1
|
Schulz RA, Karaca US, Diefenbach M, Werthmann NJA, Dechert S, Hansmann MM, Holthausen MC, Meyer F. From a P-Bridging Phosphaketene to μ-Phosphinidenide and μ-Diphosphaurea Units at a Dinickel Core. Chemistry 2025; 31:e202404095. [PMID: 39584492 DOI: 10.1002/chem.202404095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
Salt metathesis of dinickel(II) complex LNi2Br (1; L is a dinucleating pyrazolate ligand with two β-diketiminato chelate arms) with Na(OCP) ⋅ (dioxane)2.5 yielded LNi2(PCO) (2) with a P-bridging phosphaethynolate. Further reaction of 2 with benzyl isocyanide or with an N-heterocyclic carbene (NHC) triggered decarbonylation and gave LNi2(PCN-CH2Ph) (3) and LNi2P(NHC) (4) with P-bridging cyanophosphide and NHC-phosphinidenide, respectively. Electronic structure analysis indicated a μ2-η2 : η1 binding mode of the PCO- anion between the two NiII ions in 2, which is even more pronounced for the [PCN(-CH2Ph)]- anion in 3. DFT assessment of the formation mechanism of 4 showed that attack at the phosphaketene-C atom is kinetically preferred but reversible and unproductive, while kinetically more demanding back-side SN2 attack at the phosphaketene-P atom triggers CO release with 4 as thermodynamic product. Nucleophilic addition at the phosphaketene-C could be demonstrated by the strongly exergonic reaction of 2 with KPPh2, giving unstable K[LNi2(P(O)CPPh2)] (5) with a P-bridging and K+-stabilized diphosphaurea derivative. All new complexes 2-5 have been comprehensively characterized, including by X-ray diffraction.
Collapse
Affiliation(s)
- Roland A Schulz
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Uhut S Karaca
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Martin Diefenbach
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
- Technische Universität Darmstadt, Theoretische Chemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Niclas J A Werthmann
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Max M Hansmann
- Technische Universität Dortmund, Lehrbereich Organische Chemie, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| | - Max C Holthausen
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
- Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstrasse 6, D-37077, Göttingen, Germany
| |
Collapse
|
2
|
Kothe T, Diefenbach M, Tagliavini V, Dechert S, Krewald V, Meyer F. Intramolecular Agostic Interactions and Dynamics of a Methyl Group at a Preorganized Dinickel(II) Site. Inorg Chem 2025; 64:1219-1227. [PMID: 39807790 PMCID: PMC11776048 DOI: 10.1021/acs.inorgchem.4c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Alkyl nickel intermediates relevant to catalytic processes often feature agostic stabilization, but relatively little is known about the situation in oligonickel systems. The dinickel(I) complex K[LNiI2], which is based on a compartmental pyrazolato-bridged ligand L3- with two β-diketiminato chelate arms, or its masked version, the dihydride complex [KL(NiII-H)2] that readily releases H2, oxidatively add methyl tosylate to give diamagnetic [LNiII2(CH3)] (1) with d(Ni···Ni) ≈ 3.7 Å. Structural characterization shows that the methyl group in 1 is bound to one NiII and exhibits an intramolecular agostic interaction with the more distant NiII. This is supported spectroscopically (viz., a ν(C-H) stretch at 2658 cm-1 and lowered 1JC-H of 114 Hz) and by DFT calculations, including topological analysis of the computed electron density for 1. NMR spectroscopy reveals very fast hopping of the CH3 group between the two NiII ions, which according to DFT has a minute barrier of 4 kcal mol-1 and proceeds via a planar CH3 moiety in the transition state (Walden-like inversion). The alkylidene group in K[LNi2(μ-CHSi(Me3)3)], obtained from the reaction of [KL(Ni-H)2] with N2CHSiMe3, is symmetrically bridging. This work provides new insight into the stabilization and dynamics of alkyl ligands at dinickel sites with a constrained metal···metal distance.
Collapse
Affiliation(s)
- Thomas Kothe
- University
of Göttingen, Institute of Inorganic
Chemistry, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Martin Diefenbach
- Fachbereich
Chemie, Quantenchemie, Technische Universität
Darmstadt, Peter-Grünberg-Straße 4, D-64287 Darmstadt, Germany
| | - Valeria Tagliavini
- University
of Göttingen, Institute of Inorganic
Chemistry, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- University
of Göttingen, Institute of Inorganic
Chemistry, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Vera Krewald
- Fachbereich
Chemie, Quantenchemie, Technische Universität
Darmstadt, Peter-Grünberg-Straße 4, D-64287 Darmstadt, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic
Chemistry, Tammannstrasse
4, D-37077 Göttingen, Germany
- University
of Göttingen, International Center for Advanced Studies of
Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| |
Collapse
|
3
|
Tagliavini V, Duan PC, Chatterjee S, Ferretti E, Dechert S, Demeshko S, Kang L, Peredkov S, DeBeer S, Meyer F. Cooperative Sulfur Transformations at a Dinickel Site: A Metal Bridging Sulfur Radical and Its H-Atom Abstraction Thermochemistry. J Am Chem Soc 2024; 146:23158-23170. [PMID: 39110481 PMCID: PMC11345757 DOI: 10.1021/jacs.4c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Starting from the dinickel(II) dihydride complex [ML(Ni-H)2] (1M), where L3- is a bis(tridentate) pyrazolate-bridged bis(β-diketiminato) ligand and M+ is Na+ or K+, a series of complexes [KLNi2(S2)] (2K), [MLNi2S] (3M), [LNi2(SMe)] (4), and [LNi2(SH)] (5) has been prepared. The μ-sulfido complexes 3M can be reversibly oxidized at E1/2 = -1.17 V (in THF; vs Fc+/Fc) to give [LNi2(S•)] (6) featuring a bridging S-radical. 6 has been comprehensively characterized, including by X-ray diffraction, SQUID magnetometry, EPR and XAS/XES spectroscopies, and DFT calculations. The pKa of the μ-hydrosulfido complex 5 in THF is 30.8 ± 0.4, which defines a S-H bond dissociation free energy (BDFE) of 75.1 ± 1.0 kcal mol-1. 6 reacts with H atom donors such as TEMPO-H and xanthene to give 5, while 5 reacts with 2,4,6-tri(tert-butyl)phenoxy radical in a reverse H atom transfer to generate 6. These findings provide the first full characterization of a genuine M-(μ-S•-)-M complex and provide insights into its proton-coupled electron transfer (PCET) reactivity, which is of interest in view of the prominence of M-(μ-SH/μ-S)-M units in biological systems and heterogeneous catalysis.
