1
|
Li SF, Meng YR, Xu MJ, Zhang G, Su J. Construction of a redox-active metal-organic framework with an octanuclear lithium one-dimensional building block. Chem Commun (Camb) 2024; 60:8047-8050. [PMID: 38989591 DOI: 10.1039/d4cc02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A stable lithium metal-organic framework, constructed using a redox-active N,N,N',N'-tetrakis(4-carboxyphenyl)-1,4-phenylenediamine linker and Li8 cluster-based one-dimensional rod secondary building unit, exhibits good stability and reversible redox activity. The Li8-MOF, which can be oxidized by AgNO3, has the potential to function as an electrochromic device, thereby advancing the development of smart MOF materials.
Collapse
Affiliation(s)
- Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| | - Ya-Ru Meng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| | - Min-Jie Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
2
|
Li Y, Gong X, Dutta Chowdhury A. Toward Developing Superior Cu-Based Metal-Organic Framework-Derived Materials for Electrocatalytic Oxidation of Ethanol. Inorg Chem 2024; 63:11258-11269. [PMID: 38830055 DOI: 10.1021/acs.inorgchem.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This project addresses the urgent need for efficient and cost-effective development of electrocatalysts for the ethanol oxidation reaction (EOR). This reaction offers promising renewable energy solutions but faces challenges due to the slow EOR kinetics, typically requiring costly noble metal catalysts. To overcome these limitations, this study focuses on developing CuZn-based EOR catalysts derived from metal-organic frameworks (MOFs), focusing on understanding the structure-performance relationship between pristine MOF-based electrocatalysts and their pyrolyzed counterparts. Herein, bimetallic MOF materials with varying Cu/Zn ratios were synthesized, followed by pyrolysis to produce carbonized counterparts while preserving the fundamental structure but with altered physicochemical properties. Comparative EOR studies revealed the superior performance of pyrolyzed MOFs, demonstrating that optimized Zn-loading is crucial over Cu-based framework for catalyst performance and durability. Overall, this work highlights the potential of MOF-derived Cu-based catalysts for renewable energy applications and provides insights into optimizing their performance through controlled synthesis and post-treatment strategies.
Collapse
Affiliation(s)
- Yining Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | | |
Collapse
|
3
|
Gong W, Xie Y, Yamano A, Ito S, Reinheimer EW, Dong J, Malliakas CD, Proserpio DM, Cui Y, Farha OK. Rational Design and Reticulation of Infinite qbe Rod Secondary Building Units into Metal-Organic Frameworks through a Global Desymmetrization Approach for Inverse C 3 H 8 /C 3 H 6 Separation. Angew Chem Int Ed Engl 2023:e202318475. [PMID: 38078602 DOI: 10.1002/anie.202318475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yi Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwesterrsity, 60208, Evanston, IL, USA
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12 Matsubara-cho, 196-8666, Akishima, Tokyo, Japan
| | - Sho Ito
- Rigaku Corporation, 3-9-12 Matsubara-cho, 196-8666, Akishima, Tokyo, Japan
| | - Eric W Reinheimer
- Rigaku Americas Corporation, 9009 New Trails Drive, 77381, The Woodlands, TX, USA
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Christos D Malliakas
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwesterrsity, 60208, Evanston, IL, USA
| | - Davide M Proserpio
- Dipartimento di Chimica, Università degli studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwesterrsity, 60208, Evanston, IL, USA
- Department of Chemical & Biological Engineering, Northwestern University, 60208, Evanston, IL, USA
| |
Collapse
|
4
|
Liu W, Cui HL, Zhou J, Su ZT, Zhang YZ, Chen XL, Yue EL. Synthesis of a Cd-MOF Fluorescence Sensor and Its Detection of Fe 3+, Fluazinam, TNP, and Sulfasalazine Enteric-Coated Tablets in Aqueous Solution. ACS OMEGA 2023; 8:24635-24643. [PMID: 37457463 PMCID: PMC10339333 DOI: 10.1021/acsomega.3c03073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
