1
|
Jiang Y, Tang Z, Jiang M, Wang J, Wang Y. Small Molecule Inhibitors Targeting Cdc2-Like Kinase 4: Advances, Challenges, and Opportunities. Chem Biol Drug Des 2025; 105:e70087. [PMID: 40095342 DOI: 10.1111/cbdd.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Cdc2-like kinase 4 (Clk4), a key member of the CMGC kinase family, plays a crucial role in alternative splicing, which profoundly influences various physiological processes, including cellular signaling, proliferation, and survival. Its involvement in these vital functions has positioned Clk4 as an important target for therapeutic intervention in a range of diseases, such as neurodegenerative disorders, viral and parasitic infections, and cancer. This review highlights recent advancements in Clk4 inhibitors, covering both natural, and synthetic compounds. It further examines the core scaffolds and essential functional groups of Clk4 small-molecule inhibitors, emphasizing the most promising chemical structures. Additionally, the review explores the structure-activity relationships (SARs) and molecular binding modes of existing Clk4 inhibitors, offering insights and strategies for the development of novel Clk4-targeted drugs. This review highlights recent advancements in small molecule inhibitors targeting Clk4, emphasizing their potential in treating cancers and neurodegenerative diseases. It explores SARs, binding modes, and challenges in developing selective Clk4 inhibitors, offering insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Jiang
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zihua Tang
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Minggao Jiang
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Wang
- Pediatric Otolaryngology Head and Neck Surgery, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanhai Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Moyano PM, Kubina T, Paruch ŠO, Jarošková A, Novotný J, Skočková V, Ovesná P, Suchánková T, Prokofeva P, Kuster B, Šmída M, Chaikuad A, Krämer A, Knapp S, Souček K, Paruch K. Thieno[3,2-b]pyridine: Attractive scaffold for highly selective inhibitors of underexplored protein kinases with variable binding mode. Angew Chem Int Ed Engl 2025; 64:e202412786. [PMID: 39503260 DOI: 10.1002/anie.202412786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 11/22/2024]
Abstract
Protein kinases are key regulators of numerous biological processes and aberrant kinase activity can cause various diseases, particularly cancer. Herein, we report the identification of new series of highly selective kinase inhibitors based on the thieno[3,2-b]pyridine scaffold. The weak interaction of the thieno[3,2-b]pyridine core with the kinase hinge region allows for profoundly different binding modes all of which maintain high kinome-wide selectivity, as illustrated by the isomers MU1464 and MU1668. Thus, this core structure provides a template of ATP-competitive but not ATP-mimetic inhibitors that are anchored at the kinase back pocket. Mapping the chemical space around the central thieno[3,2-b]pyridine pharmacophore afforded highly selective inhibitors of the kinase Haspin, exemplified by the compound MU1920 that fulfils criteria for a quality chemical probe and is suitable for use in in vivo applications. However, despite the role of Haspin in mitosis, the inhibition of Haspin alone was not sufficient to elicit cytotoxic effect in cancer cells. The thieno[3,2-b]pyridine scaffold can be used in a broader context, as a basis of inhibitors targeting other underexplored protein kinases, such as CDKLs.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Tadeáš Kubina
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpán Owen Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Aneta Jarošková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Novotný
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Skočková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tereza Suchánková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
| | - Polina Prokofeva
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Michal Šmída
- CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Karel Souček
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| |
Collapse
|
3
|
Lloyd MD, Gregory KS, Acharya KR. Functional implications of unusual NOS and SONOS covalent linkages found in proteins. Chem Commun (Camb) 2024; 60:9463-9471. [PMID: 39109843 DOI: 10.1039/d4cc03191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
5
|
Zech TJ, Wolf A, Hector M, Bischoff-Kont I, Krishnathas GM, Kuntschar S, Schmid T, Bracher F, Langmann T, Fürst R. 2-Desaza-annomontine (C81) impedes angiogenesis through reduced VEGFR2 expression derived from inhibition of CDC2-like kinases. Angiogenesis 2024; 27:245-272. [PMID: 38403816 PMCID: PMC11021337 DOI: 10.1007/s10456-024-09906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/β-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/β-catenin pathway activity, as activating the pathway induced, while β-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.
