1
|
Kuzmyn AR, Stokvisch I, Linker GJ, Paulusse JMJ, de Beer S. Exploring Scent Distinction with Polymer Brush Arrays. ACS APPLIED POLYMER MATERIALS 2025; 7:3842-3852. [PMID: 40177398 PMCID: PMC11959526 DOI: 10.1021/acsapm.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The ability to distinguish scents, volatile organic compounds (VOCs), and their mixtures is critical in agriculture, food safety, and public health. This study introduces a proof-of-concept approach for VOC and scent distinction, leveraging polymer brush arrays with diverse chemical compositions designed to interact with various VOCs and scents. When VOCs or scents are exposed to the brush array, they produce distinct mass absorption patterns for different polymer brushes, effectively creating "fingerprints". Scents can be recognized without having to know the absorption of their individual components. This allows for a scent distinction technique, mimicking scent recognition within a mammalian olfactory system. To demonstrate the scent distinction, we synthesized different polymer brushes, zwitterionic, hydrophobic, and hydrophilic, using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with eosin Y and triethanolamine as catalysts. The polymer brushes were then exposed to vapors of different single-compound VOCs and complex scents consisting of many VOCs, such as the water-ethanol mixture, rosemary oil, lavender oil, and whiskey scents. Quartz crystal microbalance measurements with dissipation monitoring (QCM-D) show a clear difference in brush absorption for these diverse VOC vapors such that distinct fingerprints can be identified. Our proof-of-concept study aims to pave the way for universal electronic nose sensors that distinguish scents by combining mass absorption patterns from polymer brush-coated surfaces.
Collapse
Affiliation(s)
- Andriy R. Kuzmyn
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| | - Ivar Stokvisch
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| | - Gerrit-Jan Linker
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7522 NB, The Netherlands
| | - Jos M. J. Paulusse
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| |
Collapse
|
2
|
Huang W, Wen K, Muschitiello PF, Escorihuela J, Laughlin ST. Evaluation of Pyrones in Bioorthogonal Reactions: Correlation between Structure, Reactivity, and Bioorthogonality. J Org Chem 2025; 90:2848-2859. [PMID: 39967512 DOI: 10.1021/acs.joc.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Alpha-pyrones have been used for applications ranging from total synthesis to antibiotics. However, their application as dienes in bioorthogonal reactions has not been extensively explored. In previous work, we demonstrated the promising application of ester-functionalized pyrones in bioorthogonal protein labeling. Here, we constructed a library of substituted pyrones to evaluate their potential in bioorthogonal reactions by exploring the relationships among structure, reactivity, and bioorthogonality. We found that most pyrone derivatives with electron-withdrawing groups exhibited reactivity toward endo-bicyclo[6.1.0]nonyne (BCN), producing tricyclic and tetracyclic products in good yields. As expected, pyrones with more and stronger electron-withdrawing substituents showed faster reaction kinetics with BCN. Bicyclic pyrone derivatives showed substantially decreased reactivity, most likely resulting from increased steric effects. Counterintuitively, we found that substitutions at pyrone positions 4 and 5 affected the reactivity more than those at positions 3 and 6. To provide insights into both the expected and counterintuitive reactivities of the pyrone library members, we performed a quantum chemical analysis. Additionally, we evaluated each pyrone's reactivity with L-cysteine and found no correlation between pyrone reactivity with BCN and cysteine-based bioorthogonality. Finally, we evaluated the reactivity of pyrones toward a collection of popular dienophiles used in bioorthogonal reactions.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Kangqiao Wen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Paul F Muschitiello
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Burjassot 46100, Valencia, Spain
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
3
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
4
|
Huang W, Wen K, Laughlin ST, Escorihuela J. Unveiling the reactivity of 2 H-(thio)pyran-2-(thi)ones in cycloaddition reactions with strained alkynes through density functional theory studies. Org Biomol Chem 2024; 22:8285-8292. [PMID: 39302140 DOI: 10.1039/d4ob01263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over the past two decades, click chemistry transformations have revolutionized chemical and biological sciences. Among the different strain-promoted cycloadditions, the inverse electron demand Diels-Alder reaction (IEDDA) has been established as a benchmark reaction. We have theoretically investigated the IEDDA reaction of endo-bicyclo[6.1.0]nonyne (endo-BCN) with 2H-pyran-2-one, 2H-thiopyran-2-one, 2H-pyran-2-thione and 2H-thiopyran-2-thione. These 2H-(thio)pyran-2-(thi)ones have displayed different reactivity towards endo-BCN. Density functional theory (DFT) calculations show, in agreement with experiments, that endo-BCN reacts significantly faster with 2H-thiopyran-2-one compared to other 2H-(thio)pyran-2-(thi)one derivatives because of the lower distortion energy. Experimentally determined second-order rate constants for the reaction of a 2H-pyran-2-thione with different strained derivatives, including a 1-methylcyclopropene derivative and several cycloalkynes (exo-BCN, (1R,8S)-bicyclo[6.1.0]non-4-yne-9,9-diyl)dimethanol, dibenzocycylooctyne and a light activatable silacycloheptyne, were used to validate the computational investigations and shed light on this reaction.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, USA.
