T, Li Z, Li J, Zhai X, Han K. Target-independent hybridization chain reaction-fluorescence resonance energy transfer for sensitive assay of ctDNA based on Cas12a. Anal Chim Acta 2023; 1261:341170. [PMID: 37147050 DOI: 10.1016/j.aca.2023.341170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 05/07/2023]
Abstract
Circulating tumor DNA (ctDNA) is a noninvasive biomarker which offer valuable information for cancer diagnosis and prognosis. In this study, a target-independent fluorescent signal system, Hybridization chain reaction-Fluorescence resonance energy transfer (HCR-FRET) system, is designed and optimized. Combined with CRISPR/Cas12a system, a fluorescent biosensing protocol was developed for sensing assay of T790 M. When the target is absent, the initiator remains intact, opens the fuel hairpins and triggers the following HCR-FRET. At presence of the target, the Cas12a/crRNA binary complex specifically recognizes the target, and the Cas12a trans-cleavage activity is activated. As a result, the initiator is cleaved and subsequent HCR responses and FRET processes are attenuated. This method showed detection range from 1 pM to 400 pM with a detection limit of 316 fM. The target independent property of the HCR-FRET system endows this protocol a promising potential to transplant to the assay of other DNA target in parallel.
Collapse
Affiliation(s)
- Xuelan Wu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Ting Ju
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Zeyang Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Jingwen Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Xingwei Zhai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China
| | - Kun Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, China.
| |
Collapse
|
9
|
Tian M, Zhang R, Li J. Emergence of CRISPR/Cas9-mediated bioimaging: A new dawn of in-situ detection. Biosens Bioelectron 2023; 232:115302. [PMID: 37086563 DOI: 10.1016/j.bios.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
In-situ detection provides deep insights into the function of genes and their relationship with diseases by directly visualizing their spatiotemporal behavior. As an emerging in-situ imaging tool, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bioimaging can localize targets in living and fixed cells. CRISPR-mediated bioimaging has inherent advantages over the gold standard of fluorescent in-situ hybridization (FISH), including fast imaging, cost-effectiveness, and ease of preparation. Existing reviews have provided a detailed classification and overview of the principles of CRISPR-mediated bioimaging. However, the exploitation of potential clinical applicability of this bioimaging technique is still limited. Therefore, analyzing the potential value of CRISPR-mediated in-situ imaging is of great significance to the development of bioimaging. In this review, we initially discuss the available CRISPR-mediated imaging systems from the following aspects: summary of imaging substances, the design and optimization of bioimaging strategies, and factors influencing CRISPR-mediated in-situ detection. Subsequently, we highlight the potential of CRISPR-mediated bioimaging for application in biomedical research and clinical practice. Furthermore, we outline the current bottlenecks and future perspectives of CRISPR-based bioimaging. We believe that this review will facilitate the potential integration of bioimaging-related research with current clinical workflow.
Collapse
Affiliation(s)
- Meng Tian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Li Y, Huang D, Pei Y, Wu Y, Xu R, Quan F, Gao H, Zhang J, Hou H, Zhang K, Li J. CasSABER for Programmable In Situ Visualization of Low and Nonrepetitive Gene Loci. Anal Chem 2023; 95:2992-3001. [PMID: 36703533 DOI: 10.1021/acs.analchem.2c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-specific imaging of target genes using CRISPR probes is essential for understanding the molecular mechanisms of gene function and engineering tools to modulate its downstream pathways. Herein, we develop CRISPR/Cas9-mediated signal amplification by exchange reaction (CasSABER) for programmable in situ imaging of low and nonrepetitive regions of the target gene in the cell nucleus. The presynthesized primer-exchange reaction (PER) probe is able to hybridize multiple fluorophore-bearing imager strands to specifically light up dCas9/sgRNA target-bound gene loci, enabling in situ imaging of fixed cellular gene loci with high specificity and signal-to-noise ratio. In combination with a multiround branching strategy, we successfully detected nonrepetitive gene regions using a single sgRNA. As an intensity-codable and orthogonal probe system, CasSABER enables the adjustable amplification of local signals in fixed cells, resulting in the simultaneous visualization of multicopy and single-copy gene loci with similar fluorescence intensity. Owing to avoiding the complexity of controlling in situ mutistep enzymatic reactions, CasSABER shows good reliability, sensitivity, and ease of implementation, providing a rapid and cost-effective molecular toolkit for studying multigene interaction in fundamental research and gene diagnosis.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Di Huang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Ru Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Hua Gao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Junli Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou450001, China
- Beijing Institute of Life Science and Technology, Beijing100083, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing100084, China
| |
Collapse
|
11
|
Nucleic acid-assisted CRISPR-Cas systems for advanced biosensing and bioimaging. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat PS, Navik U, Pasumarthi SK, Bharani KK, Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J Cell Biochem 2022; 123:1674-1698. [PMID: 36128934 DOI: 10.1002/jcb.30329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Hyderabad, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik, Maharashtra, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | | | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
14
|
Direct visualization of living bacterial genotypes using CRISPR/Cas12a-circular reporter nanoprobes. Biosens Bioelectron 2022; 216:114641. [PMID: 36027801 DOI: 10.1016/j.bios.2022.114641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/23/2022]
Abstract
Bacterial genotyping is important for understanding the complex microbiota. Although fluorescence in situ hybridization (FISH) has enabled bacterial community identification with high spatial resolution, its unavoidable cell fixation steps and signal generation by multi-probe stacking greatly limit its application in living bacterial genotyping. Here, we designed polyethyleneimine-encapsulated CRISPR/Cas12a-circular reporter nanoprobes (CasCLR) for rapid and sensitive visualization of gene information in living bacteria. We found that, nanoprobe-based sequential delivery of Cas12a/crRNA and circular reporter into bacteria allowed single genomic loci to initiate trans-cleavage activity of Cas12a, thereby cleaving CLR to generate amplified fluorescent signals for imaging of target gene. Using CasCLR, we can sensitively analyze the percentage of target bacteria in co-culture experiments and directly detect pathogenic bacteria in uncultured mouse gut microbe. In addition, CasCLR has the ability to sensitively analyze specific genotype of microbial communities in vivo. This nanobiotechnology-based bacterial gene analysis is expected to advance understanding of in vivo bacterial cytogenetic information.