Collapse
Affiliation(s)
- T J Zech
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany.
| | - A Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - M Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - I Bischoff-Kont
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - G M Krishnathas
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - S Kuntschar
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - T Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - F Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - R Fürst
- Faculty of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Suriya U, Mahalapbutr P, Geronikaki A, Kartsev V, Zubenko A, Divaeva L, Chekrisheva V, Petrou A, Oopkaew L, Somngam P, Choowongkomon K, Rungrotmongkol T. Discovery of furopyridine-based compounds as novel inhibitors of Janus kinase 2: In silico and in vitro studies. Int J Biol Macromol 2024; 260:129308. [PMID: 38218283 DOI: 10.1016/j.ijbiomac.2024.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Janus kinase 2 (JAK2), one of the JAK isoforms participating in a JAK/STAT signaling cascade, has been considered a potential clinical target owing to its critical role in physiological processes involved in cell growth, survival, development, and differentiation of various cell types, especially immune and hematopoietic cells. Substantial studies have proven that the inhibition of this target could disrupt the JAK/STAT pathway and provide therapeutic outcomes for cancer, immune disorders, inflammation, and COVID-19. Herein, we performed docking-based virtual screening of 63 in-house furopyridine-based compounds and verified the first-round screened compounds by in vitro enzyme- and cell-based assays. By shedding light on the integration of both in silico and in vitro methods, we could elucidate two promising compounds. PD19 showed cytotoxic effects on human erythroblast cell lines (TF-1 and HEL) with IC50 values of 57.27 and 27.28 μM, respectively, while PD12 exhibited a cytotoxic effect on TF-1 with an IC50 value of 83.47 μM by suppressing JAK2/STAT5 autophosphorylation. In addition, all screened compounds were predicted to meet drug-like criteria based on Lipinski's rule of five, and none of the extreme toxicity features were found. Molecular dynamic simulations revealed that PD12 and PD19 could form stable complexes with JAK2 in an aqueous environment, and the van der Waals interactions were the main force driving the complex formation. Besides, all compounds sufficiently interacted with surrounding amino acids in all crucial regions, including glycine, catalytic, and activation loops. Altogether, PD12 and PD19 identified here could potentially be developed as novel therapeutic inhibitors disrupting the JAK/STAT pathway.
Collapse
Affiliation(s)
- Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khan Kaen 40002, Thailand.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | | | - Alexsander Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Liudmila Divaeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Lipika Oopkaew
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phitchakorn Somngam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Abuflaha RK, Yousef FO, Ghanem R, Al-Sou'od K, Shahdi IA, Almashaqbeh OK, Al-Refai M. Investigation of Solvent Effect and H-Bonding on Spectroscopic Properties of 1-(3-Amino-6-(2,5-dichlorothiophen-3-yl)-4-phenylfuro[2,3-b]Pyridin-2-yl) Ethenone: Experimental and Computational Study. J Fluoresc 2023; 33:2349-2360. [PMID: 37058190 DOI: 10.1007/s10895-023-03243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
The furo[2,3-b]pyridine moiety is an important scaffold for many biologically active compounds, therefore, the spectral data of the derivative 1-(3-Amino-6-(2,5-dichlorothiophen-3-yl)-4-phenylfuro[2,3-b]pyridin-2-yl) ethenone (FP1) were investigated. Analysis of absorption-pH profile and Förster cycle of FP1 revealed that its excited state is more acidic than its ground state ([Formula: see text] < [Formula: see text]). The main fluorescence emission band of FP1 at 480 nm (in hexane) is shifted to longer wavelengths with increasing polarities of solvents. Linear Lippert's plot and linear correlation between bands maxima and Camlet-Taft parameter, α, of the protic solvents indicated efficient intramolecular charge transfer and noticeable H-bonding. Moreover, the disappearance of the absorption band of FP1 at 385 nm in water, along with the noticeable red shift and quenching of the emission band, and the lower lifetime, relative to nonaqueous solvents, indicate the interruption of the furo[2,3-b]pyridine aromatic moiety. In addition, results from the Time Dependent Density Functional Theory (TDDFT) and Molecular Mechanic (MM) calculations were in agreement with experimentally determined spectra of FP1.
