1
|
Teuffel J, Mukherjee G, Han SB, Elstner M, Wade RC. On the determinants of electron transfer reorganization energy in a cytochrome P450: cytochrome b5 complex. A combined quantum mechanics and molecular dynamics simulation study. J Chem Phys 2025; 162:195101. [PMID: 40377195 DOI: 10.1063/5.0248701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
The electron transfer steps in the catalytic cycle of cytochrome P450 (CYP) enzymes, ubiquitous proteins with key roles in processes such as drug metabolism and steroidogenesis, are often rate-limiting. To predict ET rates from atomistic molecular dynamics simulations using Marcus theory, values of the reaction free energy ΔG0 and the reorganization free energy λ are required from either experiments or computations. For the reduction of cytochrome P450 17A1 (CYP17A1) by the secondary redox protein cytochrome b5 (CYb5), a critical step in the regulation of steroidogenesis, experimental measurements of λ are not available. We here describe the computation of λ for this system from a combination of molecular mechanics/molecular dynamics simulations and quantum mechanics computations. Our results show that a quantum mechanical treatment of the redox-active cofactors is necessary, even though the surrounding protein and solvent, which are modeled classically, contribute most to the reorganization energy. The values of λ computed for structural ensembles corresponding to two predicted binding modes of the proteins are 1.23 and 1.16 eV. We find that the λ values computed for the individual soluble globular domains of the two proteins sum to approximately the λ values computed for the membrane-bound CYP17A1-CYb5 complex, indicating that additivity can be invoked in a computationally efficient approach to estimating λ values for such protein-protein complexes.
Collapse
Affiliation(s)
- J Teuffel
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Faculty for Engineering Sciences, Heidelberg University, Heidelberg, Germany
- Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp), Heidelberg University, Heidelberg, Germany
| | - G Mukherjee
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - S B Han
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - M Elstner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - R C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Faculty for Engineering Sciences, Heidelberg University, Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Mwaniki RM, Veldman W, Sanyanga A, Chamboko CR, Tastan Bishop Ö. Decoding Allosteric Effects of Missense Variations in Drug Metabolism: Afrocentric CYP3A4 Alleles Explored. J Mol Biol 2025:169160. [PMID: 40252954 DOI: 10.1016/j.jmb.2025.169160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
There is growing research on the allosteric behaviour of proteins, including studies on allosteric mutations that contribute to human diseases and the development of allosteric drugs. Allostery also plays a key role in drug metabolism, an essential factor in drug development. However, population specific variations, particularly in 3D protein structures, remain understudied. This study focuses on CYP3A4, a key enzyme responsible for metabolizing over 50% of FDA-approved drugs and often linked to adverse drug reactions. Given the vast genetic diversity of Africa, we investigated 13 CYP3A4 alleles from African populations using post-molecular dynamics analyses, with 12 being single variations and one containing a double variation. Except for one, all allele variations were located away from the active site, suggesting allosteric effects. Our comparative analyses of reference and variant structures, through hydrogen bond interactions, dynamic residue network analysis and substrate channel dynamics, revealed notable differences at both global and residue levels. The *32-I335T variant showed the largest changes compared to the reference structure, while *3-M445T (near normal metabolizer) exhibited the least change, with other variants falling in between. The *32-I335T variant showed a distorted conformation in the radius of gyration, a distinct kink in the I helix with specific hydrogen bonds and altered channel patterns. The *12-L373F variant, associated with reduced metabolism of midazolam and quinine, showed increased rigidity in its vicinity, potentially interfering with catalytic activity. Our findings align with clinical and wet lab data, suggesting that our approaches could be applied to analyse variants without clinical evidence.
Collapse
Affiliation(s)
- Rehema Mukami Mwaniki
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Allan Sanyanga
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa; National Institute for Theoretical and Computational Sciences (NITheCS), South Africa.
| |
Collapse
|
3
|
Guo J, Hou Q, Tan Y, Fu R, Huang X, Cao C. Membrane Proteins in Nanodiscs: Methods and Applications. ChemMedChem 2025; 20:e202400775. [PMID: 39825697 DOI: 10.1002/cmdc.202400775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities. This review outlines the substantial advancements in nanodisc methodologies and applications from 2018 to 2024. We cover the development of various nanodisc models, as well as structural and functional studies of membrane proteins that utilize nanodiscs, highlighting their medical applications.
