1
|
Zheng S, Hu J, Jiao Z, Wang T, Hu J, Zhang CY. Lighting up three-dimensional nanolantern for circular RNA imaging and precise gene therapy. Biosens Bioelectron 2025; 276:117273. [PMID: 39970724 DOI: 10.1016/j.bios.2025.117273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Circular RNAs (circRNAs) are a category of endogenous single-stranded RNAs with covalently closed head-to-tail topology, and they play a crucial part in regulating gene expression at post-transcriptional and transcriptional levels. Herein, we construct a three-dimensional nanolantern for circRNA imaging and precise gene therapy. This assay involves an integrated multi-functionalized lantern-shaped probe. By rationally engineering four vertexes and six edges of DNA dimensional architecture, the integrated nanolantern probe functions not only as a delivery machine for reactants but also as a scaffold for catalytic hybridization reactions. The presence of circCDYL initiates the entropy-driven strand displacement assembly of nanolantern monomer to generate long nanolantern concatemers while releasing small interfering RNAs (siRNAs) for target-stimulated on-site and on-demand gene therapy. Compared with canonical linear probe-based catalytic circuit, this method exhibits significantly improved fluorescence stability and gene therapy efficiency due to the inherent resistance of DNA rigid structure to enzymic digestion. This strategy enables one-step detection of circCDYL with a limit of detection (LOD) of 28.2 aM, and accurate quantification of circCDYL expressions in breast cancer patients and healthy individuals. Importantly, this catalytic circuit can achieve tumor-specific gene silencing with minimal off-target toxicity, holding great potential in tumor diagnosis and precise medicine.
Collapse
Affiliation(s)
- Shi Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Jinping Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210000, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210000, China.
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Li M, Chen H, Zhang Y, Cheng Y, Lin F, Wang H, Dai J. Fluorescent biosensor for lead ion detection based on GR-5 DNAzyme and self-hybridization chain reaction. Anal Chim Acta 2025; 1344:343712. [PMID: 39984218 DOI: 10.1016/j.aca.2025.343712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Lead ion (Pb2+) is a typical heavy metal pollutant, and the water and food contaminated by lead may pose a potential threat to the environment and human health. In the natural environment, it can accumulate in soil and water, affecting the entire food chain. For human health, even if the Pb2+ content is very low, it can cause a series of adverse health effects. In order to effectively address the issue of lead pollution, it is particularly important to develop highly sensitive and selective Pb2+ detection technology. RESULTS In this study, we designed a single-hairpin based self-hybridization chain reaction (SHCR) system for Pb2+ detection based on GR-5 DNAzyme. Compared with the traditional hybridization chain reaction (HCR) which requires two hairpins, this strategy only needs one hairpin probe, this design not only reduces the experimental cost, but also simplifies the sequence design and experimental operation. Once Pb2+ was added in the system, GR-5 DNAzyme can be actived and then a trigger DNA was released to trigger the SHCR reaction, thereby a signal-amplified fluorescent biosensor for Pb2+ detection was developed, which exhibited a good linear range from 100 to 500 nM with a low detection limit of 24.8 nM, and has been successfully applied to the determination of Pb2+ in environmental water and Chinese Baijiu. SIGNIFICANCE This simple, sensitive, and selective Pb2+ detection system demonstrates significant potential for a wide range of practical applications in both environment and food monitoring. In addition to its specific application for Pb2+ detection, by introducing different DNAzymes, this SHCR system can be applied for the detection of other heavy metal ions.
Collapse
Affiliation(s)
- Min Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | | | - Yu Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuxin Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fengyi Lin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Haibo Wang
- Guangxi-ASEAN Food Inspection Center Food Testing Department, Nanning, 530029, China.
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Wang X, Yi D, Li M, Li Z. Sequential Activation of DNA Sensor Enables Correlated Imaging of Dual-Enzyme Activities in Living Cells. Anal Chem 2025; 97:4373-4378. [PMID: 39979787 DOI: 10.1021/acs.analchem.4c05454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The DNA repair system relies on the coordinated action of multiple enzymes to maintain genomic stability, with apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) playing pivotal roles in the long-patch base excision repair (LP-BER) pathway. Elevated levels of APE1 and FEN1 have been associated with tumor progression and resistance to therapy, making them key biomarkers for cancer diagnosis and treatment monitoring. Here, we present a sequentially activated AND-logic DNA sensor (D-AF) for the correlated imaging of APE1 and FEN1 in living cells. The sensor operates through a sequential process: APE1 first recognizes and cleaves an apurinic site, initiating structural changes that enable FEN1 to cleave a 5' flap, resulting in restored fluorescence. We demonstrate the use of the D-AF-based nanosensor for in situ imaging of APE1 and FEN1 activities in cancer cells and for monitoring of enzyme dynamics during chemotherapy. This platform offers a valuable tool for investigating DNA repair mechanisms and their roles in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xian Wang
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Deyu Yi
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Shi M, He Y, Zhong X, Huang H, Hua J, Wang S, Xu J, Zhao S, Liang H, Huang Y. A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy. Adv Healthc Mater 2025; 14:e2404159. [PMID: 39790038 DOI: 10.1002/adhm.202404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane. After the specific delivery of RNF@CM into target cancer cells, an intracellular tumour-related mRNA target can initiate the RNF@CM with a circular strand-displacement polymerisation reaction, resulting in the release of significantly amplified fluorescence and continuous production of three types of shRNAs. The RNF@CM effectively distinguished cancer cells from normal cells, exclusively produced multiple shRNAs in response to a specific mRNA target in cancer cells, accurately diagnosed tumours in vivo, and significantly inhibited tumour growth with negligible toxicity, expanding the toolbox for on-demand gene delivery and precision theranostics.