| | - Kangqiao Wen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, USA.
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11790, USA.
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain.
| |
Collapse
|
5
|
Takeda N, Akasaka S, Kawauchi S, Michinobu T. Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents. Beilstein J Org Chem 2024; 20:2234-2241. [PMID: 39286793 PMCID: PMC11403804 DOI: 10.3762/bjoc.20.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Strain-promoted azide-alkyne cycloaddition (SpAAC) is a powerful tool in the field of bioconjugation and materials research. We previously reported a regioselective double addition of organic azides to octadehydrodibenzo[12]annulene derivatives with electron-rich alkyloxy substituents. In order to increase the reaction rate, electron-withdrawing substituents were introduced into octadehydrodibenzo[12]annulene. In this report, the synthesis of new octadehydrodibenzo[12]annulene derivatives, regioselective double addition of organic azides, and an application to crosslinking polymers are described.
Collapse
Affiliation(s)
- Naoki Takeda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shuichi Akasaka
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Susumu Kawauchi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
6
|
Chandankar SS, Kondhare D, Deshmukh S, Yang H, Leonard P, Seela F. 7-Deazapurine and Pyrimidine Nucleoside and Oligonucleotide Cycloadducts Formed by Inverse Diels-Alder Reactions with 3,6-Di(pyrid-2-yl)-1,2,4,5-tetrazine: Ethynylated and Vinylated Nucleobases for Functionalization and Impact of Pyridazine Adducts on DNA Base Pair Stability and Mismatch Discrimination. J Org Chem 2024; 89:11304-11322. [PMID: 39052894 DOI: 10.1021/acs.joc.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The manuscript reports on 7-deazapurine and pyrimidine nucleoside and oligonucleotide cycloadducts formed by the inverse electron demand Diels-Alder (iEDDA) reaction with 3,6-di(pyrid-2-yl)-1,2,4,5-tetrazine. Cycloadducts were constructed from ethynylated and vinylated nucleobases. Oligonucleotides were synthesized containing iEDDA modifications, and the impact on duplex stability was investigated. iEDDA reactions were performed on nucleoside triple bond side chains. Oxidation was not required in these cases as dihydropyridazine intermediates are not formed. In contrast, oxidation is necessary for reactions performed on alkenyl compounds. This was verified on 5-vinyl-2'-deoxyuridine. A diastereomeric mixture of 1,2-dihydropyridazine cycloadduct intermediates was isolated, characterized, and later oxidized. 12-mer oligonucleotides containing 1,2-pyridazine inverse Diels-Alder cycloadducts and their precursors were hybridized to short DNA duplexes. For that, a series of phosphoramidites was prepared. DNA duplexes with 7-functionalized 7-deazaadenines and 5-functionalized pyrimidines display high duplex stability when spacer units are present between nucleobases and pyridazine cycloadducts. A direct connectivity of the pyridazine moiety to nucleobases as reported for metabolic labeling of vinyl nucleosides reduced duplex stability strongly. Oligonucleotides bearing linkers with and without pyridazine cycloadducts attached to the 7-deazaadenine nucleobase significantly reduced mismatch formation with dC and dG.