A Cd-based metal-organic framework (Cd-MOF), named after {[Cd(ttc)(H2O)]·H2O}n (ttc = 1-imidazole-1-yl-2,4,6-benzene-tricarboxylic acid), was synthesized using the solvothermal reaction. The single-crystal structure was determined by single X-ray diffraction analysis, and crystalline characteristics and composition were confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TG), respectively. Structural analysis showed that the Cd2+ ion is in the seven-coordinated mode, in which ttc2- ion adopts the μ4-η1-η1-η2-η2 coordination mode. It is worth noting that the Cd2+ ion is connected to ttc2- to form a 2D network, and the adjacent 2D network is expanded into a 3D supramolecular network structure through weak hydrogen bonds. The fluorescence sensing experiments indicated that Cd-MOF could not only be used as a fluorescence sensor for Fe3+, fluazinam (FLU), and 2,4,6-trinitrophenolol (TNP) but also for sulfasalazine detection in aqueous solution. To verify the sensitivity of the fluorescent probe, we calculated its detection limit: 5.34 × 10-8 M (Fe3+), 7.8 × 10-8 M (FLU), 1.21 × 10-7 M (TNP), and 2.67 × 10-7 M (SECT). In addition, the quenching mechanism was thoroughly studied.
Collapse
|
5
|
Han D, Hao L, Chang M, Dong J, Gao Y, Zhang Y. Facile synthesis of Co-Ni layered double hydroxides nanosheets wrapped on a prism-like metal-organic framework for efficient oxygen evolution reaction. J Colloid Interface Sci 2023; 634:14-21. [PMID: 36528967 DOI: 10.1016/j.jcis.2022.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The construction of low-cost oxygen evolution reaction (OER) electrocatalysts with high activity and good durability is a considerable challenge for facilitating the efficient utilization of green energy. Herein, the prism-like materials of institute lavoisier frameworks-88 (MIL-88) was first synthesized by a hydrothermal method. Then, Co-Ni layered double hydroxides (CoNi-LDHs) nanosheets were directly wrapped on the MIL-88 surface by electrodeposition to form core-shell MIL-88@CoNi-LDHs composites. Due to the distinct structure and synergistic effect between the MIL-88 core and CoNi-LDHs shell, it was found that MIL-88@CoNi-LDHs had outstanding OER activity with a small Tafel slope (45.55 mV dec-1), low overpotential (314 mV) at 10 mA cm-2, and superior durability. This study provides a prospective pathway to exploit highly efficient low-cost electrocatalysts for OER.
Collapse
Affiliation(s)
- Dongyu Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Mengrou Chang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Jiangxue Dong
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Yongjun Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
6
|
Hong AN, Luong D, Alghamdi M, Liao W, Zhang W, Kusumoputro E, Chen Y, Greaney PA, Cui Y, Shi J, Bu X, Fokwa BPT, Feng P. Metal‐Mediated Directional Capping of Rod‐Packing Metal–Organic Frameworks. Chemistry 2022; 28:e202201576. [DOI: 10.1002/chem.202201576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Anh N. Hong
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Diana Luong
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Mohammed Alghamdi
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Wei‐Cheng Liao
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Weiyi Zhang
- Department of Materials Science and Engineering University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Emily Kusumoputro
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Yichong Chen
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - P. Alex Greaney
- Department of Materials Science and Engineering University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Yongtao Cui
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Jing Shi
- Department of Physics and Astronomy University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Boniface P. T. Fokwa
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| | - Pingyun Feng
- Department of Chemistry University of California, Riverside 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
7
|
Chen ZY, Hong QL, Zhang HX, Zhang J. Induction of Chirality in Boron Imidazolate Frameworks: The Structure-Directing Effects of Substituents. Inorg Chem 2022; 61:6861-6868. [PMID: 35482966 DOI: 10.1021/acs.inorgchem.2c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By enhancing steric hindrance of substituents on the imidazole ring, the fan-shaped molecule of a tridentate boron imidazolate ligand (KBH(2-ipim)3, 2-ipim = 2-isopropylimidazolate) with racemic chirality was obtained. Then, seven novel boron imidazolate frameworks (BIFs) were prepared by mixing KBH(2-ipim)3 ligands with various derivatives of benzene carboxylic acid under solvothermal conditions. All of these seven materials contain a ladder-like zinc-boron-imidazolate chain as a basic building block, and the ligand BH(2-ipim)3- exists in the same handedness in one chain. The structural variations are associated with the position of substituents of the auxiliary ligand. Of particular interest is the spontaneous resolution of BH(2-ipim)3- ligands into two independent enantiomorphous homochiral structures, BIF-131-S and BIF-131-R, which contain both a chiral chain and an absolute helix embedded in the nets.