Collapse
|
15
|
Liang Y, Wu S, Han W, Wang J, Xu C, Shi J, Zhang Z, Gao H, Zhang K, Li J. Visualizing Single-Nucleotide Variations in a Nuclear Genome Using Colocalization of Dual-Engineered CRISPR Probes. Anal Chem 2022; 94:11745-11752. [PMID: 35975698 DOI: 10.1021/acs.analchem.2c01208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Direct visualization of single-nucleotide variation (SNV) in single cells is of great importance for understanding the spatial organization of genomes and their relationship with cell phenotypes. Herein, we developed a new strategy for visualizing SNVs in a nuclear genome using colocalization of dual-engineered CRISPR probes (CoDEC). By engineering the structure of sgRNA, we incorporated a hairpin in the spacer domain for improving SNV recognition specificity and a loop in the nonfunctional domain for localized signal amplification. Using guide probe-based colocalization strategy, we can successfully distinguish on-target true positive signals from the off-target false positives with high accuracy. Comparing with a proximity ligation-based assay (CasPLA), the probe colocalization strategy extended applicable target gene sites (the distance between two designed probes can be extended to around 200nt) and improved detection efficiency. This newly developed method provides a facile way for studying in situ information on SNVs in individual cells for basic research and clinical applications with single-molecule and single-nucleotide resolutions.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshuai Han
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Wang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Chenlu Xu
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Xie S, Xu B, Tang R, Chen S, Lei C, Nie Z. Kinetics Accelerated CRISPR-Cas12a Enabling Live-Cell Monitoring of Mn 2+ Homeostasis. Anal Chem 2022; 94:10159-10167. [PMID: 35786883 DOI: 10.1021/acs.analchem.2c01461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The CRISPR/Cas12a system has been repurposed as a versatile nuclei acid bio-imaging tool, but its utility in sensing non-nucleic acid analytes in living cells has been less exploited. Herein, we demonstrated the ability of Mn2+ to accelerate cleavage kinetics of Cas12a and deployed for live-cell Mn2+ sensing by leveraging the accelerated trans-cleavage for signal reporting. In this work, we found that Mn2+ could significantly boost both the cis-cleavage and trans-cleavage activities of Cas12a. On the basis of this phenomenon, we harnessed CRISPR-Cas12a as a direct sensing system for Mn2+, which achieved robust Mn2+ detection in the concentration range of 0.5-700 μM within 15 min in complex biological samples. Furthermore, we also demonstrated the versatility of this system to sense Mn2+ in the cytoplasm of living cells. With the usage of a conditional guide RNA, this Cas12a-based sensing method was applied to study the cytotoxicity of Mn2+ in living nerve cells, offering a valuable tool to reveal the cellular response of nerve cells to Mn2+ disorder and homeostasis.
Collapse
Affiliation(s)
- Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Benfeng Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Siyu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
17
|
Zhang RX, Li BB, Yang ZG, Huang JQ, Sun WH, Bhanbhro N, Liu WT, Chen KM. Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7343-7359. [PMID: 35695482 DOI: 10.1021/acs.jafc.2c01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-based gene editing technology has become more and more powerful in genome manipulation for agricultural breeding, with numerous improved toolsets springing up. In recent years, many CRISPR toolsets for gene editing, such as base editors (BEs), CRISPR interference (CRISPRi), CRISPR activation (CRISPRa), and plant epigenetic editors (PEEs), have been developed to clarify gene function and full-level gene regulation. Here, we comprehensively summarize the application and capacity of the different CRISPR toolsets in the study of plant gene expression regulation, highlighting their potential application in gene regulatory networks' analysis. The general problems in CRISPR application and the optimal solutions in the existing schemes for high-throughput gene function analysis are also discussed. The CRISPR toolsets targeting gene manipulation discussed here provide new solutions for further genetic improvement and molecular breeding of crops.