Collapse
Affiliation(s)
- Jiaxu Guo
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinghan Hou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, US
| | - Yulin Tan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ruoheng Fu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuanwei Huang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Becker D, Bharatam PV, Gohlke H. Molecular Mechanisms Underlying Single Nucleotide Polymorphism-Induced Reactivity Decrease in CYP2D6. J Chem Inf Model 2024; 64:6026-6040. [PMID: 38994927 DOI: 10.1021/acs.jcim.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important enzymes involved in drug metabolism. Genetic polymorphism can influence drug metabolism by CYP2D6 such that a therapy is seriously affected by under- or overdosing of drugs. However, a general explanation at the atomistic level for poor activity is missing so far. Here we show for the 20 most common single nucleotide polymorphisms (SNPs) of CYP2D6 that poor metabolism is driven by four mechanisms. We found in extensive all-atom molecular dynamics simulations that the rigidity of the I-helix (central helix), distance between central phenylalanines (stabilizing bound substrate), availability of basic residues on the surface of CYP2D6 (binding of cytochrome P450 reductase), and position of arginine 132 (electron transfer to heme) are essential for an extensive function of the enzyme. These results were applied to SNPs with unknown effects, and potential SNPs that may lead to poor drug metabolism were identified. The revealed molecular mechanisms might be important for other drug-metabolizing cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Mohali, Punjab 160 062, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
5
|
Jiang W, An W, Huang Z, Xu C, Shen Q, Pu C, Zhang S, Wu Q, Li L, Yu C. A near-infrared fluorescent probe with two-photon excitation for in situ imaging of NQO1 in human colorectum cancer tissue. Talanta 2024; 274:126018. [PMID: 38593645 DOI: 10.1016/j.talanta.2024.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Colorectum cancer has become one of the most fatal cancer diseases, in which NAD(P)H: quinone oxidoreductase 1 (NQO1) plays a role in intracellular free radical reduction and detoxification and has been linked to colorectum cancer and chemotherapy resistance. Therefore, rational design of optical probe for NQO1 detection is urgent for the early diagnosis of colorectum cancer. Herein, we have developed a novel two-photon fluorescent probe, WHFD, which is capable of selectively detecting of intracellular NQO1 with two-photon (TP) absorption (800 nm) and near-infrared emission (620 nm). Combination with a substantial Stokes shift (175 nm) and biocompatibility, we have assessed its suitability for in vivo imaging of endogenous NQO1 activities from HepG2 tumor-bearing live animals with high tissue penetration up to 300 μm. Particularly, we for the first time used the probe to image NQO1 activities from human colorectum cancer samples by using TP microscopy, and proving our probe possesses reliable diagnostic performance to directly in situ imaging of cancer biomarker and can clearly distinguish the boundary between human colorectum cancer tissue and their surrounding normal tissue, which shows great potential for the intraoperative navigation.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chenfeng Xu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chibin Pu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Shiji Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
6
|
Dong Y, Li M, Kang L, Wang W, Li Z, Wang Y, Wu Z, Zhu C, Zhu L, Zheng X, Qian D, Dai H, Wu B, Zhao H, Wang J. A new preparation method of covalent annular nanodiscs based on MTGase. Arch Biochem Biophys 2024; 756:109997. [PMID: 38621443 DOI: 10.1016/j.abb.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The preservation of the native conformation and functionality of membrane proteins has posed considerable challenges. While detergents and liposome reconstitution have been traditional approaches, nanodiscs (NDs) offer a promising solution by embedding membrane proteins in phospholipids encircled by an amphipathic helical protein MSP belt. Nevertheless, a drawback of commonly used NDs is their limited homogeneity and stability. In this study, we present a novel approach to construct covalent annular nanodiscs (cNDs) by leveraging microbial transglutaminase (MTGase) to catalyze isopeptide bond formation between the side chains of terminal amino acids, specifically Lysine (K) and Glutamine (Q). This methodology significantly enhances the homogeneity and stability of NDs. Characterization of cNDs and the assembly of membrane proteins within them validate the successful reconstitution of membrane proteins with improved homogeneity and stability. Our findings suggest that cNDs represent a more suitable tool for investigating interactions between membrane proteins and lipids, as well as for analyzing membrane protein structures.
Collapse
Affiliation(s)
- Yingkui Dong
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Ming Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Kang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Wanxue Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zehua Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yizhuo Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziwei Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenchen Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xinwei Zheng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Dongming Qian
- Hefei China Science Longwood Biological Technology Co., Ltd. Hefei, Anhui, 230088, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Hefei China Science Longwood Biological Technology Co., Ltd. Hefei, Anhui, 230088, China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Hefei China Science Longwood Biological Technology Co., Ltd. Hefei, Anhui, 230088, China.
| | - Junfeng Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230039, China; High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
7
|
Paço L, Hackett JC, Atkins WM. Nanodisc-embedded cytochrome P450 P3A4 binds diverse ligands by distributing conformational dynamics to its flexible elements. J Inorg Biochem 2023; 244:112211. [PMID: 37080138 PMCID: PMC10175226 DOI: 10.1016/j.jinorgbio.2023.112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) metabolizes a wide range of drugs and toxins. Interactions of CYP3A4 with ligands are difficult to predict due to promiscuity and conformational flexibility. To better understand CYP3A4 conformational responses to ligands we use hydrogen deuterium exchange mass spectrometry (HDX-MS) to investigate the effect of ligands on nanodisc-embedded CYP3A4. For a subset of CYP3A4-ligand complexes, differences in the low-frequency modes derived by principal component analyses of molecular dynamics trajectories mirrored the HDX-MS results. The effects of ligands are distributed to flexible elements of CYP3A4 between stretches of secondary structure. The largest effects occur in the F- and G-helices, where most ligands increase the flexibility of the F-helix and connecting loops and decrease the flexibility of the C-term of the G-helix. Most ligands affect the E-F-G, CD and HI regions of the protein. Ligand-dependent differences are observed in the A"-A' loop, BC region, E-helix, K-β1 region, proximal loop, and C-term loop. Correlated HDX responses were observed in the CD region and the C-term of the G-helix that were most pronounced for Type II ligands. Collectively, the HDX and molecular dynamics results suggest that CYP3A4 accommodates diverse binding partners by propagating local backbone fluctuations from the binding site onto the flexible regions of the enzyme via long-range interactions that are differentially modulated by ligands. In contrast to the paradigm wherein ligands decrease protein dynamics at their binding site, a wide range of ligands modestly increase CYP3A4 dynamics throughout the protein including effects remote from the active site.