Collapse
Affiliation(s)
- Somnath Shivaji Chandankar
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sushma Deshmukh
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
7
|
Bao M, Łuczak K, Chaładaj W, Baird M, Gryko D, Doyle MP. Photo-cycloaddition reactions of vinyldiazo compounds. Nat Commun 2024; 15:4574. [PMID: 38811537 PMCID: PMC11137122 DOI: 10.1038/s41467-024-48274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Heterocyclic rings are important structural scaffolds encountered in both natural and synthetic compounds, and their biological activity often depends on these motifs. They are predominantly accessible via cycloaddition reactions, realized by either thermal, photochemical, or catalytic means. Various starting materials are utilized for this purpose, and, among them, diazo compounds are often encountered, especially vinyldiazo compounds that give access to donor-acceptor cyclopropenes which engage in [2+n] cycloaddition reactions. Herein, we describe the development of photochemical processes that produce diverse heterocyclic scaffolds from multisubstituted oximidovinyldiazo compounds. High chemoselectivity, good functional group tolerance, and excellent scalability characterize this methodology, thus predisposing it for broader applications. Experimental and computational studies reveal that under light irradiation these diazo reagents selectively transform into cyclopropenes which engage in cycloaddition reactions with various dipoles, while under thermal conditions the formation of pyrazole from vinyldiazo compounds is favored.
Collapse
Affiliation(s)
- Ming Bao
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Klaudia Łuczak
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Marriah Baird
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland.
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
8
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Martínez ÁM, Puet A, Domínguez G, Alonso I, Castro-Biondo R, Pérez-Castells J. Intramolecular Diels-Alder Reaction of Cyclopropenyl Vinylarenes: Access to Benzonorcarane Derivatives. Org Lett 2023; 25:5923-5928. [PMID: 37560932 DOI: 10.1021/acs.orglett.3c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Intramolecular Diels-Alder vinylarene reaction (IMDAV) is a [4 + 2] cycloaddition that employs styrene derivatives as conjugated dienes, whose poor reactivity arises from the required loss of aromaticity, which is recovered by a subsequent [1,3]-H shift. Herein, we describe the use of cyclopropene as a dienophile, harnessing its strain energy to drive the IMDAV reaction. Benzonorcarane scaffolds form in good yields, excellent stereoselectivity, and broad functional tolerance. Theoretical calculations and NMR studies have revealed significant mechanistic insights.
Collapse
Affiliation(s)
- Ángel Manu Martínez
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Alejandro Puet
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Inés Alonso
- Department of Organic Chemistry, School of Science, Universidad Autónoma de Madrid. Campus de Cantoblanco, 28049 Madrid, Spain
| | - Rodrigo Castro-Biondo
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
10
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur-Phenolate Exchange: SuFEx-Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022; 61:e202207456. [PMID: 35819248 PMCID: PMC9540147 DOI: 10.1002/anie.202207456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The products of the SuFEx reaction between sulfonimidoyl fluorides and phenols, sulfonimidates, are shown to display dynamic covalent chemistry with other phenols. This reaction was shown to be enantiospecific, finished in minutes at room temperature in high yields, and useful for both asymmetric synthesis and sustainable polymer production. Its wide scope further extends the usefulness of SuFEx and related click chemistries.
Collapse
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Akash Krishna
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of ChemistryCapital Normal UniversityBeijing100048China
| | - Sidharam P. Pujari
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | | | - Guanna Li
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Biobased Chemistry and TechnologyWageningen UniversityBornse Weilanden 96708WGWageningenThe Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and TechnologyTianjin University92 Weijin RoadTianjin300072China
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University21589JeddahSaudi Arabia
| |
Collapse
|
11
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
12
|
Chao Y, Krishna A, Subramaniam M, Liang D, Pujari SP, Sue AC, Li G, Miloserdov FM, Zuilhof H. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Chao
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Akash Krishna
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Muthusamy Subramaniam
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dong‐Dong Liang
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Sidharam P. Pujari
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | | | - Guanna Li
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Biobased Chemistry and Technology Wageningen University Bornse Weilanden 9 6708WG Wageningen The Netherlands
| | - Fedor M. Miloserdov
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Laboratory of Organic Chemistry Wageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
13
|
García-Aznar P, Escorihuela J. Computational insights into the inverse electron-demand Diels-Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate. Org Biomol Chem 2022; 20:6400-6412. [PMID: 35876298 DOI: 10.1039/d2ob01121b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the reaction rates and mechanism of click chemistry reactions still remains an interesting challenge in organic chemistry. In this regard, the inverse electron demand Diels-Alder (IEDDA) reaction represents a promising metal-free alternative with enhanced reaction rates compared to other reactions of the click chemistry toolbox. Among the different types of dienophiles used in the IEDDA reactions, norbornenes have been widely used given their high stability and fast reaction rates. The inverse electron-demand Diels Alder reaction of 3,6-dipyridin-2-yl-1,2,4,5-tetrazine with a series of norbornene derivatives was studied with quantum mechanical calculations at the M06-2X/6-311+G(d,p) level of theory. The theoretical predictions were confirmed with the experimental data and analyzed with the use of the distortion/interaction model. The obtained results will help in obtaining a better understanding of the factors that affect the relative cycloaddition rates of norbornenes with tetrazines, which are crucial for selectively tuning their efficacy.