Collapse
Affiliation(s)
- Zhen-Yu Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
8
|
Zhen-Yu C, Yu C, Hai-Xia Z, Jian Z. Synthesis of chiral boron imidazolate frameworks with second-order nonlinear optics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Abrahams BF, Commons CJ, Dharma AD, Hudson TA, Robson R, Sanchez Arlt RW, Stewart TC, White KF. Synthesis, structure and properties of coordination polymers formed from bridging 4-hydroxybenzoic acid anions. CrystEngComm 2022. [DOI: 10.1039/d2ce00163b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of 4-hydroxbenzoic acid with metal ions Li+, Mg2+ and Cu2+ leads to the formation of novel 2D and 3D networks.
Collapse
Affiliation(s)
| | | | - A. David Dharma
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Timothy A. Hudson
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Richard Robson
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | | - Thomas C. Stewart
- School of Agriculture, Biomedicine and Environment, La Trobe University, Wodonga, VIC, 3690, Australia
| | - Keith F. White
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Wodonga, VIC, 3690, Australia
| |
Collapse
|
10
|
Teixeira M, Maia RA, Karmazin L, Louis B, Baudron SA. Ionothermal synthesis of calcium-based metal–organic frameworks in a deep eutectic solvent. CrystEngComm 2022. [DOI: 10.1039/d1ce01497h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ionothermal synthesis of Ca-MOFs has been performed using the 1 : 2 choline chloride : e-urea deep eutectic solvent, allowing the preparation of water sensitive materials.
Collapse
Affiliation(s)
- Michaël Teixeira
- Université de Strasbourg, CNRS, CMC UMR 7140, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Renata A. Maia
- Université de Strasbourg, CNRS, CMC UMR 7140, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Lydia Karmazin
- Fédération Chimie Le Bel, FR 2010, BP296R8, 1 rue Blaise Pascal, F-67008 Strasbourg cedex, France
| | - Benoît Louis
- Université de Strasbourg, CNRS, ICPEES UMR 7515, 25 rue Becquerel, F-67087 Strasbourg, France
| | - Stéphane A. Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| |
Collapse
|
11
|
Bazyakina NL, Moskalev MV, Cherkasov AV, Makarov VM, Fedushkin IL. Coordination polymers derived from alkali metal complexes of redox-active ligands. CrystEngComm 2022. [DOI: 10.1039/d1ce01698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment solutions of (dpp-bian)M (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene; M = Li, Na, K) with 4,4′-bipyridine (4,4′-bipy) affords coordination polymers [(dpp-bian)M(4,4′-bipy)m]n, (M = Li or K, m = 1; M = Na, m = 2).