Collapse
Affiliation(s)
- Lorela Paço
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America
| | - John C Hackett
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, United States of America.
| |
Collapse
|
8
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
9
|
Glueck D, Grethen A, Das M, Mmeka OP, Patallo EP, Meister A, Rajender R, Kins S, Räschle M, Victor J, Chu C, Etzkorn M, Köck Z, Bernhard F, Babalola JO, Vargas C, Keller S. Electroneutral Polymer Nanodiscs Enable Interference-Free Probing of Membrane Proteins in a Lipid-Bilayer Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202492. [PMID: 36228092 DOI: 10.1002/smll.202202492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
Collapse
Affiliation(s)
- David Glueck
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ogochukwu Patricia Mmeka
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Department of Chemistry, University of Ibadan, Ibadan, 200284, Nigeria
| | - Eugenio Pérez Patallo
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Ritu Rajender
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Stefan Kins
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, Technische Universität Kaiserslautern (TUK), Paul-Ehrlich-Str. 24, 67663, Kaiserslautern, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ci Chu
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
10
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
11
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
12
|
Krishnarjuna B, Ravula T, Ramamoorthy A. Detergent-free isolation of CYP450-reductase's FMN-binding domain in E. coli lipid-nanodiscs using a charge-free polymer. Chem Commun (Camb) 2022; 58:4913-4916. [PMID: 35356954 PMCID: PMC9578324 DOI: 10.1039/d1cc07193a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The membrane-anchored flavin mononucleotide binding domain (FBD) of CYP450 reductase was extracted in E. coli lipid-nanodiscs using charge-free pentyl-inulin polymer. FBD in nanodiscs was found to be conformationally homogenous and enabled high-resolution NMR probing. 31P NMR revealed the polymer's lack of preference for any specific E. coli lipids and identified the lipid-types in nanodiscs.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
13
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
14
|
Farrelly MD, Martin LL, Thang SH. Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry 2021; 27:12922-12939. [PMID: 34180107 DOI: 10.1002/chem.202101572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins (MPs) play a pivotal role in cellular function and are therefore predominant pharmaceutical targets. Although detailed understanding of MP structure and mechanistic activity is invaluable for rational drug design, challenges are associated with the purification and study of MPs. This review delves into the historical developments that became the prelude to currently available membrane mimetic technologies before shining a spotlight on polymer nanodiscs. These are soluble nanosized particles capable of encompassing MPs embedded in a phospholipid ring. The expanding range of reported amphipathic polymer nanodisc materials is presented and discussed in terms of their tolerance to different solution conditions and their nanodisc properties. Finally, the analytical scope of polymer nanodiscs is considered in both the demonstration of basic nanodisc parameters as well as in the elucidation of structures, lipid-protein interactions, and the functional mechanisms of reconstituted membrane proteins. The final emphasis is given to the unique benefits and applications demonstrated for native nanodiscs accessed through a detergent free process.
Collapse
Affiliation(s)
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| |
Collapse
|
15
|
CryoEM reconstructions of membrane proteins solved in several amphipathic solvents, nanodisc, amphipol and detergents, yield amphipathic belts of similar sizes corresponding to a common ordered solvent layer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183693. [PMID: 34271006 DOI: 10.1016/j.bbamem.2021.183693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
To maintain membrane proteins soluble in aqueous solution, amphipathic compounds are used to shield the hydrophobic patch of their membrane insertion, which forms a belt around the protein. This amphipathic belt is seldom looked at due to the difficulty to visualize it. Cryo-EM is now offering this possibility, where belts are visible in 3D reconstructions. We investigated membrane proteins solved in nanodiscs, amphipols or detergents to analyze whether the nature of the amphipathic compound influences the belt size in 3D reconstructions. We identified belt boundaries in map-density distributions and measured distances for every reconstruction. We showed that all the belts create on average similar reconstructions, whether they originate from the same protein, or from protein from different shapes and structures. There is no difference among detergents or types of nanodisc used. These observations illustrate that the belt observed in 3D reconstructions corresponds to the minimum ordered layer around membrane proteins.