Collapse
Affiliation(s)
- Pablo García-Aznar
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Avda. Vicente Andrés Estellés, s/n, Burjassot 46100, València, Spain.
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Avda. Vicente Andrés Estellés, s/n, Burjassot 46100, València, Spain.
| |
Collapse
|
14
|
Abstract
Click chemistry has been established rapidly as one of the most valuable methods for the chemical transformation of complex molecules. Due to the rapid rates, clean conversions to the products, and compatibility of the reagents and reaction conditions even in complex settings, it has found applications in many molecule-oriented disciplines. From the vast landscape of click reactions, approaches have emerged in the past decade centered around oxidative processes to generate in situ highly reactive synthons from dormant functionalities. These approaches have led to some of the fastest click reactions know to date. Here, we review the various methods that can be used for such oxidation-induced "one-pot" click chemistry for the transformation of small molecules, materials, and biomolecules. A comprehensive overview is provided of oxidation conditions that induce a click reaction, and oxidation conditions are orthogonal to other click reactions so that sequential "click-oxidation-click" derivatization of molecules can be performed in one pot. Our review of the relevant literature shows that this strategy is emerging as a powerful approach for the preparation of high-performance materials and the generation of complex biomolecules. As such, we expect that oxidation-induced "one-pot" click chemistry will widen in scope substantially in the forthcoming years.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,Synaffix BV, Industrielaan 63, 5349 AE, Oss, The Netherlands
| |
Collapse
|
15
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Thanzeel FY, Wolf C. Chemoselective bioconjugation based on modular click chemistry with 4-halocoumarins and aryl sulfonates. RSC Adv 2021; 11:18960-18965. [PMID: 35478620 PMCID: PMC9033492 DOI: 10.1039/d1ra03271b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp2)-heteroatom bond formation at micromolar concentrations. The underlying ipso-substitution click chemistry is irreversible and generates stable and inherently fluorescent bioconjugates, and the broad selection of coumarin tags offers high labeling flexibility and versatility. Different coumarins and arylsulfonates can be selectively attached to amino and thiol groups in the small peptides glutathione and ornipressin, and both free as well as latent thiols captured in disulfide bridges can be targeted if desired. The broad utility, ease of use, storage, and preparation of 4-halocoumarins and arylsulfonates are very attractive features that extend currently available dual bioconjugation capabilities. We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp2)-heteroatom bond formation at micromolar concentrations.![]()
Collapse
Affiliation(s)
| | - Christian Wolf
- Department of Chemistry
- Georgetown University
- Washington
- USA
| |
Collapse
|
17
|
Nakano K, Sanematsu H, Kaji Y, Takai A, Tajima K. Immobilization of Ethynyl-π-Extended Electron Acceptors with Amino-Terminated SAMs by Catalyst-Free Click Reaction. Chemistry 2020; 26:15931-15937. [PMID: 32720376 DOI: 10.1002/chem.202001750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/24/2020] [Indexed: 01/01/2023]
Abstract
Surface modification of SiO2 using a catalyst-free quantitative reaction between an amine and an ethynyl-π-extended naphthalenediimide was investigated. A post-reaction method, in which the catalyst-free reaction was performed at the surface after the formation of amino-terminated self-assembled monolayers (SAMs), resulted in dense, uniform modification of the SiO2 surface with the naphthalenediimide molecules. Both X-ray reflectivity and angle-resolved X-ray photoemission spectroscopy showed consistent results for the layer thickness and density. In contrast, a pre-reaction method, in which an amino-silane and the ethynyl-π-extended naphthalenediimide reacted first and then formed a SAM, afforded a sparse SAM on the SiO2 surface, probably due to the steric hindrance of the naphthalenediimide moieties. The in situ decoration of the SiO2 surface by a catalyst-free quantitative reaction offers a facile route for modifying surface properties with various π-conjugated molecules suitable for many applications.