Collapse
Affiliation(s)
| | - Fakhri O Yousef
- Department of Chemistry, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Raed Ghanem
- Department of Chemistry, Al al-Bayt University, Mafraq, Jordan.
| | | | - Ihsan A Shahdi
- Department of Chemistry, Pure and Applied Chemistry Group, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | | | | |
Collapse
|
8
|
Mucka P, Lindemann P, Bosco B, Willenbrock M, Radetzki S, Neuenschwander M, Brischetto C, Peter von Kries J, Nazaré M, Scheidereit C. CLK2 and CLK4 are regulators of DNA damage-induced NF-κB targeted by novel small molecule inhibitors. Cell Chem Biol 2023; 30:1303-1312.e3. [PMID: 37506701 DOI: 10.1016/j.chembiol.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Transcription factor NF-κB potently activates anti-apoptotic genes, and its inactivation significantly reduces tumor cell survival following genotoxic stresses. We identified two structurally distinct lead compounds that selectively inhibit NF-κB activation by DNA double-strand breaks, but not by other stimuli, such as TNFα. Our compounds do not directly inhibit previously identified regulators of this pathway, most critically including IκB kinase (IKK), but inhibit signal transmission in-between ATM, PARP1, and IKKγ. Deconvolution strategies, including derivatization and in vitro testing in multi-kinase panels, yielded shared targets, cdc-like kinase (CLK) 2 and 4, as essential regulators of DNA damage-induced IKK and NF-κB activity. Both leads sensitize to DNA damaging agents by increasing p53-induced apoptosis, thereby reducing cancer cell viability. We propose that our lead compounds and derivatives can be used in context of genotoxic therapy-induced or ongoing DNA damage to increase tumor cell apoptosis, which may be beneficial in cancer treatment.
Collapse
Affiliation(s)
- Patrick Mucka
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Lindemann
- Laboratory of Medicinal Chemistry, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Bartolomeo Bosco
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael Willenbrock
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Silke Radetzki
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Cristina Brischetto
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marc Nazaré
- Laboratory of Medicinal Chemistry, Leibniz Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany.
| | - Claus Scheidereit
- Laboratory of Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
9
|
Tiek D, Wells CI, Schröder M, Song X, Alamillo-Ferrer C, Goenka A, Iglesia R, Lu M, Hu B, Kwarcinski F, Sintha P, de Silva C, Hossain MA, Picado A, Zuercher W, Zutshi R, Knapp S, Riggins RB, Cheng SY, Drewry DH. SGC-CLK-1: A chemical probe for the Cdc2-like kinases CLK1, CLK2, and CLK4. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2023; 3:100045. [PMID: 38009092 PMCID: PMC10673624 DOI: 10.1016/j.crchbi.2023.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.
Collapse
Affiliation(s)
- Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Martin Schröder
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Carla Alamillo-Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | | | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alfredo Picado
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Reena Zutshi
- Luceome Biotechnologies LLC, Tucson, AZ, 85719, USA
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Song M, Pang L, Zhang M, Qu Y, Laster KV, Dong Z. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:148. [PMID: 37029108 PMCID: PMC10082069 DOI: 10.1038/s41392-023-01409-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Luping Pang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengmeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingzi Qu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
11
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
12
|
Němec V, Khirsariya P, Janovská P, Moyano PM, Maier L, Procházková P, Kebková P, Gybel' T, Berger BT, Chaikuad A, Reinecke M, Kuster B, Knapp S, Bryja V, Paruch K. Discovery of Potent and Exquisitely Selective Inhibitors of Kinase CK1 with Tunable Isoform Selectivity. Angew Chem Int Ed Engl 2023; 62:e202217532. [PMID: 36625768 DOI: 10.1002/anie.202217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.