Collapse
Affiliation(s)
- Ming Shi
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin, 541004, China
| | - Yifang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohong Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Huakui Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
5
|
Zhang X, Chen W, Wan S, Qu B, Liao F, Cheng D, Zhang Y, Ding Z, Yang Y, Yuan Q. Spatially Selective MicroRNA Imaging in Human Colorectal Cancer Tissues Using a Multivariate-Gated Signal Amplification Nanosensor. J Am Chem Soc 2025; 147:6679-6687. [PMID: 39933117 DOI: 10.1021/jacs.4c16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
MicroRNA (miRNA) is involved in the genesis in viand development of colorectal cancer. The in vivo imaging of miRNA at the tumor sites is essential for understanding its role in colorectal cancer pathology and therapeutic target identification. However, achieving accurate imaging of miRNA at the tumor sites is hindered by the low abundance of miRNAs in tumor cells and nonspecific signal leakage in normal tissues. Here, we report a multivariate-gated catalytic hairpin assembly (CHA) nanosensor for the specific amplified imaging of microRNA-21 (miR-21) in human colorectal cancer tissues to reveal the underlying miR-21-associated molecular mechanism. The endogenous glutathione and exogenous near-infrared multivariate-gated design in combination with CHA probes improves the signal strength of target miR-21 and reduces the background interference. The nanosensor enables specific amplified imaging of miR-21 in vivo, and the signal-to-background ratios are 1.6-fold compared with traditional CHA methods. With the assistance of the designed nanosensor, we achieve the preliminary identification of tumor tissues and normal tissues from human clinical surgical resection samples. The overexpressed miR-21 is found to suppress the core mismatch repair recognition protein human mutS homologue 2 involved in DNA damage recognition and repair to inhibit the therapeutic efficacy of colorectal cancer. The strategy of probe design, which combines multivariate-gated activation methods with a signal amplification system, is applicable for accurate miRNA imaging and disease-relevant molecular mechanism research.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wenhui Chen
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Songlin Wan
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Bing Qu
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Fei Liao
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Di Cheng
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Zhao Ding
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Department of Colorectal and Anal Surgery of Zhongnan Hospital of Wuhan University, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Zhang X, Cui J, Chen M, Wang J. Dual-Mode Tumor Diagnosis and Guided Precise Photodynamic Therapy Based on MicroRNA Fluorescence Signal Amplification and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39993242 DOI: 10.1021/acsami.4c20684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Accurate and early tumor diagnosis is critical for effective cancer treatment, yet current diagnostic modalities often face limitations. Fluorescence imaging (FLI) and magnetic resonance imaging (MRI) both offer substantial potential for cancer diagnosis. However, FLI suffers from poor tissue penetration, while MRI lacks molecular specificity. To address these limitations, we proposed a dual-modal diagnostic strategy by combining FLI and MRI for precise photodynamic therapy (PDT) of tumors. A degradable tumor microenvironment (TME)-responsive nanoplatform, i.e., UCNPs-MB@MnO2-H1/H2 (UBMD), was developed. Intracellular overexpression of miRNA-21 triggers an in situ hybridization chain reaction between H1-TAMRA and H2-FAM, which significantly amplifies fluorescence resonance energy transfer and enables FLI of miRNA-21 in living cancer cells. On the other hand, UBMD activates MRI in the TME to remarkably amplify tumor MRI signals and to effectively compensate for the shortcoming of weak penetration of FLI in deep tissues. UBMD exhibits an NIR-activated PDT capability to enable tumor-specific in situ diagnostics and imaging. In vivo miRNA-21 FLI and MR imaging in living mice actively guide precise and efficient PDT of tumors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jiasen Cui
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian She Road, Zhengzhou 450000, Henan Province, China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
7
|
Wu B, Zhao J, Yu F, Li L, Zhao Y. Spatioselective Imaging of Noncoding RNAs in Mitochondria via an Organelle-Specific DNA Assembly Strategy. NANO LETTERS 2025; 25:1948-1955. [PMID: 39869396 DOI: 10.1021/acs.nanolett.4c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g., microRNA (miRNA)) in mitochondria via an organelle-specific DNA assembly strategy. The target miRNA-initiated assembly of DNA hairpins is inhibited by the block of toehold-mediated strand displacement reaction but can be exclusively activated by a mitochondria-encoded ribosomal RNA (rRNA) for hybridization chain reaction, enabling spatial control over miRNA imaging. We demonstrate that the conditionally controlled DNA assembly technology allows for minimization of nonspecific activation and thus improves the spatial precision of miRNA detection. In addition, the strategy is adaptable to visualizing other ncRNAs such as long noncoding RNAs in mitochondria, highlighting the universality of the approach. Overall, this work provides a useful tool for spatially selective imaging of ncRNAs and investigating the functions of organelle-located RNA.
Collapse
Affiliation(s)
- Bo Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
8
|
Wu Q, Xu W, Shang J, Li J, Liu X, Wang F, Li J. Autocatalytic DNA circuitries. Chem Soc Rev 2024; 53:10878-10899. [PMID: 39400237 DOI: 10.1039/d4cs00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.