Collapse
Affiliation(s)
- Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Haruki Sanematsu
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Yumiko Kaji
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
18
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
19
|
Escorihuela J, Looijen WJE, Wang X, Aquino AJA, Lischka H, Zuilhof H. Cycloaddition of Strained Cyclic Alkenes and Ortho-Quinones: A Distortion/Interaction Analysis. J Org Chem 2020; 85:13557-13566. [PMID: 33105075 PMCID: PMC7656516 DOI: 10.1021/acs.joc.0c01674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
chemistry of strained unsaturated cyclic compounds has experienced
remarkable growth in recent years via the development of metal–free
click reactions. Among these reactions, the cycloaddition of cyclopropenes
and their analogues to ortho-quinones has been established
as a highly promising click reaction. The present work investigates
the mechanism involved in the cycloaddition of strained dienes to ortho-quinones and structural factors that would influence
this reaction. For this purpose, we use B97D density functional theory
calculations throughout, and for relevant cases, we use spin component–scaled
MP2 calculations and single–point domain-based local pair natural
orbital coupled cluster (DLPNO-CCSD(T)) calculations. The outcomes
are analyzed in detail using the distortion/interaction model, and
suggestions for future experimental work are made.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament de Quı́mica Orgànica, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Wilhelmus J E Looijen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Xiao Wang
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Min K, Guo P, Chen D, Huang S, Luo W, Ma M, Chen B, Yao S, Zuilhof H. Direct and quantitative in-situ analysis of third-hand smoke in and on various matrices by ambient desorption corona beam ionization mass spectrometry. Talanta 2020; 219:121330. [PMID: 32887064 DOI: 10.1016/j.talanta.2020.121330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Third-hand smoke (THS) is composed of surface-deposited remnants resulting from tabacco-smoking. Because THS components have properties of remaining on, re-emitting from and reacting on and with surfaces, in-situ analysis of the components on different surfaces is both in high demand and challenging. The aim of this study is to establish desorption corona beam ionization (DCBI)-MS/MS as an analytical tool for THS research. To this end, an in-situ DCBI-MS/MS approach was developed for the quantitative analysis of typical THS environmental markers, i.e. nicotine and cotinine on different surfaces such as fruits, cotton clothing, glass, and toys etc. The limits of detection of nicotine and cotinine were both 1.4 μg m-2. Low-temperature DCBI-MS/MS was applied to the direct detection of THS on fingers without any skin damage. Smoking-related biomarkers analyses in urine were accomplished, with a 10 s DCBI analysis time. The on-surface tobacco-specific nitrosamines (TSNAs), such as 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal) (NNA), 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), and N-nitroso nornicotine (NNN) were in-situ successfully detected in dust samples.
Collapse
Affiliation(s)
- Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Ping Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Dongying Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Si Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE, Wageningen, the Netherlands
| | - Wei Luo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE, Wageningen, the Netherlands
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| | - Shouzhuo Yao
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| | - Han Zuilhof
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, 410081, China; Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE, Wageningen, the Netherlands; Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
21
|
Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers (Basel) 2020; 12:E1861. [PMID: 32825111 PMCID: PMC7564738 DOI: 10.3390/polym12091861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jessica Olvera-Mancilla
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Larissa Alexandrova
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - L. Felipe del Castillo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera. s/n, 46022 Valencia, Spain
| |
Collapse
|
22
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
23
|
Liang DD, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020; 59:7494-7500. [PMID: 32157791 PMCID: PMC7216998 DOI: 10.1002/anie.201915519] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Indexed: 12/20/2022]
Abstract
SuFEx reactions, in which an S−F moiety reacts with a silyl‐protected phenol, have been developed as powerful click reactions. In the current paper we open up the potential of SuFEx reactions as enantioselective reactions, analyze the role of Si and outline the mechanism of this reaction. As a result, fast, high‐yielding, “Si‐free” and enantiospecific SuFEx reactions of sulfonimidoyl fluorides have been developed, and their mechanism shown, by both experimental and theoretical methods, to yield chiral products.