Collapse
Affiliation(s)
- Rui-Xiang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng-Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Qi Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Chen S, Wang R, Peng S, Xie S, Lei C, Huang Y, Nie Z. PAM-less conditional DNA substrates leverage trans-cleavage of CRISPR-Cas12a for versatile live-cell biosensing. Chem Sci 2022; 13:2011-2020. [PMID: 35308851 PMCID: PMC8848855 DOI: 10.1039/d1sc05558e] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
The CRISPR-Cas system has been repurposed as a powerful live-cell imaging tool, but its utility is limited to genomic loci and mRNA imaging in living cells. Here, we demonstrated the potential of the CRISPR-Cas system as a generalizable live-cell biosensing tool by extending its applicability to monitor diverse intracellular biomolecules. In this work, we engineered a CRISPR-Cas12a system with a generalized stimulus-responsive switch mechanism based on PAM-less conditional DNA substrates (pcDNAs). The pcDNAs with stimulus-responsiveness toward a trigger were constructed from the DNA substrates featuring no requirement of a protospacer-adjacent motif (PAM) and a bubble structure. With further leveraging the trans-cleavage activity of CRISPR-Cas12a for signal reporting, we established a versatile CRISPR-based live-cell biosensing system. This system enabled the sensitive sensing of various intracellular biomolecules, such as telomerase, ATP, and microRNA-21, making it a helpful tool for basic biochemical research and disease diagnostics. This work developed the PAM-less conditional DNA substrates that leverage the trans-cleavage effect of CRISPR-Cas12a to sense various biomolecules in living cells.![]()
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Rujia Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Shuang Peng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
19
|
Selvaraj D, Dawar R, Sivakumar PK, Devi A. Clustered regularly interspaced short palindromic repeats, a glimpse - impacts in molecular biology, trends and highlights. Horm Mol Biol Clin Investig 2021; 43:105-112. [PMID: 34881529 DOI: 10.1515/hmbci-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.
Collapse
Affiliation(s)
- Dhivya Selvaraj
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.,Department of Biochemistry, SGT University, Gurgaon, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | | | - Anita Devi
- Department of Biochemistry, Dr Rajendra Prasad Government Medical College, Tanda, Kangra, India
| |
Collapse
|
20
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
21
|
Chen L, Chen W, Liu G, Li J, Lu C, Li J, Tan W, Yang H. Nucleic acid-based molecular computation heads towards cellular applications. Chem Soc Rev 2021; 50:12551-12575. [PMID: 34604889 DOI: 10.1039/d0cs01508c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids, with the advantages of programmability and biocompatibility, have been widely used to design different kinds of novel biocomputing devices. Recently, nucleic acid-based molecular computing has shown promise in making the leap from the test tube to the cell. Such molecular computing can perform logic analysis within the confines of the cellular milieu with programmable modulation of biological functions at the molecular level. In this review, we summarize the development of nucleic acid-based biocomputing devices that are rationally designed and chemically synthesized, highlighting the ability of nucleic acid-based molecular computing to achieve cellular applications in sensing, imaging, biomedicine, and bioengineering. Then we discuss the future challenges and opportunities for cellular and in vivo applications. We expect this review to inspire innovative work on constructing nucleic acid-based biocomputing to achieve the goal of precisely rewiring, even reconstructing cellular signal networks in a prescribed way.
Collapse
Affiliation(s)
- Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
22
|
Wang SY, Du YC, Wang DX, Ma JY, Tang AN, Kong DM. Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Anal Chim Acta 2021; 1185:338882. [PMID: 34711321 DOI: 10.1016/j.aca.2021.338882] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) proteins are powerful gene-editing tools because of their ability to accurately recognize and manipulate nucleic acids. Besides gene-editing function, they also show great promise in biosensing applications due to the superiority of easy design and precise targeting. To improve the performance of CRISPR/Cas-based biosensing systems, various nucleic acid-based signal amplification techniques are elaborately incorporated. The incorporation of these amplification techniques not only greatly increases the detection sensitivity and specificity, but also extends the detectable target range, as well as makes the use of various signal output modes possible. Therefore, summarizing the use of signal amplification techniques in sensing systems and elucidating their roles in improving sensing performance are very necessary for the development of more superior CRISPR/Cas-based biosensors for various applications. In this review, CRISPR/Cas-based biosensors are summarized from two aspects: the incorporation of signal amplification techniques in three kinds of CRISPR/Cas-based biosensing systems (Cas9, Cas12 and Cas13-based ones) and the signal output modes used by these biosensors. The challenges and prospects for the future development of CRISPR/Cas-based biosensors are also discussed.
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Jia-Yi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
23
|
Xie S, Ji Z, Suo T, Li B, Zhang X. Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes - A review. Anal Chim Acta 2021; 1185:338848. [PMID: 34711331 DOI: 10.1016/j.aca.2021.338848] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
The CRISPR/Cas technology, derived from an adaptive immune system in bacteria, has been awarded the Nobel Prize in Chemistry in 2020 for its success in gene editing. Increasing reports reveal that CRISPR/Cas technology has a wide scope of applications and it could be incorporated into biosensors for detecting critical analytes. CRISPR-powered biosensors have attracted significant research interest due to their advantages including high accuracy, good specificity, rapid response, and superior integrity. Now the CRISPR technology is not only admirable in nucleic acid monitoring, but also promising for other kinds of biomarkers' detection, including metal ions, small molecules, peptides, and proteins. Therefore, it is of great worth to explore the prospect, and summarize the strategies in applying CRISPR technology for the recognition of a broad range of targets. In this review, we summarized the strategies of CRISPR biosensing for non-nucleic-acid analytes, the latest development of nucleic acid detection, and proposed the challenges and outlook of CRISPR-powered biosensors.