Collapse
Affiliation(s)
- Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Prashant Khirsariya
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lukáš Maier
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Petra Procházková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavlína Kebková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tomáš Gybel'
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| |
Collapse
|
13
|
Discovery of novel 5-methoxybenzothiophene hydrazides as metabolically stable Clk1 inhibitors with high potency and unprecedented Clk1 isoenzyme selectivity. Eur J Med Chem 2023; 247:115019. [PMID: 36580731 DOI: 10.1016/j.ejmech.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Clk1 kinase is a key modulator of the pre-mRNA alternative splicing machinery which has been proposed as a promising target for treatment of various tumour types, Duchenne's muscular dystrophy and viral infections such as HIV-1 and influenza. Most reported Clk1 inhibitors showed significant co-inhibition of Clk2 and Clk4 in particular, which limits their usefulness for deciphering the individual roles of the Clk1 isoform in physiology and disease. Herein, we present a new 5-methoxybenzothiophene scaffold, enabling for the first time selective inhibition of Clk1 even among the isoenzymes. The 3,5-difluorophenyl and 3,5-dichlorophenyl derivatives 26a and 27a (Clk1 IC50 = 1.4 and 1.7 nM, respectively) showed unprecedented selectivity factors of 15 and 8 over Clk4, and selectivity factors of 535 and 84 over Clk2. Furthermore, 26a and 27a exhibited good growth inhibitory activity in T24 cancer cells and long metabolic half-lives of almost 1 and 6.4 h, respectively. The overall favorable profile of our new Clk1 inhibitors suggests that they may be used in in vivo disease models or as probes to unravel the physiological or pathogenic roles of the Clk1 isoenzyme.
Collapse
|
14
|
Jiang M, Lu S, Telu S, Pike VW. An Empirical Quantitative Structure-Activity Relationship Equation Assists the Discovery of High-Affinity Phosphodiesterase 4D Inhibitors as Leads to PET Radioligands. J Med Chem 2023; 66:1543-1561. [PMID: 36608175 PMCID: PMC10433104 DOI: 10.1021/acs.jmedchem.2c01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A positron emission tomography (PET) radioligand for imaging phosphodiesterase 4D (PDE4D) would benefit drug discovery and the investigation of neuropsychiatric disorders. The most promising radioligand to date, namely, [11C]T1650, has shown unstable quantification in humans. Structural elaboration of [11C]T1650 was therefore deemed necessary. High target affinity in the low nM range is usually required for successful PET radioligands. In our PDE4D PET radioligand development, we formulated and optimized an empirical equation (log[IC50 (nM)] = P1 + P2 + P3 + P4) that well described the relationship between binding affinity and empirically derived values (P1-P4) for the individual fragments in four subregions commonly composing each inhibitor (R2 = 0.988, n = 62). This equation was used to predict compounds that would have high inhibitory potency. Fourteen new compounds were obtained with IC50 of 0.3-10 nM. Finally, eight compounds were judged to be worthy of future radiolabeling and evaluation as PDE4D PET radioligands.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
15
|
Schröder M, Leiendecker M, Grädler U, Braun J, Blum A, Wanior M, Berger BT, Krämer A, Müller S, Esdar C, Knapp S, Heinrich T. MSC-1186, a Highly Selective Pan-SRPK Inhibitor Based on an Exceptionally Decorated Benzimidazole-Pyrimidine Core. J Med Chem 2023; 66:837-854. [PMID: 36516476 DOI: 10.1021/acs.jmedchem.2c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The highly conserved catalytic sites in protein kinases make it difficult to identify ATP competitive inhibitors with kinome-wide selectivity. Serendipitously, during a dedicated fragment campaign for the focal adhesion kinase (FAK), a scaffold that had lost its initial FAK affinity showed remarkable potency and selectivity for serine-arginine-protein kinases 1-3 (SRPK1-3). Non-conserved interactions with the uniquely structured hinge region of the SRPK family were the key drivers of the exclusive selectivity of the discovered fragment hit. Structure-guided medicinal chemistry efforts led to the SRPK inhibitor MSC-1186, which fulfills all hallmarks of a reversible chemical probe, including nanomolar cellular potency and excellent kinome-wide selectivity. The combination of MSC-1186 with CDC2-like kinase (CLK) inhibitors showed additive attenuation of SR-protein phosphorylation compared to the single agents. MSC-1186 and negative control (MSC-5360) are chemical probes available via the Structural Genomics Consortium chemical probe program (https://www.sgc-ffm.uni-frankfurt.de/).