Collapse
Affiliation(s)
- Natalia L. Bazyakina
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603950 Nizhny Novgorod, Russian Federation
| | - Mikhail V. Moskalev
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603950 Nizhny Novgorod, Russian Federation
| | - Anton V. Cherkasov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603950 Nizhny Novgorod, Russian Federation
| | - Valentin M. Makarov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603950 Nizhny Novgorod, Russian Federation
| | - Igor L. Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
12
|
Fan W, Zhang X, Kang Z, Liu X, Sun D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213968] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Zhang YF, Zhang ZH, Ritter L, Fang H, Wang Q, Space B, Zhang YB, Xue DX, Bai J. New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal-Organic Frameworks. J Am Chem Soc 2021; 143:12202-12211. [PMID: 34328001 DOI: 10.1021/jacs.1c04946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reticular chemistry and methane storage materials have been predominately focused on finite metal-cluster-based metal-organic frameworks (MOFs). In contrast, MOFs constructed from infinite rod secondary building units (SBUs), i.e., rod MOFs, are less developed, and the existing ones are typically built from simple one-way helical, zigzag, or (mixed)polyhedron SBUs. Herein, inspired by a recent unveiled structure of Zn6(H2O)3(BTP)4 and by means of an amide-functionalized preliminary single tricarboxylate, a subsequent mixed tricarboxylate, and dicarboxylate linkers, an intricate three-way rod MOF and the next three isoreticular three-way rod MOFs have been successfully realized, namely, 3W-ROD-1 and 3W-ROD-2-X (X = -OH, -F, and -CH3), respectively. The structural analyses disclosed that the four compounds were constructed from unprecedented three-way invariant nonintersecting trigonal rod-packing SBUs cross-linked via the noncovalent-interaction-driven self-assembly of pseudo hexacarboxylates with the original tricarboxylate or different functional ditopic linkers, resulting in cage-like pore geometries accessible via ultramicroporous apertures concomitant with the complex topology transitivity, namely, 18 42 and 18 44. Sorption studies show that the apparent surface areas of these materials are among the most highly porous materials for rod MOFs. Due to the presence of favorable pocket sites created by X, ketone, and proximal amide groups as revealed by Monte Carlo molecular dynamics (MCMD) computational calculations, the MOFs exhibit impressive methane storage working capacities, outperforming the well-known rod Ni-MOF-74 and representing the highest values among rigid rod MOFs.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zong-Hui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Logan Ritter
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Han Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qian Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Junfeng Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
14
|
Bi MY, Hong QL, Liu M, Wang F, Zhang HX, Zhang J. Chiral induction in boron imidazolate frameworks: the construction of cage-based absolute helices. Chem Commun (Camb) 2021; 57:5020-5023. [PMID: 33881423 DOI: 10.1039/d1cc01249e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two cage-based boron imidazolate helices were prepared in achiral reaction systems by mixing a C3 symmetric rigid ligand, KBH(bim)3, and a long flexible dicarboxylic acid ligand. The presence of an appropriate chiral inducer can control the helical orientation of bulk samples, which further acts on the enantioselective separation of racemic 1-phenylethanol.
Collapse
Affiliation(s)
- Ming-Yue Bi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qin-Long Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Meng Liu
- Key Lab for Sport Shoes Upper Materials of Fujian Province, Fujian Huafeng New Material Co., Ltd, Putian, 351164, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
15
|
Chen C, Zeng W, Zhu Q, Zhang Z, Li Y, Ueda W. Zeolitic octahedral metal oxide-based membranes for pervaporative desalination of concentrated brines. Chem Commun (Camb) 2021; 57:2420-2423. [PMID: 33554977 DOI: 10.1039/d0cc08014d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An all-inorganic zeolitic octahedral metal oxide based on cobalt tungstoselenate with porosity and hydrophilicity is successfully used to fabricate a membrane. The as-synthesized membrane and its ion-exchanged membranes exhibit extraordinary permeation flux with high salt rejection by pervaporative desalination for high-salinity brines up to 25 wt%.