Collapse
|
16
|
Ducharme J, Sevrioukova IF, Thibodeaux CJ, Auclair K. Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase. Biochemistry 2021; 60:2259-2271. [PMID: 34196520 DOI: 10.1021/acs.biochem.1c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/β1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
17
|
Ravula T, Dai X, Ramamoorthy A. Solid-State NMR Study to Probe the Effects of Divalent Metal Ions (Ca 2+ and Mg 2+) on the Magnetic Alignment of Polymer-Based Lipid Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7780-7788. [PMID: 34129342 PMCID: PMC8587631 DOI: 10.1021/acs.langmuir.1c01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Divalent cations, especially Ca2+ and Mg2+, play a vital role in the function of biomolecules and making them important to be constituents in samples for in vitro biophysical and biochemical characterizations. Although lipid nanodiscs are becoming valuable tools for structural biology studies on membrane proteins and for drug delivery, most types of nanodiscs used in these studies are unstable in the presence of divalent metal ions. To avoid the interaction of divalent metal ions with the belt of the nanodiscs, synthetic polymers have been designed and demonstrated to form stable lipid nanodiscs under such unstable conditions. Such polymer-based nanodiscs have been shown to provide an ideal platform for structural studies using both solid-state and solution NMR spectroscopies because of the near-native cell-membrane environment they provide and the unique magnetic-alignment behavior of large-size nanodiscs. In this study, we report an investigation probing the effects of Ca2+ and Mg2+ ions on the formation of polymer-based lipid nanodiscs and the magnetic-alignment properties using a synthetic polymer, styrene maleimide quaternary ammonium (SMA-QA), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids. Phosphorus-31 NMR experiments were used to evaluate the stability of the magnetic-alignment behavior of the nanodiscs for varying concentrations of Ca2+ or Mg2+ at different temperatures. It is remarkable that the interaction of divalent cations with lipid headgroups promotes the stacking up of nanodiscs that results in the enhanced magnetic alignment of nanodiscs. Interestingly, the reported results show that both the temperature and the concentration of divalent metal ions can be optimized to achieve the optimal alignment of nanodiscs in the presence of an applied magnetic field. We expect the reported results to be useful in the design of nanodisc-based nanoparticles for various applications in addition to atomic-resolution structural and dynamics studies using NMR and other biophysical techniques.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Xiaofeng Dai
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- Xiaofeng Dai was a visiting student from the College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
18
|
Krishnarjuna B, Yamazaki T, Anantharamaiah GM, Ramamoorthy A. Nanodisc reconstitution of flavin mononucleotide binding domain of cytochrome-P450-reductase enables high-resolution NMR probing. Chem Commun (Camb) 2021; 57:4819-4822. [PMID: 33982687 PMCID: PMC8136615 DOI: 10.1039/d1cc01018b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytochrome-P450-reductase transfers electrons to cytochrome-P450 through its flavin mononucleotide binding domain (FBD). Despite the importance of membrane-anchoring for FBD function, studies have focused on its soluble domain lacking the transmembrane-domain. Here we demonstrate that the reconstitution of FBD in nanodiscs enables high-resolution NMR measurements and renders a stable conformation.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
19
|
Cheng S, Bo Z, Hollenberg P, Osawa Y, Zhang H. Amphipol-facilitated elucidation of the functional tetrameric complex of full-length cytochrome P450 CYP2B4 and NADPH-cytochrome P450 oxidoreductase. J Biol Chem 2021; 296:100645. [PMID: 33839156 PMCID: PMC8113742 DOI: 10.1016/j.jbc.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 10/27/2022] Open
Abstract
Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiyuan Bo
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Hollenberg
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
20
|
Sellner M, Fischer A, Don CG, Smieško M. Conformational Landscape of Cytochrome P450 Reductase Interactions. Int J Mol Sci 2021; 22:1023. [PMID: 33498551 PMCID: PMC7864194 DOI: 10.3390/ijms22031023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
Oxidative reactions catalyzed by Cytochrome P450 enzymes (CYPs), which constitute the most relevant group of drug-metabolizing enzymes, are enabled by their redox partner Cytochrome P450 reductase (CPR). Both proteins are anchored to the membrane of the endoplasmic reticulum and the CPR undergoes a conformational change in order to interact with the respective CYP and transfer electrons. Here, we conducted over 22 microseconds of molecular dynamics (MD) simulations in combination with protein-protein docking to investigate the conformational changes necessary for the formation of the CPR-CYP complex. While some structural features of the CPR and the CPR-CYP2D6 complex that we highlighted confirmed previous observations, our simulations revealed additional mechanisms for the conformational transition of the CPR. Unbiased simulations exposed a movement of the whole protein relative to the membrane, potentially to facilitate interactions with its diverse set of redox partners. Further, we present a structural mechanism for the susceptibility of the CPR to different redox states based on the flip of a glycine residue disrupting the local interaction network that maintains inter-domain proximity. Simulations of the CPR-CYP2D6 complex pointed toward an additional interaction surface of the FAD domain and the proximal side of CYP2D6. Altogether, this study provides novel structural insight into the mechanism of CPR-CYP interactions and underlying conformational changes, improving our understanding of this complex machinery Cytochrome P450 reductase; CPR; conformational; dynamicsrelevant for drug metabolism.
Collapse
Affiliation(s)
| | | | | | - Martin Smieško
- Computational Pharmacy, Departement of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (M.S.); (A.F.); (C.G.D.)
| |
Collapse
|
21
|
An electron transfer competent structural ensemble of membrane-bound cytochrome P450 1A1 and cytochrome P450 oxidoreductase. Commun Biol 2021; 4:55. [PMID: 33420418 PMCID: PMC7794467 DOI: 10.1038/s42003-020-01568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023] Open
Abstract
Cytochrome P450 (CYP) heme monooxygenases require two electrons for their catalytic cycle. For mammalian microsomal CYPs, key enzymes for xenobiotic metabolism and steroidogenesis and important drug targets and biocatalysts, the electrons are transferred by NADPH-cytochrome P450 oxidoreductase (CPR). No structure of a mammalian CYP-CPR complex has been solved experimentally, hindering understanding of the determinants of electron transfer (ET), which is often rate-limiting for CYP reactions. Here, we investigated the interactions between membrane-bound CYP 1A1, an antitumor drug target, and CPR by a multiresolution computational approach. We find that upon binding to CPR, the CYP 1A1 catalytic domain becomes less embedded in the membrane and reorients, indicating that CPR may affect ligand passage to the CYP active site. Despite the constraints imposed by membrane binding, we identify several arrangements of CPR around CYP 1A1 that are compatible with ET. In the complexes, the interactions of the CPR FMN domain with the proximal side of CYP 1A1 are supplemented by more transient interactions of the CPR NADP domain with the distal side of CYP 1A1. Computed ET rates and pathways agree well with available experimental data and suggest why the CYP-CPR ET rates are low compared to those of soluble bacterial CYPs.