Collapse
Affiliation(s)
- Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
24
|
Hu J, Liu R, Zhou J, Lv Y. Element coding based accurate evaluation of CRISPR/Cas9 initial cleavage. Chem Sci 2021; 12:13404-13412. [PMID: 34777759 PMCID: PMC8528026 DOI: 10.1039/d1sc03599a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
As a powerful gene editing tool, the kinetic mechanism of CRISPR/Cas9 has been the focus for its further application. Initial cleavage events as the first domino followed by nuclease end trimming significantly affect the final on-target rate. Here we propose EC-CRISPR, element coding CRISPR, an accurate evaluation platform for initial cleavage that directly characterizes the cleavage efficiency and breaking sites. We benchmarked the influence of 19 single mismatch and 3 multiple mismatch positions of DNA-sgRNA on initial cleavage, as well as various reaction conditions. Results from EC-CRISPR demonstrate that the PAM-distal single mismatch is relatively acceptable compared to the proximal one. And multiple mismatches will not only affect the cleavage efficiency, but also generate more non-site #3 cleavage. Through in-depth research of kinetic behavior, we uncovered an abnormally higher non-#3 proportion at the initial stage of cleavage by using EC-CRISPR. Together, our results provided insights into cleavage efficiency and breaking sites, demonstrating that EC-CRISPR as a novel quantitative platform for initial cleavage enables accurate comparison of efficiencies and specificities among multiple CRISPR/Cas enzymes. Initial cleavage events as the first domino of CRISPR/Cas9 kinetic behaviors. To accurately evaluate the initial cleavage of Cas9, element coding CRISPR platform-enabled direct characterization of the cleavage efficiency and cleavage sites was proposed.![]()
Collapse
Affiliation(s)
- Jianyu Hu
- Analytical & Testing Center, Sichuan University Chengdu 610064 PR China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 PR China
| | - Jing Zhou
- Analytical & Testing Center, Sichuan University Chengdu 610064 PR China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University Chengdu 610064 PR China .,Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 PR China
| |
Collapse
|
25
|
Yamashita K, Iriki H, Kamimura Y, Muramoto T. CRISPR Toolbox for Genome Editing in Dictyostelium. Front Cell Dev Biol 2021; 9:721630. [PMID: 34485304 PMCID: PMC8416318 DOI: 10.3389/fcell.2021.721630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
The development of new techniques to create gene knockouts and knock-ins is essential for successful investigation of gene functions and elucidation of the causes of diseases and their associated fundamental cellular processes. In the biomedical model organism Dictyostelium discoideum, the methodology for gene targeting with homologous recombination to generate mutants is well-established. Recently, we have applied CRISPR/Cas9-mediated approaches in Dictyostelium, allowing the rapid generation of mutants by transiently expressing sgRNA and Cas9 using an all-in-one vector. CRISPR/Cas9 techniques not only provide an alternative to homologous recombination-based gene knockouts but also enable the creation of mutants that were technically unfeasible previously. Herein, we provide a detailed protocol for the CRISPR/Cas9-based method in Dictyostelium. We also describe new tools, including double knockouts using a single CRISPR vector, drug-inducible knockouts, and gene knockdown using CRISPR interference (CRISPRi). We demonstrate the use of these tools for some candidate genes. Our data indicate that more suitable mutants can be rapidly generated using CRISPR/Cas9-based techniques to study gene function in Dictyostelium.