Collapse
Affiliation(s)
- Martin Schröder
- SGC Frankfurt, Goethe University Frankfurt, Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | | | - Ulrich Grädler
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Juliane Braun
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Andreas Blum
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Marek Wanior
- SGC Frankfurt, Goethe University Frankfurt, Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- SGC Frankfurt, Goethe University Frankfurt, Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- SGC Frankfurt, Goethe University Frankfurt, Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- SGC Frankfurt, Goethe University Frankfurt, Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Christina Esdar
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefan Knapp
- SGC Frankfurt, Goethe University Frankfurt, Buchmann Institute for Life Sciences (BMLS), Riedberg Campus, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
16
|
Structure Activity Relationship Studies around DB18, a Potent and Selective Inhibitor of CLK Kinases. Molecules 2022; 27:molecules27196149. [PMID: 36234686 PMCID: PMC9571063 DOI: 10.3390/molecules27196149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Three series of our lead CLK1 inhibitor DB18 have been designed, synthetized and tested against CLKs and DYRK1A kinases. Their cytotoxicity was subsequently measured on seven representative cancer cell lines. Guided by docking experiments, we focused on the less constrained part of the scaffold, and showed that drastically different substituents can be tolerated here. This work ended with the discovery of another promising derivative 12g, with IC50 = 0.004 µM in the inhibition of HsCLK1 and IC50 = 3.94 µM for the inhibition of HsDYRK1A. The SAR results are discussed in the light of extensive molecular modeling analyses. Finally, a kinome scan (463 human kinases) confirmed the outstanding selectivity of our lead compound DB18, suggesting that this scaffold is of prominent interest for selective CLK inhibitors. Altogether, these results pave the way for the development of inhibitors with novel selectivities in this family of kinases.
Collapse
|
17
|
Recent synthetic advances in borylated pyrazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Tao J, Li C, Zhou K, Huan Y, Yuan Y, Liu A, Zhang F, Qi C, Shen Z. An Efficient Strategy for Synthesis of New Functionalized Furo[3,2‐
c
]pyridin‐4(
5
H
)‐one Derivatives under Mild Conditions. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiahao Tao
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Kaini Zhou
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Yongcan Huan
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Yongjie Yuan
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Ali Liu
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang Province China
| | - Zhenlu Shen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| |
Collapse
|
19
|
El-Gamil DS, ElHady AK, Chen PJ, Hwang TL, Abadi AH, Abdel-Halim M, Engel M. Development of novel conformationally restricted selective Clk1/4 inhibitors through creating an intramolecular hydrogen bond involving an imide linker. Eur J Med Chem 2022; 238:114411. [DOI: 10.1016/j.ejmech.2022.114411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
20
|
Zeinyeh W, Esvan YJ, Josselin B, Defois M, Baratte B, Knapp S, Chaikuad A, Anizon F, Giraud F, Ruchaud S, Moreau P. Synthesis and biological evaluation of Haspin inhibitors: Kinase inhibitory potency and cellular activity. Eur J Med Chem 2022; 236:114369. [DOI: 10.1016/j.ejmech.2022.114369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
|
21
|
Qin Z, Qin L, Feng X, Li Z, Bian J. Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions. J Med Chem 2021; 64:13191-13211. [PMID: 34519506 DOI: 10.1021/acs.jmedchem.1c00985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cdc2-like kinases (CLKs; CLK1-4) are associated with various neurodegenerative disorders, metabolic regulation, and viral infection and have been recognized as potential drug targets. Human CLK2 has received increasing attention as a regulator that phosphorylates serine- and arginine-rich (SR) proteins and subsequently modulates the alternative splicing of precursor mRNA (pre-mRNA), which is an attractive target for degenerative disease and cancer. Numerous CLK2 inhibitors have been identified, with several molecules currently in clinical development. The first CLK2 inhibitor Lorecivivint (compound 1) has recently entered phase 3 clinical trials. However, highly selective CLK2 inhibitors are rarely reported. This Perspective summarizes the biological roles and therapeutic potential of CLK2 along with progress on the development of CLK2 inhibitors and discusses the achievements and future prospects of CLK2 inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Lian Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| |