Collapse
Affiliation(s)
- Qiong Wu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jiajing Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
9
|
Mo F, Li C, Sun J, Lin X, Yu S, Wang F, Liu X, Li J. Programming Fast DNA Amplifier Circuits with Versatile Toehold Exchange Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402914. [PMID: 39225421 DOI: 10.1002/smll.202402914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
DNA amplifier circuits establish powerful tools to dynamically control molecular assembly for computation, sensing, and biological applications. However, the slow reaction speed remains a major barrier to their practical utility. Here, diverse fast DNA amplifier circuits termed toehold exchange polymerization (TEP) and toehold exchange catalysis (TEC) using toehold exchange-mediated assembly as a fundamental mechanism are built. Both TEP and TEC with a duplex and a hairpin can respond within minutes to diverse nucleic acid inputs with high fidelity. In addition, the circuits can amplify live-cell signals for fluorescence imaging target RNA dynamics and discriminating different cell lines. Compared with existing DNA circuits that involve time scales of hours for transducing small signals, TEP and TEC exhibit much faster dynamics, simpler design, and comparable sensitivity. These features make TEP and TEC promising platforms to develop programmable nucleic acid tools and devices and to create fast sensing and processing systems, amenable to wide practical applications.
Collapse
Affiliation(s)
- Fengye Mo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chenbiao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junlin Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xue Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuyi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Beijing Life Science Academy, Beijing, 102209, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Beijing Life Science Academy, Beijing, 102209, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Yang T, Li D, Luo Z, Wang J, Xiao F, Xu Y, Lin X. Space-Confined Amplification for In Situ Imaging of Single Nucleic Acid and Single Pathogen on Biological Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407055. [PMID: 39373849 PMCID: PMC11600185 DOI: 10.1002/advs.202407055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Direct in situ imaging of nucleic acids on biological samples is advantageous for rapid analysis without DNA extraction. However, traditional nucleic acid amplification in aqueous solutions tends to lose spatial information because of the high mobility of molecules. Similar to a cellular matrix, hydrogels with biomimetic 3D nanoconfined spaces can limit the free diffusion of nucleic acids, thereby allowing for ultrafast in situ enzymatic reactions. In this study, hydrogel-based in situ space-confined interfacial amplification (iSCIA) is developed for direct imaging of single nucleic acid and single pathogen on biological samples without formaldehyde fixation. With a polyethylene glycol hydrogel coating, nucleic acids on the sample are nanoconfined with restricted movement, while in situ amplification can be successfully performed. As a result, the nucleic acids are lighted-up on the large-scale surface in 20 min, with a detection limit as low as 1 copy/10 cm2. Multiplex imaging with a deep learning model is also established to automatically analyze multiple targets. Furthermore, the iSCIA imaging of pathogens on plant leaves and food is successfully used to monitor plant health and food safety. The proposed technique, a rapid and flexible system for in situ imaging, has great potential for food, environmental, and clinical applications.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Dong Li
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- The Rural Development AcademyZhejiang UniversityHangzhou310058China
| | - Zisheng Luo
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Jingjing Wang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Fangbin Xiao
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Yanqun Xu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Xingyu Lin
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| |
Collapse
|
11
|
Yu M, Zhang Y, Zhang M, Zhang X, Hu M, Li L, Yu Z, Xu Y, Guo Y, Sun H, Zhang W. Enzymatically Cyclic Activated Biosensor Based on a Tetrahedral DNA Framework for Precise Tumor in Situ Molecular Imaging. ACS Sens 2024; 9:5302-5311. [PMID: 39388771 DOI: 10.1021/acssensors.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The development of stimulus-responsive and amplification-based strategies is crucial for achieving improved spatial specificity and enhanced sensitivity in tumor molecular imaging, addressing challenges such as off-tumor signal leakage and limited biomarker content. Therefore, a cyclically activated enzymatic biosensor based on the modification of an AP site within a tetrahedral framework DNA (AP-tFNA) was rationally developed for tumor cell-specific molecular imaging using the endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) as a target, exhibiting superior spatial specificity and high sensitivity. APE1, which predominantly localizes within the nucleus in normal cells but exhibits cytosolic and nucleus expression in cancer cells, can specifically recognize and cleave the AP site in AP-tFNA, resulting in the separation of the fluorophore and quenching group, thereby inducing a fluorescence signal. Additionally, upon completion of the excision of one AP site in AP-tFNA, APE1 is released, thereby initiating a subsequent cycle of hydrolytic cleavage reactions. The experimental results demonstrated that AP-tFNA enables precise differentiation of tumor cells both in vitro and in vivo. In particular, the AP-tFNA can monitor drug resistance in neuroblastoma cells and classify the risk for neuroblastoma patients at the clinical plasma level.