Collapse
|
22
|
Zhang C, Catucci G, Di Nardo G, Gilardi G. Effector role of cytochrome P450 reductase for androstenedione binding to human aromatase. Int J Biol Macromol 2020; 164:510-517. [PMID: 32698066 DOI: 10.1016/j.ijbiomac.2020.07.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
Cytochromes P450 constitute a large superfamily of monooxygenases involved in many metabolic pathways. Most of them are not self-sufficient and need a reductase protein to provide the electrons necessary for catalysis. It was shown that the redox partner plays a role in the modulation of the structure and function of some bacterial P450 enzymes. Here, the effect of NADPH-cytochrome reductase (CPR) on human aromatase (Aro) is studied for what concerns its role in substrate binding. Pre-steady-state kinetic experiments indicate that both the substrate binding rates and the percentage of spin shift detected for aromatase are increased when CPR is present. Moreover, aromatase binds the substrate through a conformational selection mechanism, suggesting a possible effector role of CPR. The thermodynamic parameters for the formation of the CPR-Aro complex were studied by isothermal titration calorimetry. The dissociation constant of the complex formation is 4.5 folds lower for substrate-free compared to the substrate-bound enzyme. The enthalpy change observed when the CPR-Aro complex forms in the absence of the substrate are higher than in its presence, indicating that more interactions are formed/broken in the former case. Taken together, our data confirm that CPR has a role in promoting aromatase conformation optimal for substrate binding.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino 10123, Italy.
| |
Collapse
|
23
|
Lee KY, Fang Z, Enomoto M, Gasmi-Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB. Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2020; 59:11037-11045. [PMID: 32227412 PMCID: PMC7395670 DOI: 10.1002/anie.202001758] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 11/07/2022]
Abstract
KRAS homo-dimerization has been implicated in the activation of RAF kinases, however, the mechanism and structural basis remain elusive. We developed a system to study KRAS dimerization on nanodiscs using paramagnetic relaxation enhancement (PRE) NMR spectroscopy, and determined distinct structures of membrane-anchored KRAS dimers in the active GTP- and inactive GDP-loaded states. Both dimerize through an α4-α5 interface, but the relative orientation of the protomers and their contacts differ substantially. Dimerization of KRAS-GTP, stabilized by electrostatic interactions between R135 and E168, favors an orientation on the membrane that promotes accessibility of the effector-binding site. Remarkably, "cross"-dimerization between GTP- and GDP-bound KRAS molecules is unfavorable. These models provide a platform to elucidate the structural basis of RAF activation by RAS and to develop inhibitors that can disrupt the KRAS dimerization. The methodology is applicable to many other farnesylated small GTPases.
Collapse
Affiliation(s)
- Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Le Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, and Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
24
|
Lee K, Fang Z, Enomoto M, Gasmi‐Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB. Two Distinct Structures of Membrane‐Associated Homodimers of GTP‐ and GDP‐Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ki‐Young Lee
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Zhenhao Fang
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Masahiro Enomoto
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | | | - Le Zheng
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular PharmacologyNew York University School of Medicine, and Perlmutter Cancer CenterNew York University Langone Health New York NY 10016 USA
| | - Mitsuhiko Ikura
- Princess Margaret Cancer CentreUniversity Health Network Toronto Ontario M5G 1L7 Canada
| | | |
Collapse
|
25
|
Esteves F, Campelo D, Gomes BC, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. The Role of the FMN-Domain of Human Cytochrome P450 Oxidoreductase in Its Promiscuous Interactions With Structurally Diverse Redox Partners. Front Pharmacol 2020; 11:299. [PMID: 32256365 PMCID: PMC7094780 DOI: 10.3389/fphar.2020.00299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
NADPH cytochrome P450 oxidoreductase (CPR) is the obligatory electron supplier that sustains the activity of microsomal cytochrome P450 (CYP) enzymes. The variant nature of the isoform-specific proximal interface of microsomal CYPs indicates that CPR is capable of multiple degenerated interactions with CYPs for electron transfer, through different binding mechanisms, and which are still not well-understood. Recently, we showed that CPR dynamics allows formation of open conformations that can be sampled by its structurally diverse redox partners in a CYP-isoform dependent manner. To further investigate the role of the CPR FMN-domain in effective binding of CPR to its diverse acceptors and to clarify the underlying molecular mechanisms, five different CPR-FMN-domain random mutant libraries were created. These libraries were screened for mutants with increased activity when combined with specific CYP-isoforms. Seven CPR-FMN-domain mutants were identified, supporting a gain in activity for CYP1A2 (P117H, G144C, A229T), 2A6 (P117L/L125V, G175D, H183Y), or 3A4 (N151D). Effects were evaluated using extended enzyme kinetic analysis, cytochrome b 5 competition, ionic strength effect on CYP activity, and structural analysis. Mutated residues were located either in or adjacent to several acidic amino acid stretches - formerly indicated to be involved in CPR:CYP interactions - or close to two tyrosine residues suggested to be involved in FMN binding. Several of the identified positions co-localize with mutations found in naturally occurring CPR variants that were previously shown to cause CYP-isoform-dependent effects. The mutations do not seem to significantly alter the geometry of the FMN-domain but are likely to cause very subtle alterations leading to improved interaction with a specific CYP. Overall, these data suggest that CYPs interact with CPR using an isoform specific combination of several binding motifs of the FMN-domain.