Collapse
|
22
|
He G, List B, Christmann M. Unified Synthesis of Polycyclic Alkaloids by Complementary Carbonyl Activation**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guoli He
- Freie Universität Berlin Institute of Chemistry and Biochemistry Takustrasse 3 14195 Berlin Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Mathias Christmann
- Freie Universität Berlin Institute of Chemistry and Biochemistry Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
23
|
He G, List B, Christmann M. Unified Synthesis of Polycyclic Alkaloids by Complementary Carbonyl Activation*. Angew Chem Int Ed Engl 2021; 60:13591-13596. [PMID: 33769684 PMCID: PMC8252720 DOI: 10.1002/anie.202102518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/23/2023]
Abstract
A complementary dual carbonyl activation strategy for the synthesis of polycyclic alkaloids has been developed. Successful applications include the synthesis of tetracyclic alkaloids harmalanine and harmalacinine, pentacyclic indoloquinolizidine alkaloid nortetoyobyrine, and octacyclic β-carboline alkaloid peganumine A. The latter synthesis features a protecting-group-free assembly and an asymmetric disulfonimide-catalyzed cyclization. Furthermore, formal syntheses of hirsutine, deplancheine, 10-desbromoarborescidine A, and oxindole alkaloids rhynchophylline and isorhynchophylline have been achieved. Finally, a concise synthesis of berberine alkaloid ilicifoline B was completed.
Collapse
Affiliation(s)
- Guoli He
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
24
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
25
|
Zhang Y, Xia A, Zhang S, Lin G, Liu J, Chen P, Mu B, Jiao Y, Xu W, Chen M, Li L. Discovery of 3,6-disubstutited-imidazo[1,2-a]pyridine derivatives as a new class of CLK1 inhibitors. Bioorg Med Chem Lett 2021; 41:127881. [PMID: 33662541 DOI: 10.1016/j.bmcl.2021.127881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Inhibition of cdc2-like kinase1 (CLK1) could efficiently induce autophagy and it has been thought as a potential target for treatment of autophagy-related diseases. Herein we report the discovery of a series of 3,6-disubstutited-imidazo[1,2-a]pyridine derivatives as a new class of CLK1 inhibitors. Among them, compound 9e is the most potent one, which exhibits an IC50 value of 4 nM against CLK1 kinase. In vitro, this compound reduces the phosphorylation level of the typical downstream substrates of CLK1 and affects their subcellular redistribution. Further study indicates that 9e is efficient to induce autophagy. Overall, this study provides a promising lead compound for drug discovery targeting CLK1 kinase.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingming Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pei Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Bo Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Basic Medical College of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenwen Xu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Mingxin Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
26
|
Weber C, Sipos M, Paczal A, Balint B, Kun V, Foloppe N, Dokurno P, Massey AJ, Walmsley DL, Hubbard RE, Murray J, Benwell K, Edmonds T, Demarles D, Bruno A, Burbridge M, Cruzalegui F, Kotschy A. Structure-Guided Discovery of Potent and Selective DYRK1A Inhibitors. J Med Chem 2021; 64:6745-6764. [PMID: 33975430 DOI: 10.1021/acs.jmedchem.1c00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kinase DYRK1A is an attractive target for drug discovery programs due to its implication in multiple diseases. Through a fragment screen, we identified a simple biaryl compound that is bound to the DYRK1A ATP site with very high efficiency, although with limited selectivity. Structure-guided optimization cycles enabled us to convert this fragment hit into potent and selective DYRK1A inhibitors. Exploiting the structural differences in DYRK1A and its close homologue DYRK2, we were able to fine-tune the selectivity of our inhibitors. Our best compounds potently inhibited DYRK1A in the cell culture and in vivo and demonstrated drug-like properties. The inhibition of DYRK1A in vivo translated into dose-dependent tumor growth inhibition in a model of ovarian carcinoma.