Collapse
Affiliation(s)
- Kensuke Yamashita
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| |
Collapse
|
26
|
Zhang HW, Lv C, Zhang LJ, Guo X, Shen YW, Nagle DG, Zhou YD, Liu SH, Zhang WD, Luan X. Application of omics- and multi-omics-based techniques for natural product target discovery. Biomed Pharmacother 2021; 141:111833. [PMID: 34175822 DOI: 10.1016/j.biopha.2021.111833] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products continue to be an unparalleled source of pharmacologically active lead compounds because of their unprecedented structures and unique biological activities. Natural product target discovery is a vital component of natural product-based medicine translation and development and is required to understand and potentially reduce mechanisms that may be associated with off-target side effects and toxicity. Omics-based techniques, including genomics, transcriptomics, proteomics, metabolomics, and bioinformatics, have become recognized as effective tools needed to construct innovative strategies to discover natural product targets. Although considerable progress has been made, the successful discovery of natural product targets remains a challenging time-consuming process that has come to increasingly rely on the effective integration of multi-omics-based technologies to create emerging panomics (a.k.a., integrative omics, pan-omics, multiomics)-based strategies. This review summarizes a series of successful studies regarding the application of integrative omics-based methods in natural product target discovery. The advantages and disadvantages of each technique are discussed, with a particular focus on the systematic integration of multi-omics strategies. Further, emerging micro-scale single-cell-based techniques are introduced, especially to deal with minute natural product samples.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Guo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Wen Shen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University-1848, MS 38677-1848, USA
| | - Yu-Dong Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
27
|
Wang Y, Cottle WT, Wang H, Feng XA, Mallon J, Gavrilov M, Bailey S, Ha T. Genome oligopaint via local denaturation fluorescence in situ hybridization. Mol Cell 2021; 81:1566-1577.e8. [PMID: 33657402 PMCID: PMC8026568 DOI: 10.1016/j.molcel.2021.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Cas9 in complex with a programmable guide RNA targets specific double-stranded DNA for cleavage. By harnessing Cas9 as a programmable loader of superhelicase to genomic DNA, we report a physiological-temperature DNA fluorescence in situ hybridization (FISH) method termed genome oligopaint via local denaturation (GOLD) FISH. Instead of global denaturation as in conventional DNA FISH, loading a superhelicase at a Cas9-generated nick allows for local DNA denaturation, reducing nonspecific binding of probes and avoiding harsh treatments such as heat denaturation. GOLD FISH relies on Cas9 cleaving target DNA sequences and avoids the high nuclear background associated with other genome labeling methods that rely on Cas9 binding. The excellent signal brightness and specificity enable us to image nonrepetitive genomic DNA loci and analyze the conformational differences between active and inactive X chromosomes. Finally, GOLD FISH could be used for rapid identification of HER2 gene amplification in patient tissue.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wayne Taylor Cottle
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haobo Wang
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu Ashlee Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John Mallon
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Momcilo Gavrilov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Scott Bailey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Xu H, Wang J, Liang Y, Fu Y, Li S, Huang J, Xu H, Zou W, Chen B. TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Res 2021; 48:e127. [PMID: 33104788 PMCID: PMC7736787 DOI: 10.1093/nar/gkaa906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
A wealth of single-cell imaging studies have contributed novel insights into chromatin organization and gene regulation. However, a comprehensive understanding of spatiotemporal gene regulation requires developing tools to combine multiple monitoring systems in a single study. Here, we report a versatile tag, termed TriTag, which integrates the functional capabilities of CRISPR-Tag (DNA labeling), MS2 aptamer (RNA imaging) and fluorescent protein (protein tracking). Using this tag, we correlate changes in chromatin dynamics with the progression of endogenous gene expression, by recording both transcriptional bursting and protein production. This strategy allows precise measurements of gene expression at single-allele resolution across the cell cycle or in response to stress. TriTag enables capturing an integrated picture of gene expression, thus providing a powerful tool to study transcriptional heterogeneity and regulation.
Collapse
Affiliation(s)
- Haiyue Xu
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junyan Wang
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Liang
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yujuan Fu
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihui Li
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinghan Huang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Xu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.,Insititute of Translational Medicine, Zhejiang University, Hangzhou 310003, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou 310058, China
| |
Collapse
|
29
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Lin J, Liu Y, Lai P, Ye H, Xu L. Conditional guide RNA through two intermediate hairpins for programmable CRISPR/Cas9 function: building regulatory connections between endogenous RNA expressions. Nucleic Acids Res 2020; 48:11773-11784. [PMID: 33068434 PMCID: PMC7672423 DOI: 10.1093/nar/gkaa842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/27/2022] Open
Abstract
A variety of nanodevices developed for nucleic acid computation provide great opportunities to construct versatile synthetic circuits for manipulation of gene expressions. In our study, by employing a two-hairpin mediated nucleic acid strand displacement as a processing joint for conditional guide RNA, we aim to build artificial connections between naturally occurring RNA expressions through programmable CRISPR/Cas9 function. This two-hairpin joint possesses a sequence-switching machinery, in which a random trigger strand can be processed to release an unconstrained sequence-independent strand and consequently activate the self-inhibitory guide RNA for conditional gene regulation. This intermediate processor was characterized by the fluorescence reporter system and applied for regulation of the CRISPR/Cas9 binding activity. Using plasmids to generate this sequence-switching machinery in situ, we achieved the autonomous genetic regulation of endogenous RNA expressions controlled by other unrelated endogenous RNAs in both E. coli and human cells. Unlike previously reported strand-displacement genetic circuits, this advanced nucleic acid nanomachine provides a novel approach that can establish regulatory connections between naturally occurring endogenous RNAs. In addition to CRISPR systems, we anticipate this two-hairpin machine can serve as a general processing joint for wide applications in the development of other RNA-based genetic circuits.