Collapse
Affiliation(s)
- Chaomin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China.
| | | | | | | | | | | |
Collapse
|
16
|
Zheng HL, Huang SL, Luo MB, Wei Q, Chen EX, He L, Lin Q. Photochemical In Situ Exfoliation of Metal-Organic Frameworks for Enhanced Visible-Light-Driven CO 2 Reduction. Angew Chem Int Ed Engl 2020; 59:23588-23592. [PMID: 32926488 DOI: 10.1002/anie.202012019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/24/2022]
Abstract
Two novel two-dimensional metal-organic frameworks (2D MOFs), 2D-M2 TCPE (M=Co or Ni, TCPE=1,1,2,2-tetra(4-carboxylphenyl)ethylene), which are composed of staggered (4,4)-grid layers based on paddlewheel-shaped dimers, serve as heterogeneous photocatalysts for efficient reduction of CO2 to CO. During the visible-light-driven catalysis, these structures undergo in situ exfoliation to form nanosheets, which exhibit excellent stability and improved catalytic activity. The exfoliated 2D-M2 TCPE nanosheets display a high CO evolution rate of 4174 μmol g-1 h-1 and high selectivity of 97.3 % for M=Co and Ni, and thus are superior to most reported MOFs. The performance differences and photocatalytic mechanisms have been studied with theoretical calculations and photoelectric experiments. This study provides new insight for the controllable synthesis of effective crystalline photocatalysts based on structural and morphological coregulation.
Collapse
Affiliation(s)
- Hui-Li Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shan-Lin Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ming-Bu Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qin Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
17
|
Zheng H, Huang S, Luo M, Wei Q, Chen E, He L, Lin Q. Photochemical In Situ Exfoliation of Metal–Organic Frameworks for Enhanced Visible‐Light‐Driven CO
2
Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui‐Li Zheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Shan‐Lin Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Ming‐Bu Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Qin Wei
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Er‐Xia Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Liang He
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| |
Collapse
|
18
|
Sahoo R, Chand S, Mondal M, Pal A, Pal SC, Rana MK, Das MC. A "Thermodynamically Stable" 2D Nickel Metal-Organic Framework over a Wide pH Range with Scalable Preparation for Efficient C 2 s over C 1 Hydrocarbon Separations. Chemistry 2020; 26:12624-12631. [PMID: 32557878 DOI: 10.1002/chem.202001611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Indexed: 12/16/2022]
Abstract
The design and construction of "thermodynamically stable" metal-organic frameworks (MOFs) that can survive in liquid water, boiling water, and acidic/basic solutions over a wide pH range is highly desirable for many practical applications, especially adsorption-based gas separations with obvious scalable preparations. Herein, a new thermodynamically stable Ni MOF, {[Ni(L)(1,4-NDC)(H2 O)2 ]}n (IITKGP-20; L=4,4'-azobispyridine; 1,4-NDC=1,4-naphthalene dicarboxylic acid; IITKGP stands for the Indian Institute of Technology Kharagpur), has been designed that displays moderate porosity with a BET surface area of 218 m2 g-1 and micropores along the [10-1] direction. As an alternative to a cost-intensive, cryogenic, high-pressure distillation process for the separation of hydrocarbons, MOFs have recently shown promise for such separations. Thus, towards an application standpoint, this MOF exhibits a higher uptake of C2 hydrocarbons over that of C1 hydrocarbon under ambient conditions, with one of the highest selectivities based on the ideal adsorbed solution theory (IAST) method. A combination of two strategies (the presence of stronger metal-N coordination of the spacer and the hydrophobicity of the aromatic moiety of the organic ligand) possibly makes the framework highly robust, even stable in boiling water and over a wide range of pH 2-10, and represents the first example of a thermodynamically stable MOF displaying a 2D structural network. Moreover, this material is easily scalable by heating the reaction mixture at reflux overnight. Because such separations are performed in the presence of water vapor and acidic gases, there is a great need to explore thermodynamically stable MOFs that retain not only structural integrity, but also the porosity of the frameworks.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Manas Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of, Science Education and Research Berhampur, 760010, Odisha, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
19
|
Peng F, Yang H, Hernandez A, Schier DE, Feng P, Bu X. Bimetallic Rod-Packing Metal-Organic Framework Combining Two Charged Forms of 2-Hydroxyterephthalic Acid. Chemistry 2020; 26:11146-11149. [PMID: 32767615 DOI: 10.1002/chem.202002541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Indexed: 11/08/2022]
Abstract
Although many rod-packing metal-organic frameworks are known, few are based on ordered heterometallic rod building unit. We show here the synthesis of CPM-76 based on an unprecedented Zn-Mg bimetallic rod with crystallographically distinguishable metal sites. The configuration of the rod offers two types of coordination site with trigonal bipyramidal and octahedral sites selectively occupied by Zn and Mg, respectively. Also unusual is the inter-connection mode between the rods, which is based on dual-charged forms (-3 and -2) of the 2-hydroxyterephthalic acid (H3 OBDC) ligand. Interestingly, each metal site in CPM-76 binds one solvent molecule, leading to a high density of solvent binding sites.