Collapse
Affiliation(s)
- Muchun Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ying Xu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yanjun Guo
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Huiqing Sun
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Zhengzhou 450018, China
| |
Collapse
|
12
|
Pang X, Li H, Xu X, Wang C, Wang L, Yao W, Mao Y, Xu S, Luo X. Light-Triggered Plasmonic DNAzyme Walker Enables Precise Subcellular Molecular Imaging with Reduced Off-Mitochondria Signal Leakage. Anal Chem 2024; 96:16971-16977. [PMID: 39392280 DOI: 10.1021/acs.analchem.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The development of highly sensitive and precise imaging techniques capable of visualizing crucial molecules at the subcellular level is essential for elucidating mitochondrial functions and uncovering novel mechanisms in biological processes. However, traditional molecular imaging strategies are still limited by off-mitochondria signal leakage because of the "always-active" sensing mode. To address this limitation, we have developed a light-triggered activation sequence activated plasmonic DNAzyme walker (PDW) for accurate subcellular molecular imaging by the combination of an organelle localized strategy, upconversion nanotechnology, and a plasmon enhanced fluorescence (PEF) technique. Exploiting the advantage of light activation enables precise control over when and where to activate the probe's sensing function, effectively reducing off-mitochondria signal leakage as validated by the dynamic monitoring of changes in off-mitochondria signals during the mitochondrial entry process. Furthermore, by leveraging the PEF capability of triangular gold nanoprisms (Au NPRs), the fluorescence intensity can be enhanced by approximately 11.9 times, ensuring highly sensitive and accurate subcellular molecular imaging.
Collapse
Affiliation(s)
- Xiaozhe Pang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haiming Li
- Qingdao Women and Children's Hospital, Qingdao 266034, P. R. China
| | - Xiaohan Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Congkai Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wang Yao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yaning Mao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
13
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
14
|
Kong D, Zhang S, Ma X, Yang Y, Dai C, Geng L, Liu Y, Wei D. DNA Logical Computing on a Transistor for Cancer Molecular Diagnosis. Angew Chem Int Ed Engl 2024; 63:e202407039. [PMID: 39034433 DOI: 10.1002/anie.202407039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Given the high degree of variability and complexity of cancer, precise monitoring and logical analysis of different nucleic acid markers are crucial for improving diagnostic precision and patient survival rates. However, existing molecular diagnostic methods normally suffer from high cost, cumbersome procedures, dependence on specialized equipment and the requirement of in-depth expertise in data analysis, failing to analyze multiple cancer-associated nucleic acid markers and provide immediate results in a point-of-care manner. Herein, we demonstrate a transistor-based DNA molecular computing (TDMC) platform that enables simultaneous detection and logical analysis of multiple microRNA (miRNA) markers on a single transistor. TDMC can perform not only basic logical operations such as "AND" and "OR", but also complex cascading computing, opening up new dimensions for multi-index logical analysis. Owing to the high efficiency, sensing and computations of multi-analytes can be operated on a transistor at a concentration as low as 2×10-16 M, reaching the lowest concentration for DNA molecular computing. Thus, TDMC achieves an accuracy of 98.4 % in the diagnosis of hepatocellular carcinoma from 62 serum samples. As a convenient and accurate platform, TDMC holds promise for applications in "one-stop" personalized medicine.
Collapse
Affiliation(s)
- Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Xinye Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
15
|
Deng R, Zhang X, Cao J, Liu X, Zhang Y, Wang F, Xia X. High-contrast imaging of cellular non-repetitive drug-resistant genes via in situ dead Cas12a-labeled PCR. Chem Commun (Camb) 2024; 60:10524-10527. [PMID: 39229640 DOI: 10.1039/d4cc03059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In situ imaging of genes of pathogenic bacteria can profile cellular heterogeneity, such as the emergence of drug resistance. Fluorescence in situ hybridization (FISH) serves as a classic approach to image mRNAs inside cells, but it remains challenging to elucidate genomic DNAs and relies on multiple fluorescently labeled probes. Herein, we present a dead Cas12a (dCas12a)-labeled polymerase chain reaction (CasPCR) assay for high-contrast imaging of cellular drug-resistant genes. We employed a syncretic dCas12a-green fluorescent protein (dCas12a-GFP) to tag the amplicons, thereby enabling high-contrast imaging and avoiding multiple fluorescently labeled probes. The CasPCR assay can quantify quinolone-resistant Salmonella enterica in mixed populations and identify them isolated from poultry farms.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xinlei Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Xinmiao Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yong Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Xuhan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Lim J, Son SU, Ki J, Kim S, Lee J, Jang S, Seo SB, Jang H, Kang T, Jung J, Kim E, Lim EK. Dual structure-switching aptamer-mediated signal amplification cascade for SARS-CoV-2 detection. Biosens Bioelectron 2024; 259:116375. [PMID: 38749283 DOI: 10.1016/j.bios.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) at the end of 2019, the spread of the virus has posed a significant threat to public health and the global economy. This work proposed a one-step, dual-structure-switching aptamer-mediated signal amplification cascade for rapid and sensitive detection of the SARS-CoV-2 nucleocapsid protein. This system consisted of two DNA aptamers with structure-switching functionality and fuel DNA, where a cascade of strand hybridization and displacement triggered fluorescence generation and signal amplification. This aptamer-based amplification cascade required neither an amplification stage using enzymes nor pre-processing steps such as washing, viral isolation, and gene extraction. The assay could distinguish SARS-CoV-2 from other respiratory viruses and detect up to 1.0 PFU/assay of SARS-CoV-2 within 30 min at room temperature. In 35 nasopharyngeal clinical samples, the assay accurately assessed 25 positive and 10 negative clinical swab samples, which were confirmed using quantitative polymerase chain reaction. The strategy reported herein can help detect newly emerging pathogens and biomarkers of various diseases in liquid samples. In addition, the developed detection system consisting of only DNA and fluorophores can be widely integrated into liquid biopsy platforms for disease diagnosis.