Collapse
Affiliation(s)
- Dong-Dong Liang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dieuwertje E Streefkerk
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Daan Jordaan
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.,School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Liang D, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Silicon‐Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong‐Dong Liang
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Dieuwertje E. Streefkerk
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Daan Jordaan
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jorden Wagemakers
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Jacob Baggerman
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University Stippeneng 4 6708WE Wageningen The Netherlands
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road Tianjin China
- Department of Chemical and Materials EngineeringFaculty of EngineeringKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
25
|
Bruins J, van de Wouw C, Wagner K, Bartels L, Albada B, van Delft FL. Highly Efficient Mono-Functionalization of Knob-in-Hole Antibodies with Strain-Promoted Click Chemistry. ACS OMEGA 2019; 4:11801-11807. [PMID: 31460288 PMCID: PMC6682001 DOI: 10.1021/acsomega.9b01727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 05/03/2023]
Abstract
Knob-in-hole antibodies can be utilized to introduce a single tag for chemo-enzymatic functionalization. By either introducing a single C-terminal sortase tag (sortase-tag expressed protein ligation) or tyrosine tag (G4Y), mono-functionalization of the monoclonal antibody trastuzumab was achieved rapidly and in high yields. This method was applied to selectively and efficiently introduce a single fluorescent tag, cytokine or single-chain variable fragment, as well as produce clean homo dimers of trastuzumab.
Collapse
Affiliation(s)
- Jorick
J. Bruins
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Criss van de Wouw
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Koen Wagner
- AIMM
Therapeutics, Meibergdreef
59, 1105 BA Amsterdam, The Netherlands
| | - Lina Bartels
- AIMM
Therapeutics, Meibergdreef
59, 1105 BA Amsterdam, The Netherlands
| | - Bauke Albada
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Floris L. van Delft
- Laboratory
of Organic Chemistry, Wageningen University
& Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
26
|
Kumar P, Huang W, Shukhman D, Camarda FM, Laughlin ST. Stable cyclopropene-containing analogs of the amino acid neurotransmitter glutamate. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Kumar P, Zainul O, Camarda FM, Jiang T, Mannone JA, Huang W, Laughlin ST. Caged Cyclopropenes with Improved Tetrazine Ligation Kinetics. Org Lett 2019; 21:3721-3725. [DOI: 10.1021/acs.orglett.9b01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Omar Zainul
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Frank M. Camarda
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Ting Jiang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - John A. Mannone
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Wei Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Scott T. Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
28
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
29
|
Baggerman J, Smulders MMJ, Zuilhof H. Romantic Surfaces: A Systematic Overview of Stable, Biospecific, and Antifouling Zwitterionic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1072-1084. [PMID: 30620199 PMCID: PMC6365910 DOI: 10.1021/acs.langmuir.8b03360] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/10/2018] [Indexed: 05/21/2023]
Abstract
This Feature Article focuses on recent advances in the bioconjugation of surface-bound zwitterionic polymers for biospecific antifouling surfaces. Various approaches for the functionalization of antifouling zwitterionic polymers are systematically investigated, such as chain-end and side-chain functionalization. Side-chain functionalization methods can be further classified as those that are achieved through homopolymerization of custom-synthesized zwitterionic monomers equipped with reactive groups, or those that are achieved via synthesis of random or block copolymers combining different monomers with antifouling functionality and others with reactive groups. Several of the pros and cons of these approaches are outlined and discussed. Finally, some perspective and future directions of research are presented toward long-term stable, generically repelling surfaces that strongly and specifically adhere to a single component in a complex mixture.