Collapse
Affiliation(s)
- Csaba Weber
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Melinda Sipos
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Attila Paczal
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Balazs Balint
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | - Vilibald Kun
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| | | | - Pawel Dokurno
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | | | | | | | - James Murray
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | - Karen Benwell
- Vernalis (R&D) Ltd., Granta Park, CB21 6GB Cambridge, U.K
| | - Thomas Edmonds
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Didier Demarles
- Technologie Servier, 27 Rue Eugène Vignat, 45000 Orleans, France
| | - Alain Bruno
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mike Burbridge
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Francisco Cruzalegui
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u. 7., H-1031 Budapest, Hungary
| |
Collapse
|
27
|
Brahmaiah D, Kanaka Durga Bhavani A, Aparna P, Sampath Kumar N, Solhi H, Le Guevel R, Baratte B, Ruchaud S, Bach S, Singh Jadav S, Raji Reddy C, Roisnel T, Mosset P, Levoin N, Grée R. Discovery of DB18, a potent inhibitor of CLK kinases with a high selectivity against DYRK1A kinase. Bioorg Med Chem 2021; 31:115962. [PMID: 33422908 DOI: 10.1016/j.bmc.2020.115962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
We describe in this paper the synthesis of a novel series of anilino-2-quinazoline derivatives. These compounds have been screened against a panel of eight mammalian kinases and in parallel they were tested for cytotoxicity on a representative panel of seven cancer cell lines. One of them (DB18) has been found to be a very potent inhibitor of human "CDC2-like kinases" CLK1, CLK2 and CLK4, with IC50 values in the 10-30 nM range. Interestingly, this molecule is inactive at 100 μM on the closely related "dual-specificity tyrosine-regulated kinase 1A" (DYRK1A). Extensive molecular simulation studies have been performed on the relevant kinases to explain the strong affinity of this molecule on CLKs, as well as its selectivity against DYRK1A.
Collapse
Affiliation(s)
- Dabbugoddu Brahmaiah
- Chemveda Life Sciences India Pvt. Ltd., #B-11/1, IDA Uppal, Hyderabad 500039, Telangana, India; Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India
| | | | - Pasula Aparna
- Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India
| | | | - Hélène Solhi
- Univ Rennes, Plateform ImPACcell, BIOSIT, F-35000 Rennes, France
| | - Rémy Le Guevel
- Univ Rennes, Plateform ImPACcell, BIOSIT, F-35000 Rennes, France
| | - Blandine Baratte
- Sorbonne Université, CNRS, FR 2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France; Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, FR 2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France; Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Surender Singh Jadav
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, TS, India
| | - Chada Raji Reddy
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, TS, India
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Paul Mosset
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Nicolas Levoin
- Bioprojet-Biotech, 4 rue du Chesnay Beauregard, BP 96205, 35762 Saint Grégoire, France
| | - René Grée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
28
|
Martín Moyano P, Němec V, Paruch K. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. Int J Mol Sci 2020; 21:E7549. [PMID: 33066143 PMCID: PMC7593917 DOI: 10.3390/ijms21207549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds' potential to be utilized as quality chemical biology probes.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
| | - Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
29
|
Štětková M, Growková K, Fojtík P, Valčíková B, Palušová V, Verlande A, Jorda R, Kryštof V, Hejret V, Alexiou P, Rotrekl V, Uldrijan S. CDK9 activity is critical for maintaining MDM4 overexpression in tumor cells. Cell Death Dis 2020; 11:754. [PMID: 32934219 PMCID: PMC7494941 DOI: 10.1038/s41419-020-02971-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The identification of the essential role of cyclin-dependent kinases (CDKs) in the control of cell division has prompted the development of small-molecule CDK inhibitors as anticancer drugs. For many of these compounds, the precise mechanism of action in individual tumor types remains unclear as they simultaneously target different classes of CDKs - enzymes controlling the cell cycle progression as well as CDKs involved in the regulation of transcription. CDK inhibitors are also capable of activating p53 tumor suppressor in tumor cells retaining wild-type p53 gene by modulating MDM2 levels and activity. In the current study, we link, for the first time, CDK activity to the overexpression of the MDM4 (MDMX) oncogene in cancer cells. Small-molecule drugs targeting the CDK9 kinase, dinaciclib, flavopiridol, roscovitine, AT-7519, SNS-032, and DRB, diminished MDM4 levels and activated p53 in A375 melanoma and MCF7 breast carcinoma cells with only a limited effect on MDM2. These results suggest that MDM4, rather than MDM2, could be the primary transcriptional target of pharmacological CDK inhibitors in the p53 pathway. CDK9 inhibitor atuveciclib downregulated MDM4 and enhanced p53 activity induced by nutlin-3a, an inhibitor of p53-MDM2 interaction, and synergized with nutlin-3a in killing A375 melanoma cells. Furthermore, we found that human pluripotent stem cell lines express significant levels of MDM4, which are also maintained by CDK9 activity. In summary, we show that CDK9 activity is essential for the maintenance of high levels of MDM4 in human cells, and drugs targeting CDK9 might restore p53 tumor suppressor function in malignancies overexpressing MDM4.