Collapse
Affiliation(s)
- Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Chungcheongbuk-do, 28160, Republic of Korea
| | - Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jisun Ki
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, Republic of Korea
| | - Jina Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
He S, Chen L, Chen Z, Zhang G, Huang Y, Zheng H, Yang Q, Mo Z, Lin X, Wen J. The sensing of circRNA with tetrahedral DNA nanostructure modified microfluidic chip. Anal Chim Acta 2024; 1319:342951. [PMID: 39122270 DOI: 10.1016/j.aca.2024.342951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Circular ribonucleic acids (circRNAs) are a type of covalently closed noncoding RNA with disease-relevant expressions, making them promising biomarkers for diagnosis and prognosis. Accurate quantification of circRNA in biological samples is a necessity for their clinical application. So far, methods developed for detecting circRNAs include northern blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), microarray analysis, and RNA sequencing. These methods generally suffer from disadvantages such as large sample consumption, cumbersome process, low selectivity, leading to inaccurate quantification of circRNA. It was thought that the above drawbacks could be eliminated by the construction of a microfluidic sensor. RESULTS Herein, for the first time, a microfluidic sensor was constructed for circRNA analysis by using tetrahedral DNA nanostructure (TDN) as the skeleton for recognition probes and target-initiated hybridization chain reaction (HCR) as the signal amplification strategy. In the presence of circRNA, the recognition probe targets the circRNA-specific backsplice junction (BSJ). The captured circRNA then triggers the HCR by reacting with two hairpin species whose ends were labeled with 6-FAM, producing long DNA strands with abundant fluorescent labels. By using circ_0061276 as a model circRNA, this method has proven to be able to detect circRNA of attomolar concentration. It also eliminated the interference of linear RNA counterpart, showing high selectivity towards circRNA. The detection process can be implemented isothermally and does not require expensive complicated instruments. Moreover, this biosensor exhibited good performance in analyzing circRNA targets in total RNA extracted from cancer cells. SIGNIFICANCE This represents the first microfluidic system for detection of circRNA. The biosensor showed merits such as ease of use, low-cost, small sample consumption, high sensitivity and specificity, and good reliability in complex biological matrix, providing a facile tool for circRNA analysis and related disease diagnosis in point-of care application scenes.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Lei Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhuolang Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guihao Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yongjin Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Huaxiao Zheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qing Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhuoxi Mo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xinyi Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiancheng Wen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
19
|
Weng Q, Li H, Fan Z, Dong Y, Qi Y, Wang P, Luo C, Li J, Zhao X, Yu H. Enzyme-free and rapid colorimetric analysis of osteopontin via triple-helix aptamer probe coupled with catalytic hairpin assembly reaction. Anal Chim Acta 2024; 1312:342764. [PMID: 38834269 DOI: 10.1016/j.aca.2024.342764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Osteopontin (OPN) is closely associated with tumorigenesis, growth, invasion, and immune escape and it serves as a plasma biomarker for hepatocellular carcinoma (HCC). Nevertheless, the accurate and rapid detection of low-abundance OPN still poses significant challenges. Currently, the majority of protein detection methods rely heavily on large precision instruments or involve complex procedures. Therefore, developing a simple, enzyme-free, rapid colorimetric analysis method with high sensitivity is imperative. RESULTS In this study, we have developed a portable colorimetric biosensor by integrating the triple-helix aptamer probe (THAP) and catalytic hairpin assembly (CHA) strategy, named as T-CHA. After binding to the OPN, the trigger probe can be released from THAP, then initiates the CHA reaction and outputs the signal through the formation of a G-quadruplex/Hemin DNAzyme with horseradish peroxidase-like activity. Consequently, this colorimetric sensor achieves visual free-labeled detection without additional fluorophore modification and allows for accurate quantification by measuring the optical density of the solution at 650 nm. Under optimal conditions, the logarithmic values of various OPN concentrations exhibit satisfactory linearity in the range of 5 pg mL-1 to 5 ng mL-1, with a detection limit of 2.04 pg mL-1. Compared with the widely used ELISA strategy, the proposed T-CHA strategy is rapid (∼105 min), highly sensitive, and cost-effective. SIGNIFICANCE The T-CHA strategy, leveraging the low background leakage of THAP and the high catalytic efficiency of CHA, has been successfully applied to the detection of OPN in plasma, demonstrating significant promise for the early diagnosis of HCC in point-of-care testing. Given the programmability of DNA and the universality of T-CHA, it can be readily modified for analyzing other useful tumor biomarkers.
Collapse
Affiliation(s)
- Qin Weng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hang Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhichao Fan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuchen Qi
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peilin Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
20
|
Zhou Y, Shi H, Xia X, Yang S, Li J, Qing Z, Zheng J, Yang R. Integration of Hybridization Chain Reaction and Protein-Binding Amplification for Long-Term Imaging of Intracellular mRNA: Avoiding Signal Fluctuation. Anal Chem 2024; 96:11061-11067. [PMID: 38922611 DOI: 10.1021/acs.analchem.4c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Amplified nanoprobes based on hybridization chain reaction (HCR) have been widely developed for the detection of intracellular low abundance mRNA. However, the formed chain-like assembly decorated with fluorophore would be degraded rapidly by endogenous enzyme, resulting in failure of the long-term fluorescence imaging. To address this issue, herein, a composite signal-amplifying strategy that integrates HCR into protein-binding signal amplification (HPSA) was communicated for the in situ imaging of mRNA by avoiding signal fluctuation. Different from conventional HCR-based nanoprobes (HCR-nanoprobe), the HCR was used as the signal-triggered mode and the amplifying signal generated from in situ fluorophore-protein binding in cells, which can maintain high stability of the signal for a long time. As a proof-of-principle, a nanobeacon based on HPSA (HPSA-nanobeacon) was constructed to detect TK1 mRNA. Taking advantage of the double signal-amplifying mode, the endogenous TK1 mRNA was sensitively detected and the fluorescence signal was maintained for more than 8 h in HepG2 cells. The attempt in this work provides a new option to the current signal-amplifying strategy for sensing nucleic acid targets with high stability, significantly enhancing the acquisition of intracellular molecular information.