Collapse
Affiliation(s)
- Valeria Tagliavini
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Peng-Cheng Duan
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sayanti Chatterjee
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - Eleonora Ferretti
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Liqun Kang
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Sergey Peredkov
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der
Ruhr, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Wu WY, Zheng WY, Chen WT, Tsai FT, Tsai ML, Pao CW, Chen JL, Liaw WF. Electronic Structure and Transformation of Dinitrosyl Iron Complexes (DNICs) Regulated by Redox Non-Innocent Imino-Substituted Phenoxide Ligand. Inorg Chem 2024; 63:2431-2442. [PMID: 38258796 PMCID: PMC10848267 DOI: 10.1021/acs.inorgchem.3c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The coupled NO-vibrational peaks [IR νNO 1775 s, 1716 vs, 1668 vs cm-1 (THF)] between two adjacent [Fe(NO)2] groups implicate the electron delocalization nature of the singly O-phenoxide-bridged dinuclear dinitrosyliron complex (DNIC) [Fe(NO)2(μ-ON2Me)Fe(NO)2] (1). Electronic interplay between [Fe(NO)2] units and [ON2Me]- ligand in DNIC 1 rationalizes that "hard" O-phenoxide moiety polarizes iron center(s) of [Fe(NO)2] unit(s) to enforce a "constrained" π-conjugation system acting as an electron reservoir to bestow the spin-frustrated {Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2- electron configuration (Stotal = 1/2). This system plays a crucial role in facilitating the ligand-based redox interconversion, working in harmony to control the storage and redox-triggered transport of the [Fe(NO)2]10 unit, while preserving the {Fe(NO)2}9 core in DNICs {Fe(NO)2}9-[·ON2Me]2- [K-18-crown-6-ether)][(ON2Me)Fe(NO)2] (2) and {Fe(NO)2}9-[·ON2Me] [(ON2Me)Fe(NO)2][PF6] (3). Electrochemical studies suggest that the redox interconversion among [{Fe(NO)2}9-[·ON2Me]2-] DNIC 3 ↔ [{Fe(NO)2}9-[ON2Me]-] ↔ [{Fe(NO)2}9-[·ON2Me]] DNIC 2 are kinetically feasible, corroborated by the redox shuttle between O-bridged dimerized [(μ-ONMe)2Fe2(NO)4] (4) and [K-18-crown-6-ether)][(ONMe)Fe(NO)2] (5). In parallel with this finding, the electronic structures of [{Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2-] DNIC 1, [{Fe(NO)2}9-[·ON2Me]2-] DNIC 2, [{Fe(NO)2}9-[·ON2Me]] DNIC 3, [{Fe(NO)2}9-[ONMe]-]2 DNIC 4, and [{Fe(NO)2}9-[·ONMe]2-] DNIC 5 are evidenced by EPR, SQUID, and Fe K-edge pre-edge analyses, respectively.
Collapse
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Yuan Zheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Ting Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fu-Te Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation
Research Center, Hsinchu 30013, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation
Research Center, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
5
|
Lin XC, Cui YS, Xie SJ, Chen DP, Zhai DD, Shi ZJ. Jellyfish-type Dinuclear Hafnium Azido Complexes: Synthesis and Reactivity. Chem Asian J 2023; 18:e202300659. [PMID: 37700430 DOI: 10.1002/asia.202300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Di- and multinuclear hafnium complexes bridged by ligands have been rarely reported. In this article, a novel 3,5-disubstituted pyrazolate-bridged ligand LH5 with two [N2 N]2- -type chelating side arms was designed and synthesized, which supported a series of dinuclear hafnium complexes. Dinuclear hafnium azides [LHf2 (μ-1,1-N3 )2 (N3 )2 ][Na(THF)4 ] 3 and [LHf2 (μ-1,1-N3 )2 (N3 )2 ][Na(2,2,2-Kryptofix)] 4 were further synthesized and structurally characterized, featuring two sets of terminal and bridging azido ligands like jellyfishes. The reactivity of 3 under reduction conditions was conducted, leading to a formation of a tetranuclear hafnium imido complex [L1 Hf2 (μ1 -NH)(N3 ){μ2 -K}]2 5. DFT calculations revealed that the mixed imido azide 5 was generated via an intramolecular C-H insertion from a putative dinuclear HfIV -nitridyl intermediate.
Collapse
Affiliation(s)
- Xin-Cheng Lin
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Si-Jun Xie
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Dong-Ping Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Dan-Dan Zhai
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, SIOC, CAS, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Bhadra M, Albert T, Franke A, Josef V, Ivanović-Burmazović I, Swart M, Moënne-Loccoz P, Karlin KD. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. J Am Chem Soc 2023; 145:2230-2242. [PMID: 36652374 PMCID: PMC10122266 DOI: 10.1021/jacs.2c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(μ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(μ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(μ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.