Collapse
Affiliation(s)
- Monika Štětková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kateřina Growková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Fojtík
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Barbora Valčíková
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Veronika Palušová
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Amandine Verlande
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Václav Hejret
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Panagiotis Alexiou
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Rotrekl
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Stjepan Uldrijan
- Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
30
|
Schröder M, Bullock AN, Fedorov O, Bracher F, Chaikuad A, Knapp S. DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity. J Med Chem 2020; 63:10224-10234. [PMID: 32787076 DOI: 10.1021/acs.jmedchem.0c00898] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selectivity remains a challenge for ATP-mimetic kinase inhibitors, an issue that may be overcome by targeting unique residues or binding pockets. However, to date only few strategies have been developed. Here we identify that bulky residues located N-terminal to the DFG motif (DFG-1) represent an opportunity for designing highly selective inhibitors with unexpected binding modes. We demonstrate that several diverse inhibitors exerted selective, noncanonical binding modes that exclusively target large hydrophobic DFG-1 residues present in many kinases including PIM, CK1, DAPK, and CLK. By use of the CLK family as a model, structural and biochemical data revealed that the DFG-1 valine controlled a noncanonical binding mode in CLK1, providing a rationale for selectivity over the closely related CLK3 which harbors a smaller DFG-1 alanine. Our data suggest that targeting the restricted back pocket in the small fraction of kinases that harbor bulky DFG-1 residues offers a versatile selectivity filter for inhibitor design.
Collapse
Affiliation(s)
- Martin Schröder
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany
| | - Alex N Bullock
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany.,German Translational Cancer Network (DKTK), Frankfurt/Mainz Site, 60438 Frankfurt, Germany
| |
Collapse
|
31
|
Tran U, Zhang GC, Eom R, Billingsley KL, Ondrus AE. Small Molecule Intervention in a Protein Kinase C-Gli Transcription Factor Axis. ACS Chem Biol 2020; 15:1321-1327. [PMID: 32479053 DOI: 10.1021/acschembio.0c00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrations in the Hedgehog (Hh) signaling pathway are responsible for a broad range of human cancers, yet only a subset rely on the activity of the clinical target, Smoothened (Smo). Emerging cases of cancers that are insensitive to Smo-targeting drugs demand new therapeutic targets and agents for inhibition. As such, we sought to pursue a recently discovered connection between the Hedgehog pathway transcription factors, the glioma-associated oncogene homologues (Glis), and protein kinase C (PKC) isozymes. Here, we report our assessment of a structurally diverse library of PKC effectors for their influence on Gli function. Using cell lines that employ distinct mechanisms of Gli activation up- and downstream of Smo, we identify a PKC effector that acts as a nanomolar Gli antagonist downstream of Smo through a mitogen-activated protein kinase kinase (MEK)-independent mechanism. This agent provides a unique tool to illuminate crosstalk between PKC isozymes and Hh signaling and new opportunities for therapeutic intervention in Hh pathway-dependent cancers.
Collapse
Affiliation(s)
- UyenPhuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States
| | - Grace C. Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Ryan Eom
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave, Ithaca, New York 14853, United States
| | - Kelvin L. Billingsley
- Department of Chemistry and Biochemistry, California State University Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States
| | - Alison E. Ondrus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
32
|
Wang D, Liu Y, Xu Z, Zhao D, Liu Y, Liu Z. Multitemplate molecularly imprinted polymeric solid-phase microextraction fiber coupled with HPLC for endocrine disruptor analysis in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|