Collapse
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Huiqiu Shi
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Xinchao Xia
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
21
|
Chen Q, Xia X, Liang Z, Zuo T, Xu G, Wei F, Yang J, Hu Q, Zhao Z, Tang BZ, Cen Y. Self-Assembled DNA Nanospheres Driven by Carbon Dots for MicroRNAs Imaging in Tumor via Logic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310728. [PMID: 38229573 DOI: 10.1002/smll.202310728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
DNA nanostructures with diverse biological functions have made significant advancements in biomedical applications. However, a universal strategy for the efficient production of DNA nanostructures is still lacking. In this work, a facile and mild method is presented for self-assembling polyethylenimine-modified carbon dots (PEI-CDs) and DNA into nanospheres called CANs at room temperature. This makes CANs universally applicable to multiple biological applications involving various types of DNA. Due to the ultra-small size and strong cationic charge of PEI-CDs, CANs exhibit a dense structure with high loading capacity for encapsulated DNA while providing excellent stability by protecting DNA from enzymatic hydrolysis. Additionally, Mg2+ is incorporated into CANs to form Mg@CANs which enriches the performance of CANs and enables subsequent biological imaging applications by providing exogenous Mg2+. Especially, a DNAzyme logic gate system that contains AND and OR Mg@CANs is constructed and successfully delivered to tumor cells in vitro and in vivo. They can be specifically activated by endogenic human apurinic/apyrimidinic endonuclease 1 and recognize the expression levels of miRNA-21 and miRNA-155 at tumor sites by logic biocomputing. A versatile pattern for delivery of diverse DNA and flexible logic circuits for multiple miRNAs imaging are developed.
Collapse
Affiliation(s)
- Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhigang Liang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Tongshan Zuo
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| |
Collapse
|
22
|
Shi S, Kan A, Lu L, Zhao W, Jiang W. An acid-responsive DNA hydrogel-mediated cascaded enzymatic nucleic acid amplification system for the sensitive imaging of alkaline phosphatase in living cells. Analyst 2024; 149:3026-3033. [PMID: 38618891 DOI: 10.1039/d4an00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.
Collapse
Affiliation(s)
- Shaochuan Shi
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| | - Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Lu Lu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Weichong Zhao
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, P. R. China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| |
Collapse
|
23
|
Zhang YW, Wang SM, Li XQ, Kang B, Chen HY, Xu JJ. Endogenous AND Logic DNA Nanomachine for Highly Specific Cancer Cell Imaging. Anal Chem 2024; 96:7030-7037. [PMID: 38656919 DOI: 10.1021/acs.analchem.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Wang W, Xia L, Xiao X, Li G. Recent Progress on Microfluidics Integrated with Fiber-Optic Sensors for On-Site Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2067. [PMID: 38610279 PMCID: PMC11014287 DOI: 10.3390/s24072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This review introduces a micro-integrated device of microfluidics and fiber-optic sensors for on-site detection, which can detect certain or several specific components or their amounts in different samples within a relatively short time. Fiber-optics with micron core diameters can be easily coated and functionalized, thus allowing sensors to be integrated with microfluidics to separate, enrich, and measure samples in a micro-device. Compared to traditional laboratory equipment, this integrated device exhibits natural advantages in size, speed, cost, portability, and operability, making it more suitable for on-site detection. In this review, the various optical detection methods used in this integrated device are introduced, including Raman, ultraviolet-visible, fluorescence, and surface plasmon resonance detections. It also provides a detailed overview of the on-site detection applications of this integrated device for biological analysis, food safety, and environmental monitoring. Lastly, this review addresses the prospects for the future development of microfluidics integrated with fiber-optic sensors.