Collapse
Affiliation(s)
- Mayukh Bhadra
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Verena Josef
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Marcel Swart
- IQCC & Departament de Química, Universitat de Girona, Campus Montilivi (Ciencies), 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Dey A, Albert T, Kong RY, Macmillan SN, Moënne-Loccoz P, Lancaster KM, Goldberg DP. Direct Reduction of NO to N 2O by a Mononuclear Nonheme Thiolate Ligated Iron(II) Complex via Formation of a Metastable {FeNO} 7 Complex. Inorg Chem 2022; 61:14909-14917. [PMID: 36107151 PMCID: PMC9555345 DOI: 10.1021/acs.inorgchem.2c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Addition of NO to a nonheme dithiolate-ligated iron(II) complex, FeII(Me3TACN)(S2SiMe2) (1), results in the generation of N2O. Low-temperature spectroscopic studies reveal a metastable six-coordinate {FeNO}7 intermediate (S = 3/2) that was trapped at -135 °C and was characterized by low-temperature UV-vis, resonance Raman, EPR, Mössbauer, XAS, and DFT studies. Thermal decay of the {FeNO}7 species leads to the evolution of N2O, providing a rare example of a mononuclear thiolate-ligated {FeNO}7 that mediates NO reduction to N2O without the requirement of any exogenous electron or proton sources.
Collapse
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, Unites States
| | - Richard Y. Kong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, Unites States
| | - Samantha N. Macmillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, Unites States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, Unites States
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, Unites States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
8
|
Ghosh P, Stauffer M, Hosseininasab V, Kundu S, Bertke JA, Cundari TR, Warren TH. NO Coupling at Copper to cis-Hyponitrite: N 2O Formation via Protonation and H-Atom Transfer. J Am Chem Soc 2022; 144:15093-15099. [PMID: 35948086 PMCID: PMC9536194 DOI: 10.1021/jacs.2c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper nitrite reductases (CuNIRs) convert NO2- to NO as well as NO to N2O under high NO flux at a mononuclear type 2 Cu center. While model complexes illustrate N-N coupling from NO that results in symmetric trans-hyponitrite [CuII]-ONNO-[CuII] complexes, we report NO assembly at a single Cu site in the presence of an external reductant Cp*2M (M = Co, Fe) to give the first copper cis-hyponitrites [Cp*2M]{[CuII](κ2-O2N2)[CuI]}. Importantly, the κ1-N-bound [CuI] fragment may be easily removed by the addition of mild Lewis bases such as CNAr or pyridine to form the spectroscopically similar anion {[CuII](κ2-O2N2)}-. The addition of electrophiles such as H+ to these anionic copper(II) cis-hyponitrites leads to N2O generation with the formation of the dicopper(II)-bis-μ-hydroxide [CuII]2(μ-OH)2. One-electron oxidation of the {[CuII](κ2-O2N2)}- core turns on H-atom transfer reactivity, enabling the oxidation of 9,10-dihydroanthracene to anthracene with concomitant formation of N2O and [CuII]2(μ-OH)2. These studies illustrate both the reductive coupling of NO at a single copper center and a way to harness the strong oxidizing power of nitric oxide via the neutral cis-hyponitrite [Cu](κ2-O2N2).
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, United States
| | - Molly Stauffer
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, United States
| | | | - Subrata Kundu
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, United States
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, United States
| | - Thomas R. Cundari
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Timothy H. Warren
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, United States
| |
Collapse
|
9
|
Padmanaban S, Choi J, Vazquez-Lima H, Ko D, Yoo D, Gwak J, Cho KB, Lee Y. Nickel-Catalyzed NO Group Transfer Coupled with NO x Conversion. J Am Chem Soc 2022; 144:4585-4593. [PMID: 35157442 DOI: 10.1021/jacs.1c13560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen oxide (NOx) conversion is an important process for balancing the global nitrogen cycle. Distinct from the biological NOx transformation, we have devised a synthetic approach to this issue by utilizing a bifunctional metal catalyst for producing value-added products from NOx. Here, we present a novel catalysis based on a Ni pincer system, effectively converting Ni-NOx to Ni-NO via deoxygenation with CO(g). This is followed by transfer of the in situ generated nitroso group to organic substrates, which favorably occurs at the flattened Ni(I)-NO site via its nucleophilic reaction. Successful catalytic production of oximes from benzyl halides using NaNO2 is presented with a turnover number of >200 under mild conditions. In a key step of the catalysis, a nickel(I)-•NO species effectively activates alkyl halides, which is carefully evaluated by both experimental and theoretical methods. Our nickel catalyst effectively fulfills a dual purpose, namely, deoxygenating NOx anions and catalyzing C-N coupling.