Collapse
Affiliation(s)
- Francisco Esteves
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana Campelo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Sophie Bozonnet
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Thomas Lautier
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Michel Kranendonk
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
27
|
Huang HY, Syue ML, Chen IC, Yu TY, Chu LK. Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation. J Phys Chem B 2019; 123:9123-9133. [PMID: 31584816 DOI: 10.1021/acs.jpcb.9b07788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalently circularized nanodiscs using circular membrane scaffold protein (MSP) serve as a suitable membrane mimetic for transmembrane proteins by providing stability and tunability in lipid compositions, providing controllable biological environments for targeted proteins. In this work, monomeric bacteriorhodopsin (mbR) was embedded in lipid nanodiscs of different lipid compositions using negatively charged lipid dioleoyl phosphatidylglycerol (DOPG) and the zwitterion lipid dioleoyl phosphatidylcholine (DOPC), and the events associated with the retinal Schiff base, including the thermal isomerization during the dark adaptation, photoisomerization, and deprotonation, were investigated. The retinal thermal isomerization from all-trans, 15-anti to the 13-cis, 15-syn configuration during the dark adaptation was accelerated in the DOPG bilayer, whereas the processes in the DOPC bilayer and in Triton X-100 micelles were similar. This observation indicated that the negatively charged lipid reduced the barrier for retinal thermal isomerization at C13═C14-C15═N in the ground electronic state. Furthermore, the broader absorption contour of mbR in the DOPC nanodisc probably indicated various retinal isomers in the light-adapted state, consistent with the observed nontwo-state dark adaptation kinetics. Moreover, the kinetics of the photoisomerization of the retinal was slightly decelerated upon increasing the content of DOPC. However, the cascading deprotonation of the protonated Schiff base is not dependent on the types of the surrounding lipids in the nanodiscs. In summary, our research deepens the understanding of the coupling between lipid membrane and the photochemistry of bR retinal Schiff base. Combined with the results of our previous works (Lee, T.-Y.; Yeh, V.; Chuang, J.; Chan, J. C. C.; Chu, L.-K.; Yu, T.-Y. Biophys. J. 2015, 109, 1899-1906; Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.; Yu, T.-Y.; Chu, L.-K. J. Phys. Chem. B 2019, 123, 2032-2039), these outcomes extend our understanding of the control of photochemistry and biophysical events for other photosynthetic proteins via altering the lipid environments.
Collapse
Affiliation(s)
- Hsin-Yu Huang
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Ming-Lun Syue
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - I-Chia Chen
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica , 1, Sec. 4, Roosevelt Road , Taipei 10617 , Taiwan.,International Graduate Program of Molecular Science and Technology , National Taiwan University , Taipei , Taiwan
| | - Li-Kang Chu
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
28
|
Klöpfer K, Hagn F. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:271-283. [PMID: 31779883 DOI: 10.1016/j.pnmrs.2019.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Membrane proteins are important players in signal transduction and the exchange of metabolites within or between cells. Thus, this protein class is the target of around 60 % of currently marketed drugs, emphasizing their essential biological role. Besides functional assays, structural and dynamical investigations on this protein class are crucial to fully understanding their functionality. Even though X-ray crystallography and electron microscopy are the main methods to determine structures of membrane proteins and their complexes, NMR spectroscopy can contribute essential information on systems that (a) do not crystallize and (b) are too small for EM. Furthermore, NMR is a versatile tool for monitoring functional dynamics of biomolecules at various time scales. A crucial aspect of such studies is the use of a membrane mimetic that resembles a native environment and thus enables the extraction of functional insights. In recent decades, the membrane protein NMR community has moved from rather harsh detergents to membrane systems having more native-like properties. In particular, most recently phospholipid nanodiscs have been developed and optimized mainly for solution-state NMR but are now also being used for solid-state NMR spectroscopy. Nanodiscs consist of a patch of a planar lipid bilayer that is encircled by different (bio-)polymers to form particles of defined and tunable size. In this review, we provide an overview of available membrane mimetics, including nanodiscs, amphipols and bicelles, that are suitable for high-resolution NMR spectroscopy and describe how these advanced membrane mimetics can facilitate NMR studies on the structure and dynamics of membrane proteins. Since the stability of membrane proteins depends critically on the chosen membrane mimetic, we emphasize the importance of a suitable system that is not necessarily developed for solution-state NMR applications and hence requires optimization for each membrane protein. However, lipid-based membrane mimetics offer the possibility of performing NMR experiments at elevated temperatures and studying ligand and partner protein complexes as well as their functional dynamics in a realistic membrane environment. In order to be able to make an informed decision during the selection of a suitable membrane system, we provide a detailed overview of the available options for various membrane protein classes and thereby facilitate this often-difficult selection process for a broad range of desired NMR applications.