Collapse
Affiliation(s)
| | | | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| |
Collapse
|
25
|
Zhang F, Yang N, Zhou F, Qiao R, Wan Y, Liu R, Yang S, Gu M, Xu H, Dong X, Wang G. Orthogonally Sequential Activation of Self-Powered DNAzymes Cascade for Reliable Monitoring of mRNA in Living Cells. Adv Healthc Mater 2024; 13:e2303074. [PMID: 38197479 DOI: 10.1002/adhm.202303074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Ratiometric imaging of tumor-related mRNA is significant, yet spatiotemporally resolved regulation on the ratiometric signals to avoid non-specific activation in the living cells remains challenging. Herein, orthogonally sequential activation of concatenated DNAzyme circuits is, first, developed for Spatio Temporally regulated Amplified and Ratiometric (STAR) imaging of TK1 mRNA inside living cells with enhanced reliability and accuracy. By virtue of the synthesized CuO/MnO2 nanosheets, orthogonally regulated self-powered DNAzyme circuits are operated precisely in living cells, sequentially activating two-layered DNAzyme cleavage reactions to achieve the two ratiometric signal readouts successively for reliable monitoring of low-abundance mRNA in living cells. It is found that the ratiometric signals can only be derived from mRNA over-expressed tumor cells, also irrespective of probes' delivery concentration. The presented approach could provide new insight into orthogonally regulated ratiometric systems for reliable imaging of specific biomarkers in living cells, benefiting disease precision diagnostics.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Fu Zhou
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ruonan Qiao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yifei Wan
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Rong Liu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Suwan Yang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Mingzheng Gu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guangfeng Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, Ministry of Education Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
26
|
Meng J, Xu Z, Zheng S, Yang H, Wang T, Wang H, Zhang Y. Development of a regenerable dual-trigger tripedal DNA walker electrochemical biosensor for sensitive detection of microRNA-155. Anal Chim Acta 2024; 1285:342026. [PMID: 38057049 DOI: 10.1016/j.aca.2023.342026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Since microRNAs (miRNAs) are valuable biomarkers for disease diagnosis and prognosis, the pursuit of enhanced detection sensitivity through signal amplification strategies has emerged as a prominent focus in low-abundance miRNA detection research. DNA walkers, as dynamic DNA nanodevice, have gained significant attention for their applications as signal amplification strategies. To overcome the limitations of unipedal DNA walkers with a restricted signal amplification efficiency, there is a great need for multi-pedal DNA walkers that offer improved walking and signal amplification capabilities. Here, we employed a combination of catalytic hairpin assembly (CHA) and APE1 enzymatic cleavage reactions to construct a tripedal DNA walker, driving its movement to establish a cascade signal amplification system for the electrochemical detection of miRNA-155. The biosensor utilizes tumor cell-endogenous microRNA-155 and APE1 as dual-trigger for DNA walker formation and walking movement, leading to highly efficient and controllable signal amplification. The biosensor exhibited high sensitivity, with a low detection limit of 10 pM for microRNA-155, and successfully differentiated and selectively detected microRNA-155 from other interfering RNAs. Successful detection in 20 % serum samples indicates its potential clinical application. In addition, we harnessed strand displacement reactions to create a gentle yet efficient electrode regeneration strategy, to addresses the time-consuming challenges during electrode modification processes. We have successfully demonstrated the stability of current signals even after multiple cycles of electrode regeneration. This study showcased the high-efficiency amplification potential of multi-pedal DNA walkers and the effectiveness and versatility of strand displacement in biosensing applications. It opens a promising path for developing regenerable electrochemical biosensors. This regenerable strategy for electrochemical biosensors is both label-free and cost-effective, and holds promise for detecting various disease-related RNA targets beyond its current application.
Collapse
Affiliation(s)
- Jinting Meng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihao Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shasha Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianfu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
27
|
Yang H, Dong Q, Xu D, Feng X, He P, Song W, Zhou H. An "off-on-off" type electrochemical biosensor for detecting multiple biomarkers with DNAzyme-mediated entropy-driven catalytic and DSN enzyme-assisted recycling amplification. Anal Chim Acta 2023; 1283:341978. [PMID: 37977795 DOI: 10.1016/j.aca.2023.341978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In this work, an intelligent and versatile electrochemical biosensor was constructed to detect two types of biomarkers by utilizing "off-on-off" switching. Firstly, human apurinic/apyrimidinic endonuclease1(APE1) mediated specific cleavage of the AP site, initiating activation DNAzyme and entropy-driven catalytic (EDC) reaction. Subsequently, large amounts of ferrocene labeled single-stranded DNA was released and captured with a remarkable electrochemical signal, achieving "off-on" state. In the presence of microRNA 21(miRNA-21), the DNA/RNA heteroduplexes were formed and cleaved by duplex-specific nuclease (DSN) with recovery the target miRNA-21, causing the current suppression in an "on-off" state. This sensor achieved highly sensitive detection of APE1 and miRNA-21 with a detection limit of 2.5 mU·mL-1 and 1.33 × 10-20 M, respectively, and also exhibited good selectivity, reproducibility and stability. Moreover, this proposed biosensor made it possible to realize analysis of multiple types of biomarkers on a single sensor, which improved utilization and analysis efficiency compared to traditional sensors. This study might open a new avenue to design multifunctional sensing platform for biological research and early disease diagnosis.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qi Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xinmiao Feng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
28
|
Wei R, Wang K, Liu X, Shi M, Pan W, Li N, Tang B. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosens Bioelectron 2023; 239:115584. [PMID: 37619479 DOI: 10.1016/j.bios.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers in biomedicine and bioimaging due to their roles in various physiological and pathological processes. Real-time and in situ monitoring of dynamic fluctuation of miRNAs in living cells is crucial for understanding these processes. However, current miRNA imaging probes still have some limitations, including the lack of effective amplification methods for low abundance miRNAs bioanalysis and uncontrollable activation, leading to background signals and potential false-positive results. Therefore, researchers have been integrating activatable devices with miRNA amplification techniques to design stimuli-responsive nanoprobes for "on-demand" and precise imaging of miRNAs in living cells. In this review, we summarize recent advances of stimuli-responsive probes for the amplification-based imaging of miRNAs in living cells and discuss the future challenges and opportunities in this field, aiming to provide valuable insights for accurate disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
29
|
Feng X, Li L, Zhao Y, Li M. Enzyme and MicroRNA Dual-Regulated Photodynamic Molecular Beacons for Cell-Selective Amplification of Antitumor Efficacy. NANO LETTERS 2023; 23:7743-7749. [PMID: 37406355 DOI: 10.1021/acs.nanolett.3c01814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Photodynamic molecular beacons (PMBs) are highly appealing for activatable photodynamic therapy (PDT), but their applications are hindered by limited therapeutic efficacy. Here, by molecular engineering of enzyme-responsive units in the loop region of DNA-based PMBs, we present for the first time the modular design of an enzyme/microRNA dual-regulated PMB (D-PMB) to achieve cancer-cell-selective amplification of PDT efficacy. In the design, the "inert" photosensitizers in D-PMB could be repeatedly activated in the presence of both tumor-specific enzyme and miRNA, leading to amplified generation of cytotoxic singlet oxygen species and therefore enhanced PDT efficacy in vitro and in vivo. By contrast, low photodynamic activity could be observed in healthy cells, as D-PMB activation has been largely avoided by the dual-regulatable design. This work presents a cooperatively activated PDT strategy, which enables enhanced therapeutic efficacy with improved tumor-specificity and thus conceptualizes an approach to expand the repertoire of designing smart tumor treatment modality.