Collapse
Affiliation(s)
- Sudakar Padmanaban
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonghoon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hugo Vazquez-Lima
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Donghwi Ko
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dagyum Yoo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinseong Gwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Ott JC, Bürgy D, Guan H, Gade LH. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Acc Chem Res 2022; 55:857-868. [PMID: 35164502 DOI: 10.1021/acs.accounts.1c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusLow-valent, low-coordinate 3d metal complexes represent a class of extraordinarily reactive compounds that can act as reagents and catalysts for challenging bond-activation reactions. The pursuit of these electron-deficient metal complexes in low oxidation states demands ancillary ligands capable of providing not only energetic stabilization but also sufficiently high steric bulk at the metal center. From this perspective, pincer ligands are particularly advantageous, as their prearranged, meridional coordination mode scaffolds the active center while the substituents of the peripheral donor atoms provide effective steric shielding for the coordination sphere. In a T-shaped geometry, the transition metal complexes possess a precisely defined vacant coordination site, which, combined with the often observed high-spin electron configuration, exhibits unusually high selectivity of these compounds with respect to one-electron redox chemistry. In light of the intractable reaction pathways typically observed with related electronically unsaturated 3d transition metal complexes, the pincer coordination mode enables the isolation of low-valent compounds with more controlled and unique reactivity. We have thus investigated a series of T-shaped metal(I) complexes using three different types of pincer ligands, which may be regarded as "metalloradicals" due to their selectively exposed unpaired electrons.These compounds display remarkably high thermal stability and represent rarely observed "naked" monovalent metal species featuring both monomeric and dimeric structures. Extensive reactivity studies using various organic substrates highlight a strong tendency of these paramagnetic compounds to undergo one-electron oxidation, leading to the isolation of a plethora of metal(II) species with reduced organic ligands as unusual structural elements. The exploration of C2 symmetric T-shaped Ni(I) complexes as asymmetric catalysts also shows success in enantioselective hydrodehalogenation of geminal dihalogenides. In addition, this specific class of low-valent, low-coordinate complexes can be further diversified by introducing redox-active pincer ligands or building homobimetallic systems with two T-shaped units.This Account focuses on the discussion of selected examples of iron, cobalt, and nickel pincer complexes bearing a [P,N,P] or [N,N,N] donor set; however, their electronic structure and radical-type reactivity can be broadly extended to other pincer systems. The availability of various types of pincer ligands should allow fine-tuning of the reactivity of the T-shaped complexes. Given the unprecedented reactivity observed with these compounds, we expect the studies of T-shaped 3d metal complexes to be a fertile field for advancing base metal catalysis.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - David Bürgy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
12
|
Wu J, Demeshko S, Dechert S, Meyer F. Macrocycle based dinuclear dysprosium(III) single molecule magnets with local D5h coordination geometry. Dalton Trans 2021; 50:17573-17582. [PMID: 34806736 DOI: 10.1039/d1dt02815d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted approaches for manipulating the coordination geometry of lanthanide ions are a promising way to synthesize high-performance single-molecule magnets (SMMs), but most of the successful examples reported to date focus on mononuclear complexes. Herein, we describe a strategy to assemble dinuclear SMMs with DyIII ions in approximate D5h coordination geometry based on pyrazolate-based macrocyclic ligands with two binding sites. A Dy4 complex with a rhomb-like arrangement of four DyIII as well as two dinuclear complexes having axial chlorido ligands (Dy2·Cl and Dy2*·Cl) were obtained; in the latter case, substituting Cl- by SCN- gave Dy2·SCN. Magneto-structural studies revealed that the μ-OH bridges with short Dy-O bonds dominate the magnetic anisotropy of the DyIII ions in centrosymmetric Dy4 to give a vortex type diamagnetic ground state. Dynamic magnetic studies of Dy4 identified two relaxation processes under zero field, one of which is suppressed after applying a dc field. For complexes Dy2·Cl and Dy2*·Cl, the DyIII ions feature almost perfect D5h environment, but both complexes only behave as field-induced SMMs (Ueff = 19 and 25 K) due to the weak axial Cl- donors. In Dy2·SCN additional MeOH coordination leads to a distorted D2d geometry of the DyIII ions, yet SMMs properties at zero field are observed due to the relatively strong axial ligand field provided by SCN- (Ueff = 43 K). Further elaboration of preorganizing macrocyclic ligands appears to be a promising strategy for imposing a desired coordination geometry with parallel orientation of the anisotropy axes of proximate DyIII ions in a targeted approach.
Collapse
Affiliation(s)
- Jianfeng Wu
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany. .,School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany.
| |
Collapse
|
13
|
Wu WY, Tsai ML, Lai YA, Hsieh CH, Liaw WF. NO Reduction to N 2O Triggered by a Dinuclear Dinitrosyl Iron Complex via the Associated Pathways of Hyponitrite Formation and NO Disproportionation. Inorg Chem 2021; 60:15874-15889. [PMID: 34015211 DOI: 10.1021/acs.inorgchem.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In spite of the comprehensive study of the metal-mediated conversion of NO to N2O disclosing the conceivable processes/mechanism in biological and biomimetic studies, in this study, the synthesis cycles and mechanism of NO reduction to N2O triggered by the electronically localized dinuclear {Fe(NO)2}10-{Fe(NO)2}9 dinitrosyl iron complex (DNIC) [Fe(NO)2(μ-bdmap)Fe(NO)2(THF)] (1) (bdmap = 1,3- bis(dimethylamino)-2-propanolate) were investigated in detail. Reductive conversion of NO to N2O triggered by complex 1 in the presence of exogenous ·NO occurs via the simultaneous formation of hyponitrite-bound {[Fe2(NO)4(μ-bdmap)]2(κ4-N2O2)} (2) and [NO2]--bridged [Fe2(NO)4(μ-bdmap)(μ-NO2)] (3) (NO disproportionation yielding N2O and complex 3). EPR/IR spectra, single-crystal X-ray diffraction, and the electrochemical study uncover the reversible redox transformation of {Fe(NO)2}9-{Fe(NO)2}9 [Fe2(NO)4(μ-bdmap)(μ-OC4H8)]+ (7) ↔ {Fe(NO)2}10-{Fe(NO)2}9 1 ↔ {Fe(NO)2}10-{Fe(NO)2}10 [Fe(NO)2(μ-bdmap)Fe(NO)2]- (6) and characterize the formation of complex 1. Also, the synthesis study and DFT computation feature the detailed mechanism of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 DNIC 1 reducing NO to N2O via the associated hyponitrite-formation and NO-disproportionation pathways. Presumably, the THF-bound {Fe(NO)2}9 unit of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 complex 1 served as an electron buffering reservoir for accommodating electron redistribution, and the {Fe(NO)2}10 unit of complex 1 acted as an electron-transfer channel to drive exogeneous ·NO coordination to yield proposed relay intermediate κ2-N,O-[NO]--bridged [Fe2(NO)4(μ-bdmap)(μ-NO)] (A) for NO reduction to N2O.