Collapse
Affiliation(s)
- Fang Peng
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Huajun Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Anthony Hernandez
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Danielle E Schier
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| |
Collapse
|
20
|
Ejegbavwo OA, Berseneva AA, Martin CR, Leith GA, Pandey S, Brandt AJ, Park KC, Mathur A, Farzandh S, Klepov VV, Heiser BJ, Chandrashekhar M, Karakalos SG, Smith MD, Phillpot SR, Garashchuk S, Chen DA, Shustova NB. Heterometallic multinuclear nodes directing MOF electronic behavior. Chem Sci 2020; 11:7379-7389. [PMID: 34123019 PMCID: PMC8159452 DOI: 10.1039/d0sc03053h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metal node engineering in combination with modularity, topological diversity, and porosity of metal–organic frameworks (MOFs) could advance energy and optoelectronic sectors. In this study, we focus on MOFs with multinuclear heterometallic nodes for establishing metal−property trends, i.e., connecting atomic scale changes with macroscopic material properties by utilization of inductively coupled plasma mass spectrometry, conductivity measurements, X-ray photoelectron and diffuse reflectance spectroscopies, and density functional theory calculations. The results of Bader charge analysis and studies employing the Voronoi–Dirichlet partition of crystal structures are also presented. As an example of frameworks with different nodal arrangements, we have chosen MOFs with mononuclear, binuclear, and pentanuclear nodes, primarily consisting of first-row transition metals, that are incorporated in HHTP-, BTC-, and NIP-systems, respectively (HHTP3− = triphenylene-2,3,6,7,10,11-hexaone; BTC3− = 1,3,5-benzenetricarboxylate; and NIP2− = 5-nitroisophthalate). Through probing framework electronic profiles, we demonstrate structure–property relationships, and also highlight the necessity for both comprehensive analysis of trends in metal properties, and novel avenues for preparation of heterometallic multinuclear isoreticular structures, which are critical components for on-demand tailoring of properties in heterometallic systems. Metal node engineering in combination with modularity, topological diversity, and porosity of metal–organic frameworks (MOFs) could advance energy and optoelectronic sectors.![]()
Collapse
Affiliation(s)
- Otega A Ejegbavwo
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Shubham Pandey
- Department of Materials Science and Engineering, University of Florida Gainesville Florida 32611 USA
| | - Amy J Brandt
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Sharfa Farzandh
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Vladislav V Klepov
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Brittany J Heiser
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Mvs Chandrashekhar
- Department of Electrical Engineering, University of South Carolina Columbia South Carolina 29208 USA
| | - Stavros G Karakalos
- College of Engineering and Computing, University of South Carolina Columbia South Carolina 29208 USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida Gainesville Florida 32611 USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Donna A Chen
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
21
|