Collapse
Affiliation(s)
- Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peidong Lai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huixia Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
31
|
Affiliation(s)
- Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
32
|
Zhang K, Deng R, Gao H, Teng X, Li J. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem Soc Rev 2020; 49:1932-1954. [PMID: 32108196 DOI: 10.1039/c9cs00438f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to 'see' genetic information directly in single cells can provide invaluable insights into complex biological systems. In this review, we discuss recent advances of in situ imaging technologies for visualizing the subtlest sequence alteration, single-nucleotide variation (SNV), at single-cell level. The mechanism of recently developed methods for SNV discrimination are summarized in detail. With recent developments, single-cell SNV imaging methods have opened a new door for studying the heterogenous and stochastic genetic information in individual cells. Furthermore, SNV imaging can be used on morphologically preserved tissue, which can provide information on histological context for gene expression profiling in basic research and genetic diagnosis. Moreover, the ability to visualize SNVs in situ can be further developed into in situ sequencing technology. We expect this review to inspire more research work into in situ SNV imaging technologies for investigating cellular phenotypes and gene regulation at single-nucleotide resolution, and developing new clinical and biomedical applications.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Hua Gao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and Department of Pathogeny Biology, Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Wang Y, Liu Y, Xie F, Lin J, Xu L. Photocontrol of CRISPR/Cas9 function by site-specific chemical modification of guide RNA. Chem Sci 2020; 11:11478-11484. [PMID: 34094391 PMCID: PMC8162494 DOI: 10.1039/d0sc04343e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
The function of CRISPR/Cas9 can be conditionally controlled by the rational engineering of guide RNA (gRNA) to target the gene of choice for precise manipulation of the genome. Particularly, chemically modified gRNA that can be activated by using specific stimuli provides a unique tool to expand the versatility of conditional control. Herein, unlike previous engineering of gRNA that generally focused on the RNA part only but neglected RNA-protein interactions, we aimed at the interactive sites between 2'-OH of ribose in the seed region of gRNA and the Cas9 protein and identified that chemical modifications at specific sites could be utilized to regulate the Cas9 activity. By introducing a photolabile group at these specific sites, we achieved optical control of Cas9 activity without disrupting the Watson-Crick base pairing. We further examined our design through CRISPR-mediated gene activation and nuclease cleavage in living cells and successfully manipulated the gene expression by using light irradiation. Our site-specific modification strategy exhibited a highly efficient and dynamic optical response and presented a new perspective for manipulating gRNA based on the RNA-protein interaction rather than the structure of RNA itself. In addition, these specific sites could also be potentially utilized for modification of other stimuli-responsive groups, which would further enrich the toolbox for conditional control of CRISPR/Cas9 function.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
34
|
Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin. Cell 2020; 182:1641-1659.e26. [PMID: 32822575 PMCID: PMC7851072 DOI: 10.1016/j.cell.2020.07.032] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
Abstract
The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.
Collapse
Affiliation(s)
- Jun-Han Su
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seon S Kinrot
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
35
|
Chen J, Jiang F, Huang CW, Lin L. Rapid genotypic antibiotic susceptibility test using CRISPR-Cas12a for urinary tract infection. Analyst 2020; 145:5226-5231. [PMID: 32597917 DOI: 10.1039/d0an00947d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current clinical protocol to conduct a bacterial antibiotic susceptibility test (AST) requires at least 18 hours, and cannot be accomplished during a single visit for patients. Here, a new method based on the technique of CRISPR-Cas12a is utilized to accomplish a bacterial genotypic AST within one hour with good accuracy. Two amplification approaches are employed and compared: (1) enriching the bacterial concentration by culturing in growth media; and (2) amplifying target DNA from raw samples by recombinase polymerase amplification (RPA). The results show that CRISPR combined with RPA can rapidly and accurately provide a bacterial genotypic AST of urine samples with urinary tract infections for precise antibiotic treatment. As such, this technology could open a new class of rapid bacterial genotypic AST for various infectious diseases.
Collapse
Affiliation(s)
- Juhong Chen
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94760, USA.
| | | | | | | |
Collapse
|
36
|
3D-FISH Analysis of the Spatial Genome Organization in Skin Cells in Situ. Methods Mol Biol 2020. [PMID: 32314220 DOI: 10.1007/978-1-0716-0648-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Spatial genome organization in the cell nucleus plays a crucial role in the control of genome functions. Our knowledge about spatial genome organization is relying on the advances in gene imaging technologies and the biochemical approaches based on the spatial dependent ligation of the genomic regions. Fluorescent in situ hybridization using specific fluorescent DNA and RNA probes in cells and tissues with the spatially preserved nuclear and genome architecture (3D-FISH) provides a powerful tool for the further advancement of our knowledge about genome structure and functions. Here we describe the 3D-FISH protocols allowing for such an analysis in mammalian tissue in situ including in the skin. These protocols include DNA probe amplification and labeling; tissue fixation; preservation and preparation for hybridization; hybridization of the DNA probes with genomic DNA in the tissue; and post-hybridization tissue sample processing.
Collapse
|
37
|
|
38
|
Ivanov IE, Wright AV, Cofsky JC, Aris KDP, Doudna JA, Bryant Z. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc Natl Acad Sci U S A 2020; 117:5853-5860. [PMID: 32123105 PMCID: PMC7084090 DOI: 10.1073/pnas.1913445117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling.