Collapse
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-An Lai
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Hsin Hsieh
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Dey A, Gordon JB, Albert T, Sabuncu S, Siegler MA, MacMillan SN, Lancaster KM, Moënne‐Loccoz P, Goldberg DP. A Nonheme Mononuclear {FeNO}
7
Complex that Produces N
2
O in the Absence of an Exogenous Reductant. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| | - Jesse B. Gordon
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239 USA
| | - Sinan Sabuncu
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239 USA
| | - Maxime A. Siegler
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| | | | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Pierre Moënne‐Loccoz
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239 USA
| | - David P. Goldberg
- Department of Chemistry The Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
15
|
Dey A, Gordon JB, Albert T, Sabuncu S, Siegler MA, MacMillan SN, Lancaster KM, Moënne-Loccoz P, Goldberg DP. A Nonheme Mononuclear {FeNO} 7 Complex that Produces N 2 O in the Absence of an Exogenous Reductant. Angew Chem Int Ed Engl 2021; 60:21558-21564. [PMID: 34415659 DOI: 10.1002/anie.202109062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/09/2022]
Abstract
A new nonheme iron(II) complex, FeII (Me3 TACN)((OSiPh2 )2 O) (1), is reported. Reaction of 1 with NO(g) gives a stable mononitrosyl complex Fe(NO)(Me3 TACN)((OSiPh2 )2 O) (2), which was characterized by Mössbauer (δ=0.52 mm s-1 , |ΔEQ |=0.80 mm s-1 ), EPR (S=3/2), resonance Raman (RR) and Fe K-edge X-ray absorption spectroscopies. The data show that 2 is an {FeNO}7 complex with an S=3/2 spin ground state. The RR spectrum (λexc =458 nm) of 2 combined with isotopic labeling (15 N, 18 O) reveals ν(N-O)=1680 cm-1 , which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm-1 ). Complex 2 reacts rapidly with H2 O in THF to produce the N-N coupled product N2 O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2 O in the absence of an exogenous reductant.
Collapse
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sinan Sabuncu
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
16
|
Pal N, Jana M, Majumdar A. Reduction of NO by diiron complexes in relation to flavodiiron nitric oxide reductases. Chem Commun (Camb) 2021; 57:8682-8698. [PMID: 34373873 DOI: 10.1039/d1cc03149j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of nitric oxide (NO) to nitrous oxide (N2O) is associated with immense biological and health implications. Flavodiiron nitric oxide reductases (FNORs) are diiron containing enzymes that catalyze the two electron reduction of NO to N2O and help certain pathogenic bacteria to survive under "nitrosative stress" in anaerobic growth conditions. Consequently, invading bacteria can proliferate inside the body of mammals by bypassing the immune defense mechanism involving NO and may thus lead to harmful infections. Various mechanisms, namely the direct reduction, semireduction, superreduction and hyponitrite mechanisms, have been proposed over time for catalytic NO reduction by FNORs. Model studies in relation to the diiron active site of FNORs have immensely helped to replicate the minimal structure-reactivity relationship and to understand the mechanism of NO reduction. A brief overview of the FNOR activity and the proposed reaction mechanisms followed by a systematic description and detailed analysis of the model studies is presented, which describes the development in the area of NO reduction by diiron complexes and its implications. A great deal of successful modeling chemistry as well as the shortcomings related to the synthesis and reactivity studies is discussed in detail. Finally, future prospects in this particular area of research are proposed, which in due course may bring more clarity in the understanding of this important redox reaction.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
17
|
Wang J, Wang X, Ouyang Q, Liu W, Shan J, Tan H, Li X, Chen G. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement. Inorg Chem 2021; 60:7719-7731. [PMID: 34004115 DOI: 10.1021/acs.inorgchem.1c00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The non-heme iron-dependent enzyme SznF catalyzes a critical N-nitrosation step during the N-nitrosourea pharmacophore biosynthesis in streptozotocin. The intramolecular oxidative rearrangement process is known to proceed at the FeII-containing active site in the cupin domain of SznF, but its mechanism has not been elucidated to date. In this study, based on the density functional theory calculations, a unique mechanism was proposed for the N-nitrosation reaction catalyzed by SznF in which a four-electron oxidation process is accomplished through a series of complicated electron transferring between the iron center and substrate to bypass the high-valent FeIV═O species. In the catalytic reaction pathway, the O2 binds to the iron center and attacks on the substrate to form the peroxo bridge intermediate by obtaining two electrons from the substrate exclusively. Then, instead of cleaving the peroxo bridge, the Cε-Nω bond of the substrate is homolytically cleaved first to form a carbocation intermediate, which polarizes the peroxo bridge and promotes its heterolysis. After O-O bond cleavage, the following reaction steps proceed effortlessly so that the N-nitrosation is accomplished without NO exchange among reaction species.
Collapse
Affiliation(s)
- Junkai Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xixi Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qingwen Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiankai Shan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Charles RM, Brewster TP. H 2 and carbon-heteroatom bond activation mediated by polarized heterobimetallic complexes. Coord Chem Rev 2021; 433:213765. [PMID: 35418712 PMCID: PMC9004596 DOI: 10.1016/j.ccr.2020.213765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The field of heterobimetallic chemistry has rapidly expanded over the last decade. In addition to their interesting structural features, heterobimetallic structures have been found to facilitate a range of stoichiometric bond activations and catalytic processes. The accompanying review summarizes advances in this area since January of 2010. The review encompasses well-characterized heterobimetallic complexes, with a particular focus on mechanistic details surrounding their reactivity applications.