Collapse
Affiliation(s)
- Jacob Baggerman
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300350, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Click chemistry enables quantitative chiroptical sensing of chiral compounds in protic media and complex mixtures. Nat Commun 2018; 9:5323. [PMID: 30552322 PMCID: PMC6294054 DOI: 10.1038/s41467-018-07695-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Click reactions have become powerful synthetic tools with unique applications in the health and materials sciences. Despite the progress with optical sensors that exploit the principles of dynamic covalent chemistry, metal coordination or supramolecular assemblies, quantitative analysis of complex mixtures remains challenging. Herein, we report the use of a readily available coumarin conjugate acceptor for chiroptical click chirality sensing of the absolute configuration, concentration and enantiomeric excess of several compound classes. This method has several attractive features, including wide scope, fast substrate fixation without by-product formation or complicate equilibria often encountered in reversible substrate binding, excellent solvent compatibility, and tolerance of air and water. The ruggedness and practicality of this approach are demonstrated by comprehensive analysis of nonracemic monoamine samples and crude asymmetric imine hydrogenation mixtures without work-up. Click chemosensing addresses increasingly important time efficiency, cost, labor and chemical sustainability aspects and streamlines asymmetric reaction development at the mg scale.
Collapse
|
31
|
van Geenen FAG, Franssen MCR, Zuilhof H, Nielen MWF. Reactive Laser Ablation Electrospray Ionization Time-Resolved Mass Spectrometry of Click Reactions. Anal Chem 2018; 90:10409-10416. [PMID: 30063331 PMCID: PMC6127799 DOI: 10.1021/acs.analchem.8b02290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.
Collapse
Affiliation(s)
- Fred A.
M. G. van Geenen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
| | - Michel W. F. Nielen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
32
|
Gahtory D, Sen R, Pujari S, Li S, Zheng Q, Moses JE, Sharpless KB, Zuilhof H. Quantitative and Orthogonal Formation and Reactivity of SuFEx Platforms. Chemistry 2018; 24:10550-10556. [PMID: 29949211 PMCID: PMC6099289 DOI: 10.1002/chem.201802356] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 01/14/2023]
Abstract
The constraints of minute reactant amounts and the impossibility to remove any undesired surface‐bound products during monolayer functionalization of a surface necessitate the selection of efficient, modular and orthogonal reactions that lead to quantitative conversions. Herein, we explore the character of sulfur–fluoride exchange (SuFEx) reactions on a surface, and explore the applicability for quantitative and orthogonal surface functionalization. To this end, we demonstrate the use of ethenesulfonyl fluoride (ESF) as an efficient SuFEx linker for creating “SuFEx‐able” monolayer surfaces, enabling three distinct approaches to utilize SuFEx chemistry on a surface. The first approach relies on a di‐SuFEx loading allowing dual functionalization with a nucleophile, while the two latter approaches focus on dual (CuAAC–SuFEx/SPOCQ–SuFEx) click platforms. The resultant strategies allow facile attachment of two different substrates sequentially on the same platform. Along the way we also demonstrate the Michael addition of ethenesulfonyl fluoride to be a quantitative surface‐bound reaction, indicating significant promise in materials science for this reaction.
Collapse
Affiliation(s)
- Digvijay Gahtory
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rickdeb Sen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Sidharam Pujari
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Suhua Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,School of Chemistry, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou, 510275, P.R. China
| | - Qinheng Zheng
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, P.R. China.,Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Bruins JJ, Blanco-Ania D, van der Doef V, van Delft FL, Albada B. Orthogonal, dual protein labelling by tandem cycloaddition of strained alkenes and alkynes to ortho-quinones and azides. Chem Commun (Camb) 2018; 54:7338-7341. [DOI: 10.1039/c8cc02638f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel click chemistry using SPAAC and SPOCQ in tandem efficiently provides dual-labelled antibody–drug–dye conjugates.
Collapse
Affiliation(s)
- Jorick J. Bruins
- Laboratory of Organic Chemistry
- Wageningen University & Research
- Wageningen
- the Netherlands
| | - Daniel Blanco-Ania
- Institute for Molecules and Materials
- Radboud University
- Nijmegen
- the Netherlands
| | - Vincent van der Doef
- Laboratory of Organic Chemistry
- Wageningen University & Research
- Wageningen
- the Netherlands
| | - Floris L. van Delft
- Laboratory of Organic Chemistry
- Wageningen University & Research
- Wageningen
- the Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry
- Wageningen University & Research
- Wageningen
- the Netherlands
| |
Collapse
|