Collapse
Affiliation(s)
- Ivan E Ivanov
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Addison V Wright
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305;
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
39
|
Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What's Next. Genes (Basel) 2020; 11:genes11020140. [PMID: 32013077 PMCID: PMC7073597 DOI: 10.3390/genes11020140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
Endonuclease-mediated genome editing technologies, most notably CRISPR/Cas9, have revolutionized animal genetics by allowing for precise genome editing directly through embryo manipulations. As endonuclease-mediated model generation became commonplace, large fragment knock-in remained one of the most challenging types of genetic modification. Due to their unique value in biological and biomedical research, however, a diverse range of technological innovations have been developed to achieve efficient large fragment knock-in in mammalian animal model generation, with a particular focus on mice. Here, we first discuss some examples that illustrate the importance of large fragment knock-in animal models and then detail a subset of the recent technological advancements that have allowed for efficient large fragment knock-in. Finally, we envision the future development of even larger fragment knock-ins performed in even larger animal models, the next step in expanding the potential of large fragment knock-in in animal models.
Collapse
|
40
|
Wang Y, Tang J, Yang Y, Song H, Fu J, Gu Z, Yu C. Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hard‐to‐Transfect Cells. Angew Chem Int Ed Engl 2020; 59:2695-2699. [DOI: 10.1002/anie.201914264] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
41
|
Wang Y, Tang J, Yang Y, Song H, Fu J, Gu Z, Yu C. Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hard‐to‐Transfect Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
42
|
Char SN, Yang B. Genome editing in grass plants. ABIOTECH 2020; 1:41-57. [PMID: 36305004 PMCID: PMC9590508 DOI: 10.1007/s42994-019-00005-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
Cereal crops including maize, rice, wheat, sorghum, barley, millet, oats and rye are the major calorie sources in our daily life and also important bioenergy sources of the world. The rapidly advancing and state-of-the-art genome-editing tools such as zinc finger nucleases, TAL effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (CRISPR-Cas9-, CRISPR-Cas12a- and CRISPR/Cas-derived base editors) have accelerated the functional genomics and have promising potential for precision breeding of grass crops. With the availability of annotated genomes of the major cereal crops, application of these established genome-editing toolkits to grass plants holds promise to increase the nutritional value and productivity. Furthermore, these easy-to-use and robust genome-editing toolkits have advanced the reverse genetics for discovery of novel gene functions in crop plants. In this review, we document some of important progress in development and utilization of genome-editing tool sets in grass plants. We also highlight present and future uses of genome-editing toolkits that can sustain and improve the quality of cereal grain for food consumption.
Collapse
Affiliation(s)
- Si Nian Char
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Bing Yang
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
43
|
Abstract
Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.
Collapse
Affiliation(s)
- Florent Morio
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Université, EA1155 –IICiMed, Nantes, France
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
44
|
Yang H, Lv W, He M, Deng H, Li H, Wu W, Rao Y. Plasticity in designing PROTACs for selective and potent degradation of HDAC6. Chem Commun (Camb) 2019; 55:14848-14851. [PMID: 31769449 DOI: 10.1039/c9cc08509b] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HDAC6 (histone deacetylase 6) catalyses the deacetylation of non-histone substrates, and plays important roles in cell migration, protein degradation and other cellular processes. Here we report that CRBN-recruiting PROTAC NH2, which introduces pomalidomide at the benzene ring of Nex A, reaches comparable degradation efficiency of HDAC6 compared to aliphatic-chain-introducing PROTAC NP8.
Collapse
Affiliation(s)
- Haiyan Yang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 2019; 28:7-17. [PMID: 31792795 DOI: 10.1007/s10577-019-09622-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Collapse
|
46
|
Mao S, Ying Y, Wu X, Krueger CJ, Chen AK. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Res 2019; 47:e131. [PMID: 31504824 PMCID: PMC6847002 DOI: 10.1093/nar/gkz752] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic imaging systems predominantly rely on fluorescent protein reporters, which lack the optical properties essential for sensitive dynamic imaging. Here, we modified the CRISPR single-guide RNA (sgRNA) to carry two distinct molecular beacons (MBs) that can undergo fluorescence resonance energy transfer (FRET) and demonstrated that the resulting system, CRISPR/dual-FRET MB, enables dynamic imaging of non-repetitive genomic loci with only three unique sgRNAs.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
A new and promising application of gene editing: CRISPR-controlled smart materials for tissue engineering, bioelectronics, and diagnostics. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1547-1549. [PMID: 31701407 DOI: 10.1007/s11427-019-1576-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
|
48
|
El-Kenawy A, Benarba B, Neves AF, de Araujo TG, Tan BL, Gouri A. Gene surgery: Potential applications for human diseases. EXCLI JOURNAL 2019; 18:908-930. [PMID: 31762718 PMCID: PMC6868916 DOI: 10.17179/excli2019-1833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Gene therapy became in last decade a new emerging therapeutic era showing promising results against different diseases such as cancer, cardiovascular diseases, diabetes, and neurological disorders. Recently, the genome editing technique for eukaryotic cells called CRISPR-Cas (Clustered Regulatory Interspaced Short Palindromic Repeats) has enriched the field of gene surgery with enhanced applications. In the present review, we summarized the different applications of gene surgery for treating human diseases such as cancer, diabetes, nervous, and cardiovascular diseases, besides the molecular mechanisms involved in these important effects. Several studies support the important therapeutic applications of gene surgery in a large number of health disorders and diseases including β-thalassemia, cancer, immunodeficiencies, diabetes, and neurological disorders. In diabetes, gene surgery was shown to be effective in type 1 diabetes by triggering different signaling pathways. Furthermore, gene surgery, especially that using CRISPR-Cas possessed important application on diagnosis, screening and treatment of several cancers such as lung, liver, pancreatic and colorectal cancer. Nevertheless, gene surgery still presents some limitations such as the design difficulties and costs regarding ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases) use, off-target effects, low transfection efficiency, in vivo delivery-safety and ethical issues.