Collapse
Affiliation(s)
- Kai Klöpfer
- Bavarian NMR Center at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
29
|
Conformational turn triggers regio-selectivity in the bioactivation of thiophene-contained compounds mediated by cytochrome P450. J Biol Inorg Chem 2019; 24:1023-1033. [PMID: 31506822 DOI: 10.1007/s00775-019-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
In the present work, we performed Density Functional Theory calculations to explore the bioactivation mechanism of thiophene-containing molecules mediated by P450s. For this purpose, relatively large size compounds, 2,5-diaminothiophene derivatives were selected particularly for this investigation. Here we found the successive regio-selectivity triggered by conformational turn played a significant role in the occurrence of bioactivation. 2,5-Diaminothiophene was oxidized to a 2,5-diimine thiophene-reactive intermediate by Compound I (Cpd I) through successive activations of two N-H bonds (H3-N11 and H1-N6). This reaction exhibited three special characteristics: (1) self-controlled regio-selectivity during the oxidation process. There was a large scale of conformational turn in the abstraction of the first H atom which triggers the selection of the second H for abstraction. (2) Proton-shuttle mechanism. In high spin (HS) state, proton-shuttle mechanism was observed for the abstraction of the second H atom. (3) Spin-selective manner. In protein environment, the energy barrier in HS state was much lower than that in low spin state. The novel proposed bioactivation mechanism of 2,5-diaminothiophene compounds can help us in rational design of thiophene-contained drugs avoiding the occurrence of bioactivation.
Collapse
|
30
|
Mahajan M, Ravula T, Prade E, Anantharamaiah GM, Ramamoorthy A. Probing membrane enhanced protein-protein interactions in a minimal redox complex of cytochrome-P450 and P450-reductase. Chem Commun (Camb) 2019; 55:5777-5780. [PMID: 31041432 PMCID: PMC7467500 DOI: 10.1039/c9cc01630a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Investigating the interplay in a minimal redox complex of cytochrome-P450 and its reductase is crucial for understanding cytochrome-P450's enzymatic activity. Probing the hotspots of dynamic structural interactions using NMR revealed the engagement of loop residues from P450-reductase to be responsible for the enhanced affinity of CYP450 towards its obligate redox partner.
Collapse
Affiliation(s)
- Mukesh Mahajan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
31
|
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci 2019; 28:928-940. [PMID: 30861250 DOI: 10.1002/pro.3603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane-bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2-CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2-CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid-solubilized CYP2J2-CPR system by increasing the Km and decreasing the Vmax , and effect that is size-dependent. Crowding also affects the CYP2J2-CPR-ND system by decreasing both the Km and Vmax for Dextran-based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2-CPR membrane protein system.
Collapse
Affiliation(s)
- Hannah C Huff
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Demetri Maroutsos
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Aditi Das
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, Division of Nutritional Science, Neuroscience Program, and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
32
|
Ravula T, Hardin NZ, Ramamoorthy A. Polymer nanodiscs: Advantages and limitations. Chem Phys Lipids 2019; 219:45-49. [PMID: 30707909 PMCID: PMC6497063 DOI: 10.1016/j.chemphyslip.2019.01.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
Abstract
There is considerable interest in the development of membrane mimetics to study the structure, dynamics and function of membrane proteins. Polymer nanodiscs have been useful as a membrane mimetic by not only providing a native-like membrane environment, but also have the ability to extract the desired membrane protein directly from the cell membrane. In spite of such great potential, polymer nanodiscs have their disadvantages including lack of size control and instability at low pH and with divalent metals. In this review, we discuss how these limitations have been overcome by simple modifications of synthetic polymers commonly used to form nanodiscs. Recently, size control has been achieved using an ethanolamine functionalization of a low molecular weight polymer. This size control enabled the use of polymer-based lipid-nanodiscs in solution NMR and macro-nanodiscs in solid-state NMR applications. The introduction of quaternary ammonium functional groups has been shown to improve the stability in the presence of low pH and divalent metal ions, forming highly monodispersed nanodiscs. The polymer charge has been shown to play a significant role on the reconstitution of membrane proteins due to the high charge density on the nanodisc's belt. These recent developments have expanded the applications of polymer nanodiscs to study the membrane proteins using wide variety of techniques including NMR, Cryo-EM and other biophysical techniques.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
33
|
Camp T, McLean M, Kato M, Cheruzel L, Sligar S. The hydrodynamic motion of Nanodiscs. Chem Phys Lipids 2019; 220:28-35. [PMID: 30802435 DOI: 10.1016/j.chemphyslip.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
Abstract
We present a fluorescence-based methodology for monitoring the rotational dynamics of Nanodiscs. Nanodiscs are nano-scale lipid bilayers surrounded by a helical membrane scaffold protein (MSP) that have found considerable use in studying the interactions between membrane proteins and their lipid bilayer environment. Using a long-lifetime Ruthenium label covalently attached to the Nanodiscs, we find that Nanodiscs of increasing diameter, made by varying the number of helical repeats in the MSP, display increasing rotational correlation times. We also model our system using both analytical equations that describe rotating spheroids and numerical calculations performed on atomic models of Nanodiscs. Using these methods, we observe a linear relationship between the experimentally determined rotational correlation times and those calculated from both analytical equations and numerical solutions. This work sets the stage for accurate, label-free quantification of protein-lipid interactions at the membrane surface.