Liu Y, Lin SX, Niu RJ, Liu Q, Zhang WH, Young DJ. Zinc and Cadmium Complexes of Pyridinemethanol Carboxylates: Metal Carboxylate Zwitterions and Metal-Organic Frameworks. Chempluschem 2020; 85:832-837. [PMID: 32364322 DOI: 10.1002/cplu.202000175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Indexed: 11/08/2022]
Abstract
The heterofunctional lactone furo[3,4-b]pyridin-5(7H)-one (L1 ) undergoes a coordination-induced ring-opening reaction with Zn(NO3 )2 ⋅ 6H2 O to yield the zwitterionic [Zn(L1 ')2 (H2 O)2 ] (1, L1 '=2-(hydroxymethyl)nicotinate) with an uncoordinated carboxylate. The same reaction with Cd(NO3 )2 ⋅ 4H2 O provides a two-dimensional (2D) network of [Cd(L1 ')2 ]n (3) with the carboxylates coordinated to cadmium(II) propagating the assembly. The corresponding reactions of Zn(NO3 )2 ⋅ 6H2 O and Cd(NO3 )2 ⋅ 4H2 O with 2-(hydroxymethyl)isonicotinic acid (HL2 ) generated zwitterionic [Zn(L2 )2 (H2 O)2 ] (2) and a 2D network [Cd(L2 )2 ]n ⋅nDMF (4, DMF=N,N'-dimethylformamide), respectively. Complexes 1-4 are weakly emissive, giving ligand-centered emissions at 409 nm (1), 412/436 nm (2), 404 nm (3), and 412/436 nm (4) in CHCl3 solutions upon excitation at 330 nm. This work points to the potential of using 'hidden' functionalities widely found in small organic molecules and natural products for the construction of coordination complexes with new functionality and potential applications.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Shi-Xin Lin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ru-Jie Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Quan Liu
- College of Chemistry and Chemical Engineering, Nantong University Nantong 226019 (P. R. China)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
22
|
Li FZ, Mei L, An SW, Hu KQ, Chai ZF, Liu N, Shi WQ. Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations. Inorg Chem 2020; 59:4058-4067. [PMID: 32129613 DOI: 10.1021/acs.inorgchem.0c00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incorporation of a mechanically interlocked molecule such as pseudorotaxane into metal-organic coordination polymers has afforded plenty of new hybrid materials with special structures and unique properties. In this work, we employ a weakly bound cucurbit[6]uril (CB[6])-bipyridinium pseudorotaxane as a supramolecular precursor to assemble with uranyl, aiming to construct uranyl-rotaxane coordination polymers (URCPs) with intriguing structures. By adjusting the synthetic conditions, a new kinked-helix uranyl rotaxane compound (URCP3), together with three other compounds URCP1, URCP2, and URCP4 varying from 1D chains to 2D interwoven networks, was obtained. Detailed structural analyses indicate that the pseudorotaxane ligand (C8BPCA@CB[6]) shows great configuration diversity in the construction of URCPs, which is most probably due to the weak binding strength between the host and guest molecules. Specifically, based on the monodentate coordination of the end carboxyl groups of C8BPCA forced by the surrounding unilaterally-chelated oxalate, the entire flexible pseudorotaxane linker will be more likely to undergo conformational change, thereby binding to the uranyl center from both sides of the uranyl equatorial plane and promoting the formation of a kinked helix structure of URCP3 that is shaped like a Chinese knot along [001]. This work enriches the library of actinide-rotaxane compounds and provides a new approach to construct metal-organic compounds with complicated structures using weakly bonded pseudorotaxanes as well.