Collapse
Affiliation(s)
- R Malcolm Charles
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| | - Timothy P Brewster
- Department of Chemistry, The University of Memphis, 3744 Walker Ave., Smith Chemistry Building, Memphis, TN 38152, United States
| |
Collapse
|
19
|
Wang Q, Brooks SH, Liu T, Tomson NC. Tuning metal-metal interactions for cooperative small molecule activation. Chem Commun (Camb) 2021; 57:2839-2853. [PMID: 33624638 PMCID: PMC8274379 DOI: 10.1039/d0cc07721f] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster complexes have attracted interest for decades due to their promise of drawing analogies to metallic surfaces and metalloenzyme active sites, but only recently have chemists started to develop ligand scaffolds that are specifically designed to support multinuclear transition metal cores. Such ligands not only hold multiple metal centers in close proximity but also allow for fine-tuning of their electronic structures and surrounding steric environments. This Feature Article highlights ligand designs that allow for cooperative small molecule activation at cluster complexes, with a particular focus on complexes that contain metal-metal bonds. Two useful ligand-design elements have emerged from this work: a degree of geometric flexibility, which allows for novel small molecule activation modes, and the use of redox-active ligands to provide electronic flexibility to the cluster core. The authors have incorporated these factors into a unique class of dinucleating macrocycles (nPDI2). Redox-active fragments in nPDI2 mimic the weak-overlap covalent bonding that is characteristic of M-M interactions, and aliphatic linkers in the ligand backbone provide geometric flexibility, allowing for interconversion between a range of geometries as the dinuclear core responds to the requirements of various small molecule substrates. The union of these design elements appears to be a powerful combination for analogizing critical aspects of heterogeneous and metalloenzyme catalysts.
Collapse
Affiliation(s)
- Qiuran Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
20
|
Cabelof AC, Carta V, Caulton KG. A proton-responsive ligand becomes a dimetal linker for multisubstrate assembly via nitrate deoxygenation. Chem Commun (Camb) 2021; 57:2780-2783. [PMID: 33598673 DOI: 10.1039/d0cc07886g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A bidentate pyrazolylpyridine ligand (HL) was installed on divalent nickel to give [(HL)2Ni(NO3)]NO3. This compound reacts with a bis-silylated heterocycle, 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene (TMS2Pz) to simultaneously reduce one of the nitrate ligands and deprotonate one of the HL ligands, giving octahedral (HL)(L-)Ni(NO3). The mononitrate species formed is then further reacted with TMS2Pz to doubly deoxygenate nitrate and form [(L-)Ni(NO)]2, dimeric via bridging pyrazolate with bent nitrosyl ligands, representing a two-electron reduction of coordinated nitrate. Independent synthesis of a dimeric species [(L-)Ni(Br)]2 is reported and effectively assembles two metals with better atom economy.
Collapse
Affiliation(s)
- Alyssa C Cabelof
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA.
| | - Veronica Carta
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA.
| | - Kenneth G Caulton
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA.
| |
Collapse
|
21
|
Duan P, Schulz RA, Römer A, Van Kuiken BE, Dechert S, Demeshko S, Cutsail GE, DeBeer S, Mata RA, Meyer F. Ligand Protonation Triggers H
2
Release from a Dinickel Dihydride Complex to Give a Doubly “T”‐Shaped Dinickel(I) Metallodiradical. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng‐Cheng Duan
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
- Center for Catalysis and Florida Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611-7200 USA
| | - Roland Alexander Schulz
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Anton Römer
- Universität Göttingen Institut für Physikalische Chemie Tammannstrasse 6 37077 Göttingen Germany
| | - Benjamin E. Van Kuiken
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC) Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
- European XFEL Holzkoppel 4 22869 Schenefeld Germany
| | - Sebastian Dechert
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - Serhiy Demeshko
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC) Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC) Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Ricardo A. Mata
- Universität Göttingen Institut für Physikalische Chemie Tammannstrasse 6 37077 Göttingen Germany
| | - Franc Meyer
- Universität Göttingen Institut für Anorganische Chemie Tammannstrasse 4 37077 Göttingen Germany
- Universität Göttingen International Center for Advanced Studies of Energy Conversion (ICASEC) Tammannstrasse 6 37077 Göttingen Germany
| |
Collapse
|
22
|
Duan P, Schulz RA, Römer A, Van Kuiken BE, Dechert S, Demeshko S, Cutsail GE, DeBeer S, Mata RA, Meyer F. Ligand Protonation Triggers H 2 Release from a Dinickel Dihydride Complex to Give a Doubly "T"-Shaped Dinickel(I) Metallodiradical. Angew Chem Int Ed Engl 2021; 60:1891-1896. [PMID: 33026170 PMCID: PMC7894169 DOI: 10.1002/anie.202011494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The dinickel(II) dihydride complex (1K ) of a pyrazolate-based compartmental ligand with β-diketiminato (nacnac) chelate arms (L- ), providing two pincer-type {N3 } binding pockets, has been reported to readily eliminate H2 and to serve as a masked dinickel(I) species. Discrete dinickel(I) complexes (2Na , 2K ) of L- are now synthesized via a direct reduction route. They feature two adjacent T-shaped metalloradicals that are antiferromagnetically coupled, giving an S=0 ground state. The two singly occupied local d x 2 - y 2 type magnetic orbitals are oriented into the bimetallic cleft, enabling metal-metal cooperative 2 e- substrate reductions as shown by the rapid reaction with H2 or O2 . X-ray crystallography reveals distinctly different positions of the K+ in 1K and 2K , suggesting a stabilizing interaction of K+ with the dihydride unit in 1K . H2 release from 1K is triggered by peripheral γ-C protonation at the nacnac subunits, which DFT calculations show lowers the barrier for reductive H2 elimination from the bimetallic cleft.