Collapse
Affiliation(s)
- Tyler Camp
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mark McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mallory Kato
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Lionel Cheruzel
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Stephen Sligar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
34
|
White CR, Datta G, Wilson L, Palgunachari MN, Anantharamaiah GM. The apoA-I mimetic peptide 4F protects apolipoprotein A-I from oxidative damage. Chem Phys Lipids 2019; 219:28-35. [PMID: 30707910 DOI: 10.1016/j.chemphyslip.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
High density lipoprotein (HDL) is prone to modification by the oxidizing and chlorinating agent hypochlorite anion (OCl-). Oxidation of apolipoprotein (apo) A-I, the major protein in HDL, reduces ABCA-1 mediated cholesterol efflux and other protective responses to HDL. The apoA-I mimetic peptide 4F has been shown to undergo oxidation; however, the ability of the peptide to mediate cholesterol efflux remains intact. Here, we show that 4F protects apoA-I from hypochlorite-mediated oxidation. Mass spectral analysis of apoA-I shows that tyrosine residues that are prone to hypochlorite-mediated chlorination are protected in the presence of 4F. Furthermore, 4F enhances the cholesterol efflux ability of apoA-I to a greater extent than either 4F or apoA-I alone, even after hypochlorite oxidation. These observations suggest that apoA-I in lipid complexes may be protected by the presence of 4F, resulting in the preservation of its anti-inflammatory and anti-atherogenic properties. These studies also form the basis for the future studies of nanoparticles possessing both apoA-I and 4F.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Geeta Datta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Mayakonda N Palgunachari
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, United States; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, United States.
| |
Collapse
|
35
|
Jiang L, Wang K, Zhang F, Zhang Y, Wang H, Liu S. Enhanced Metabolic Activity of Cytochrome P450 via Carbon Nanocage-Based Photochemical Bionanoreactor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41956-41961. [PMID: 30422622 DOI: 10.1021/acsami.8b14810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, the early screening of the genotoxicity of new chemicals and drugs calls for the envelope of micro-/nanoreactors for metabolic study. Herein, a novel light-driven enzymatic bionanoreactor is designed with the gold nanoparticle (NP)-modified carbon nanocage (Au@CNC) as a nanoreactor and meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP) as a photosensitizer for cytochrome P450-mediated drug metabolism. By confining the cytochrome P450 3A4 (CYP3A4) enzyme and TCPP inside the pores of Au@CNC, a high metabolic activity is achieved by using 7-ethoxytrifluoromethyl coumarin as the substrate because of the three-dimensional hierarchical porous structure, large surface area, and fast electron transfer capacity of Au@CNC. It is noted that owing to the presence of AuNPs inside CNC, the surface hydrophilicity of CNC is much improved, which further promotes the catalytic activity of the CYP3A4 enzyme. To our knowledge, this is the first attempt to apply CNC as a bionanoreactor for NADPH-free and light-driven in vitro drug metabolism. In addition, the presented bionanoreactor exhibits a variety of advantages in terms of fast response, short assay time (10 min), high sensitivity, and good selectivity, which are expected to expedite drug screening and render potential advances in drug discovery and development.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210096 , PR China
| | - Kan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210096 , PR China
| | - Fen Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210096 , PR China
| | - Yuanjian Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210096 , PR China
| | - Huaisheng Wang
- Department of Chemistry , Liaocheng University , Liaocheng , Shandong 252059 , China
| | - Songqin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210096 , PR China
| |
Collapse
|
36
|
Ravula T, Hardin NZ, Di Mauro GM, Ramamoorthy A. Styrene maleic acid derivates to enhance the applications of bio-inspired polymer based lipid-nanodiscs. Eur Polym J 2018; 108:597-602. [PMID: 31105326 PMCID: PMC6516473 DOI: 10.1016/j.eurpolymj.2018.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane mimetics are essential to study the structure, dynamics and function of membrane-associated proteins by biophysical and biochemical approaches. Among various membrane mimetics that have been developed and demonstrated for studies on membrane proteins, lipid nanodiscs are the latest developments in the field and are increasingly used for various applications. While lipid-nanodiscs can be formed using an amphipathic membrane scaffold protein (MSP), peptide, or synthetic polymer, the synthetic polymer based nanodiscs exhibit unique advantages because of the ability to functionalize them for various applications. In addition to the use of synthetic polymers to extract membrane proteins directly from the cell membranes, recent advances in the development of polymers used for nanodiscs formation are attracting new attention to the field of nanodiscs technology. Here we review the developments of novel polymer modifications that overcome the current limitations and enhance the applications of polymer based nanodiscs to a wider variety of biophysical techniques used to study membrane proteins. A summary of the functionalization of poly(Styrene-co-Maleic Acid), SMA, polymers developed by our research and their advantages are also covered in this review article.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Nathaniel. Z Hardin
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Giacomo M. Di Mauro
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
37
|
Barnaba C, Ravula T, Medina-Meza IG, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A. Lipid-exchange in nanodiscs discloses membrane boundaries of cytochrome-P450 reductase. Chem Commun (Camb) 2018; 54:6336-6339. [PMID: 29863198 PMCID: PMC6022741 DOI: 10.1039/c8cc02003e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipids are critical for the function of membrane proteins. NADPH-cytochrome-P450-reductase, the sole electron transferase for microsomal oxygenases, possesses a conformational dynamics entwined with its topology. Here, we use peptide-nanodiscs to unveil cytochrome-P450-reductase's lipid boundaries, demonstrating a protein-driven enrichment of ethanolamine lipids (by 25%) which ameliorates by 3-fold CPR's electron-transfer ability.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | | | | | |
Collapse
|