Collapse
Affiliation(s)
- Fei-Ze Li
- Key Laboratory of Radiation Physics and Technology (Sichuan University); Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu-Wen An
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University); Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Yang H, Peng F, Dang C, Wang Y, Hu D, Zhao X, Feng P, Bu X. Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. J Am Chem Soc 2019; 141:9808-9812. [DOI: 10.1021/jacs.9b04432] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Fang Peng
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Candy Dang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Yong Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Dandan Hu
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xiang Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| |
Collapse
|
24
|
Li YP, Zhu XH, Li SN, Jiang YC, Hu MC, Zhai QG. Highly Selective and Sensitive Turn-Off-On Fluorescent Probes for Sensing Al 3+ Ions Designed by Regulating the Excited-State Intramolecular Proton Transfer Process in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11338-11348. [PMID: 30834744 DOI: 10.1021/acsami.8b20410] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The concept of high-performance excited-state intramolecular proton transfer (ESIPT)-based fluorescent metal-organic framework (MOF) probes for Al3+ is proposed in this work. By regulating the hydroxyl groups on the organic linker step by step, new fluorescent magnesium-organic framework (Mg-MOF) probes for Al3+ ions were established based on the ESIPT fluorescence mechanism. It is observed for the first time that the number of intramolecular hydrogen bonds between adjacent hydroxyl and carboxyl groups can effectively adjust the ESIPT process and lead to tunable fluorescence sensing performance. Together with the well-designed porous and anionic framework, the Mg-TPP-DHBDC probe decorating with a pair of intramolecular hydrogen bonds exhibits extra-high quantitative fluorescence response to Al3+ through an unusual turn-off (0-1.2 μM) and turn-on (4.2-15 μM) luminescence sensing mechanism. Notably, the 28 nM limit of detection value represents the lowest record among all reported MOF-based Al3+ fluorescent sensors up to now. Benefited from the unique turn-off-on ESIPT fluorescence detection process, the Mg-TPP-DHBDC MOF sensor exhibits single Al3+ detection compared with other 16 common metal ions including Ga3+, In3+, Fe3+, Cr3+, Ca2+, and Mg2+. Impressively, such an Al3+ selective sensing process can even be fulfilled by the reusable MOF test paper detected by naked eyes. Overall, the quantitative Al3+ detection, together with the extraordinary sensitivity, selectivity, fast response, and good reusability, strongly supports our concept of ESIPT-based fluorescent MOF Al3+ probes and makes Mg-TPP-DHBDC one of the most powerful Al3+ fluorescent sensors.
Collapse
Affiliation(s)
- Yong-Peng Li
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education , Shaanxi Normal University , Xi'an , Shaanxi 710062 , P. R. China
| | - Xiao-Han Zhu
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education , Shaanxi Normal University , Xi'an , Shaanxi 710062 , P. R. China
| | - Shu-Ni Li
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education , Shaanxi Normal University , Xi'an , Shaanxi 710062 , P. R. China
| | - Yu-Cheng Jiang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education , Shaanxi Normal University , Xi'an , Shaanxi 710062 , P. R. China
| | - Man-Cheng Hu
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education , Shaanxi Normal University , Xi'an , Shaanxi 710062 , P. R. China
| | - Quan-Guo Zhai
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education , Shaanxi Normal University , Xi'an , Shaanxi 710062 , P. R. China
| |
Collapse
|
25
|
Gao X, Gao Y, Qi R, Han L. One-pot synthesis of a recyclable ratiometric fluorescent probe based on MOFs for turn-on sensing of Mg2+ ions and bioimaging in live cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj04536h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work illustrates the design and construction of a fascinating recyclable ratiometric fluorescent probe based on MOFs (Fe3O4/RhB@Al-MOFs) via a simple one-step approach.
Collapse
Affiliation(s)
- Xuechuan Gao
- College of Chemical Engineering
- Inner Mongolia University of Technology
- Hohhot 010051
- P. R. China
| | - Yuanyuan Gao
- College of Chemical Engineering
- Inner Mongolia University of Technology
- Hohhot 010051
- P. R. China
| | - Ruilong Qi
- College of Chemical Engineering
- Inner Mongolia University of Technology
- Hohhot 010051
- P. R. China
| | - Limin Han
- College of Chemical Engineering
- Inner Mongolia University of Technology
- Hohhot 010051
- P. R. China
| |
Collapse
|
26
|
Wu Z, Wang XL, Hu D, Wu S, Liu C, Wang X, Zhou R, Li DS, Wu T. A new cluster-based chalcogenide zeolite analogue with a large inter-cluster bridging angle. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01051c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new cluster-based chalcogenide zeolite analogue with a large inter-cluster bridging angle.
Collapse
Affiliation(s)
- Zhou Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Xiao-Li Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Dandan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Sijie Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Chengdong Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Xiang Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Rui Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
| | - Tao Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Jiangsu 215123
- China
| |
Collapse
|