Collapse
Affiliation(s)
- Ayman El-Kenawy
- Department of Pathology, College of Medicine, Taif University, Saudi Arabia
- Department of Molecular Biology, GEBRI, University of Sadat City, P.O. Box 79, Sadat City, Egypt
| | - Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life Sciences, University of Mascara, Algeria
| | - Adriana Freitas Neves
- Institute of Biotechnology, Molecular Biology Laboratory, Universidade Federal de Goias, Catalao, Brazil
| | - Thaise Gonçalves de Araujo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, Brazil
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Faculty of Medicine, University of Annaba, Algeria
| |
Collapse
|
49
|
Wu X, Mao S, Yang Y, Rushdi MN, Krueger CJ, Chen AK. A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Res 2019; 46:e80. [PMID: 29718399 PMCID: PMC6061827 DOI: 10.1093/nar/gky304] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
The clustered regularly interspersed short palindromic repeat (CRISPR) gene-editing system has been repurposed for live-cell genomic imaging, but existing approaches rely on fluorescent protein reporters, making sensitive and continuous imaging difficult. Here, we present a fluorophore-based live-cell genomic imaging system that consists of a nuclease-deactivated mutant of the Cas9 protein (dCas9), a molecular beacon (MB), and an engineered single-guide RNA (sgRNA) harboring a unique MB target sequence (sgRNA-MTS), termed CRISPR/MB. Specifically, dCas9 and sgRNA-MTS are first co-expressed to target a specific locus in cells, followed by delivery of MBs that can then hybridize to MTS to illuminate the target locus. We demonstrated the feasibility of this approach for quantifying genomic loci, for monitoring chromatin dynamics, and for dual-color imaging when using two orthogonal MB/MTS pairs. With flexibility in selecting different combinations of fluorophore/quencher pairs and MB/MTS sequences, our CRISPR/MB hybrid system could be a promising platform for investigating chromatin activities.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,School of Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muaz N Rushdi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Hanewich-Hollatz MH, Chen Z, Hochrein LM, Huang J, Pierce NA. Conditional Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnology. ACS CENTRAL SCIENCE 2019; 5:1241-1249. [PMID: 31403072 PMCID: PMC6661866 DOI: 10.1021/acscentsci.9b00340] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 05/18/2023]
Abstract
A guide RNA (gRNA) directs the function of a CRISPR protein effector to a target gene of choice, providing a versatile programmable platform for engineering diverse modes of synthetic regulation (edit, silence, induce, bind). However, the fact that gRNAs are constitutively active places limitations on the ability to confine gRNA activity to a desired location and time. To achieve programmable control over the scope of gRNA activity, here we apply principles from dynamic RNA nanotechnology to engineer conditional guide RNAs (cgRNAs) whose activity is dependent on the presence or absence of an RNA trigger. These cgRNAs are programmable at two levels, with the trigger-binding sequence controlling the scope of the effector activity and the target-binding sequence determining the subject of the effector activity. We demonstrate molecular mechanisms for both constitutively active cgRNAs that are conditionally inactivated by an RNA trigger (ON → OFF logic) and constitutively inactive cgRNAs that are conditionally activated by an RNA trigger (OFF → ON logic). For each mechanism, automated sequence design is performed using the reaction pathway designer within NUPACK to design an orthogonal library of three cgRNAs that respond to different RNA triggers. In E. coli expressing cgRNAs, triggers, and silencing dCas9 as the protein effector, we observe a median conditional response of ≈4-fold for an ON → OFF "terminator switch" mechanism, ≈15-fold for an ON → OFF "splinted switch" mechanism, and ≈3-fold for an OFF → ON "toehold switch" mechanism; the median crosstalk within each cgRNA/trigger library is <2%, ≈2%, and ≈20% for the three mechanisms. To test the portability of cgRNA mechanisms prototyped in bacteria to mammalian cells, as well as to test generalizability to different effector functions, we implemented the terminator switch in HEK 293T cells expressing inducing dCas9 as the protein effector, observing a median ON → OFF conditional response of ≈4-fold with median crosstalk of ≈30% for three orthogonal cgRNA/trigger pairs. By providing programmable control over both the scope and target of protein effector function, cgRNA regulators offer a promising platform for synthetic biology.
Collapse
Affiliation(s)
- Mikhail H Hanewich-Hollatz
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhewei Chen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lisa M Hochrein
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jining Huang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|