Collapse
Affiliation(s)
- Peng‐Cheng Duan
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
- Center for Catalysis and Florida Center for Heterocyclic CompoundsDepartment of ChemistryUniversity of FloridaGainesvilleFL32611-7200USA
| | | | - Anton Römer
- Universität GöttingenInstitut für Physikalische ChemieTammannstrasse 637077GöttingenGermany
| | - Benjamin E. Van Kuiken
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC)Stiftstrasse 34–3645470Mülheim an der RuhrGermany
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Sebastian Dechert
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - Serhiy Demeshko
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC)Stiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC)Stiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Ricardo A. Mata
- Universität GöttingenInstitut für Physikalische ChemieTammannstrasse 637077GöttingenGermany
| | - Franc Meyer
- Universität GöttingenInstitut für Anorganische ChemieTammannstrasse 437077GöttingenGermany
- Universität GöttingenInternational Center for Advanced Studies of Energy Conversion (ICASEC)Tammannstrasse 637077GöttingenGermany
| |
Collapse
|
23
|
Chatterjee B, Chang W, Werlé C. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2020. [DOI: 10.1002/cctc.202001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
24
|
Kothe T, Kim UH, Dechert S, Meyer F. Reductive Binding of Nitro Substrates at a Masked Dinickel(I) Complex and Proton-Coupled Conversion to Reduced Nitroso Ligands. Inorg Chem 2020; 59:14207-14217. [PMID: 32960575 DOI: 10.1021/acs.inorgchem.0c01993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transition-metal-mediated reductive activation of nitro compounds and subsequent proton-coupled N-O bond cleavage reactions are key steps of important processes such as the commercially relevant conversions of nitroaryls to aniline derivatives. Here we report the reactivity of selected nitro substrates RNO2 (R = Me, Ph, p-C6H4CHO) with pyrazolate-based dinickel(II) dihydride complexes [ML(NiH)2] (M = Na, K); the latter eliminate H2 upon substrate binding and serve as a masked dinickel(I) platform. The products [MLNi2(O2NR)] (R = Me, 3Me-M; R = Ph, 3Ph-M) host a μ-κO,κO' bridging twice deprotonated dihydroxy amine [RNO2]2- within the dinickel pocket, and structural analysis as well as NMR evidence show that the alkali cation (Na+ or K+) is closely associated with the reduced substrate. In the case of p-nitrobenzaldehyde, chemoselective reduction of the nitro group is observed to give 3Bna-K. The 3Me-M complexes in solution are unstable and show first order decay to a mixture of complexes [LNi2(μ-OH)] (4) and [LNi2(ON═CH2)] (5), with the latter containing a μ-κO,κN formaldoximato ligand. The decay rate of 3Me-M strongly depends on the alkali cation (k = 2.38 (±0.03) × 104 s-1 for 3Me-K and 4.69 (±0.06) × 10-6 s-1 for 3Me-Na), and a mechanistic scenario is proposed. Protonation of 3Ph-K induces disproportionation of the bound [PhNO2]2- to give free PhNO2, 4, and [LNi2(ON(H)Ph)] (2Ph-H) featuring an O-deprotonated μ-κO,κN hydroxylamine in the dinickel(II) cleft; abstraction of the cation K+ from 3Ph-K via addition of cryptand gives the analogous complex [LNi2(ONPh)][K(crypt)] (2Ph-K[crypt]) with a twice deprotonated hydroxylamine ligand. The results are discussed in light of the intermediates that are proposed to be relevant in the sequence of nitro group reduction and protonation steps, as implicated in the conversion of nitroaryls to anilines.
Collapse
Affiliation(s)
- Thomas Kothe
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - U-Hyun Kim
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
25
|
Abstract
The mechanism studies of transition-metal-catalyzed reductive coupling reactions
investigated using Density Functional Theory calculations in the recent ten years have been
reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and
some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the
methodology used in these computational mechanism studies. The mechanisms of the transition-
metal-catalyzed reductive coupling reactions normally include three main steps: oxidative
addition; transmetalation; and reductive elimination or four main steps: the first oxidative
addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting
step is most likely the final reductive elimination step in the whole mechanism.
Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry
optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values.
We hope that this review will stimulate more and more experimental and computational combinations and the
computational chemistry will significantly contribute to the development of future organic synthesis reactions.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Qinghua Ren
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
26
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Stevens H, Duan PC, Dechert S, Meyer F. Competing H 2 versus Intramolecular C-H Activation at a Dinuclear Nickel Complex via Metal-Metal Cooperative Oxidative Addition. J Am Chem Soc 2020; 142:6717-6728. [PMID: 32163715 DOI: 10.1021/jacs.0c00758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nickel(I) metalloradicals bear great potential for the reductive activation of challenging substrates but are often too unstable to be isolated. Similar chemistry may be enabled by nickel(II) hydrides that store the reducing equivalents in hydride bonds and reductively eliminate H2 upon substrate binding. Here we present a pyrazolate-based bis(β-diketiminato) ligand [LPh]3- with bulky m-terphenyl substituents that can host two Ni-H units in close proximity. Complexes [LPh(NiII-H)2]- (3) are prone to intramolecular reductive H2 elimination, and an equilibrium between 3 and orthometalated dinickel(II) monohydride complexes 2 is evidenced. 2 is shown to form via intramolecular metal-metal cooperative phenyl group C(sp2)-H oxidative addition to the dinickel(I) intermediate [LPhNiI2]- (4). While NiI species have been implicated in catalytic C-H functionalization, discrete activation of C-H bonds at NiI complexes has rarely been described. The reversible H2 and C-H reductive elimination/oxidative addition equilibrium smoothly unmasks the powerful 2-electron reductant 4 from either 2 or 3, which is demonstrated by reaction with benzaldehyde. A dramatic cation effect is observed for the rate of interconversion of 2 and 3 and also for subsequent thermally driven formation of a twice orthometalated dinickel(II) complex 6. X-ray crystallographic and NMR titration studies indicate distinct interaction of the Lewis acidic cation with 2 and 3. The present system allows for the unmasking of a highly reactive [LPhNiI2]- intermediate 4 either via elimination of H2 from dihydride 3 or via reductive C-H elimination from monohydride 2. The latter does not release any H2 byproduct and adds a distinct platform for metal-metal cooperative two-electron substrate reductions while circumventing the isolation of any unstable superreduced form of the bimetallic scaffold.
Collapse
Affiliation(s)
- Hendrik Stevens
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Peng-Cheng Duan
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
28
|
Jana M, White CJ, Pal N, Demeshko S, Cordes (née Kupper) C, Meyer F, Lehnert N, Majumdar A. Functional Models for the Mono- and Dinitrosyl Intermediates of FNORs: Semireduction versus Superreduction of NO. J Am Chem Soc 2020; 142:6600-6616. [DOI: 10.1021/jacs.9b13795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Corey J. White
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor 48109, Michigan, United States
| | - Nabhendu Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraße 4, Göttingen 37077, Germany
| | | | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraße 4, Göttingen 37077, Germany
| | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor 48109, Michigan, United States
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
29
|
Bar AK, Heras Ojea MJ, Tang J, Layfield RA. Coupling of Nitric Oxide and Release of Nitrous Oxide from Rare-Earth-Dinitrosyliron Complexes. J Am Chem Soc 2020; 142:4104-4107. [DOI: 10.1021/jacs.9b13571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arun Kumar Bar
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - María José Heras Ojea
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5626, 130022 Changchun, China
| | - Richard A. Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
30
|
Wu W, Liaw W. Nitric oxide reduction forming hyponitrite triggered by metal‐containing complexes. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wun‐Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of MattersNational Tsing Hua University Hsinchu, Taiwan Republic of China
| | - Wen‐Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of MattersNational Tsing Hua University Hsinchu, Taiwan Republic of China
| |
Collapse
|
31
|
Wijeratne GB, Bhadra M, Siegler MA, Karlin KD. Copper(I) Complex Mediated Nitric Oxide Reductive Coupling: Ligand Hydrogen Bonding Derived Proton Transfer Promotes N 2O (g) Release. J Am Chem Soc 2019; 141:17962-17967. [PMID: 31621325 DOI: 10.1021/jacs.9b07286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cuprous chelate bearing a secondary sphere hydrogen bonding functionality, [(PV-tmpa)CuI]+, transforms •NO(g) to N2O(g) in high-yields in methanol. Ligand derived proton transfer facilitates N-O bond cleavage of a putative hyponitrite intermediate releasing N2O(g), underscoring the crucial balance between H-bonding capabilities and acidities in (bio)chemical •NO(g) coupling systems.
Collapse
Affiliation(s)
- Gayan B Wijeratne
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Mayukh Bhadra
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kenneth D Karlin
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
32
|
Lehnert N, Fujisawa K, Camarena S, Dong HT, White CJ. Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kiyoshi Fujisawa
- Department of Chemistry, Ibaraki University, Mito 310-8512, Japan
| | - Stephanie Camarena
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Hai T. Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Corey J. White
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
33
|
Wu WY, Hsu CN, Hsieh CH, Chiou TW, Tsai ML, Chiang MH, Liaw WF. NO-to-[N2O2]2–-to-N2O Conversion Triggered by {Fe(NO)2}10-{Fe(NO)2}9 Dinuclear Dinitrosyl Iron Complex. Inorg Chem 2019; 58:9586-9591. [DOI: 10.1021/acs.inorgchem.9b01635] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ning Hsu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Hsin Hsieh
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzung-Wen Chiou
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
34
|
Kundu S, Phu PN, Ghosh P, Kozimor SA, Bertke JA, Stieber SCE, Warren TH. Nitrosyl Linkage Isomers: NO Coupling to N 2O at a Mononuclear Site. J Am Chem Soc 2019; 141:1415-1419. [PMID: 30599509 DOI: 10.1021/jacs.8b09769] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linkage isomers of reduced metal-nitrosyl complexes serve as key species in nitric oxide (NO) reduction at monometallic sites to produce nitrous oxide (N2O), a potent greenhouse gas. While factors leading to extremely rare side-on nitrosyls are unclear, we describe a pair of nickel-nitrosyl linkage isomers through controlled tuning of noncovalent interactions between the nitrosyl ligands and differently encapsulated potassium cations. Furthermore, these reduced metal-nitrosyl species with N-centered spin density undergo radical coupling with free NO and provide a N-N coupled cis-hyponitrite intermediate whose protonation triggers the release of N2O. This report outlines a stepwise molecular mechanism of NO reduction to form N2O at a mononuclear metal site that provides insight into the related biological reduction of NO to N2O.
Collapse
Affiliation(s)
- Subrata Kundu
- Department of Chemistry , Georgetown University , Box 571227-1227, Washington , D. C. 20057 , United States.,School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695551 , India
| | - Phan N Phu
- California State Polytechnic University , Pomona , California 91768 , United States
| | - Pokhraj Ghosh
- Department of Chemistry , Georgetown University , Box 571227-1227, Washington , D. C. 20057 , United States
| | - Stosh A Kozimor
- Los Alamos National Laboratory , MS K558, Los Alamos , New Mexico 87545 , United States
| | - Jeffery A Bertke
- Department of Chemistry , Georgetown University , Box 571227-1227, Washington , D. C. 20057 , United States
| | - S Chantal E Stieber
- California State Polytechnic University , Pomona , California 91768 , United States.,Los Alamos National Laboratory , MS K558, Los Alamos , New Mexico 87545 , United States
| | - Timothy H Warren
- Department of Chemistry , Georgetown University , Box 571227-1227, Washington , D. C. 20057 , United States
| |
Collapse
|