Collapse
Affiliation(s)
- Xueyan Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Wu K, Ma C, Wang Y. Functional Nucleic Acid Probes Based on Two-Photon for Biosensing. BIOSENSORS 2023; 13:836. [PMID: 37754070 PMCID: PMC10527542 DOI: 10.3390/bios13090836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Functional nucleic acid (FNA) probes have been widely used in environmental monitoring, food analysis, clinical diagnosis, and biological imaging because of their easy synthesis, functional modification, flexible design, and stable properties. However, most FNA probes are designed based on one-photon (OP) in the ultraviolet or visible regions, and the effectiveness of these OP-based FNA probes may be hindered by certain factors, such as their potential for photodamage and limited light tissue penetration. Two-photon (TP) is characterized by the nonlinear absorption of two relatively low-energy photons of near-infrared (NIR) light with the resulting emission of high-energy ultraviolet or visible light. TP-based FNA probes have excellent properties, including lower tissue self-absorption and autofluorescence, reduced photodamage and photobleaching, and higher spatial resolution, making them more advantageous than the conventional OP-based FNA probes in biomedical sensing. In this review, we summarize the recent advances of TP-excited and -activated FNA probes and detail their applications in biomolecular detection. In addition, we also share our views on the highlights and limitations of TP-based FNA probes. The ultimate goal is to provide design approaches for the development of high-performance TP-based FNA probes, thereby promoting their biological applications.
Collapse
Affiliation(s)
- Kefeng Wu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| |
Collapse
|
31
|
Wen Y, Liu WY, Wang JH, Yu YL, Chen S. Simultaneous Imaging of Multiple miRNAs in Mitochondria Controlled by Fluorescently Encoded Upconversion Optical Switches for Drug Resistance Studies. Anal Chem 2023; 95:12152-12160. [PMID: 37535000 DOI: 10.1021/acs.analchem.3c02403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Mitochondrial miRNAs (mitomiRs) are essential regulators of biological processes by influencing mitochondrial gene expression and function. To comprehensively understand related pathological processes and treatments, simultaneous imaging of multiple mitomiRs is crucial. In this study, we present a technique that enables simultaneous monitoring of multiple mitomiRs in living cells using a near-infrared (NIR) photoactivated controlled detection probe (PD-mFleU) with a fluorescence-encoded error correction module and a nonsupervised machine learning data-processing algorithm. This method allows controlled sensing imaging of mitomiRs with a DNA reporter probe that can be activated by NIR light after targeted mitochondrial localization. Multilayer upconversion nanoparticles (UCNPs) are used for encoding probes and error correction. Additionally, the density-based spatial clustering of applications with the noise (DBSCAN) algorithm is used to process and analyze the image. Using this technique, we achieved rapid in situ imaging of the abnormal expression of three mitomiRs (miR-149, miR-590, and miR-671) related to mt-ND1 in drug-resistant cells. Furthermore, upregulating the three mitomiRs simultaneously efficiently reverted drug-resistant cells to sensitive cells. Our study provides an analytical strategy for multiplex imaging of mitomiRs in living cells with potential clinical applications.
Collapse
Affiliation(s)
- Yun Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
32
|
He Y, Wang Q, Hong C, Li R, Shang J, Yu S, Liu X, Wang F. A Smart Deoxyribozyme-Programmable Catalytic DNA Circuit for High-Contrast MicroRNA Imaging. Angew Chem Int Ed Engl 2023; 62:e202307418. [PMID: 37379042 DOI: 10.1002/anie.202307418] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Synthetic catalytic DNA circuits have been recognized as a promising signal amplification toolbox for sensitive intracellular imaging, yet their selectivity and efficiency are always constrained by uncontrolled off-site signal leakage and inefficient on-site circuitry activation. Thus, the endogenously controllable on-site exposure/activation of DNA circuits is highly desirable for achieving the selective imaging of live cells. Herein, an endogenously activated DNAzyme strategy was facilely integrated with a catalytic DNA circuit for guiding the selective and efficient microRNA imaging in vivo. To prevent the off-site activation, the circuitry constitute was initially caged without sensing functions, which could be selectively liberated by DNAzyme amplifier to guarantee the high-contrast microRNA imaging in target cells. This intelligent on-site modulation strategy can tremendously expand these molecularly engineered circuits in biological systems.
Collapse
Affiliation(s)
- Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| |
Collapse
|
33
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
34
|
Chen YL, Sun X, He JW, Xin MK, Liu D, Li CY. Light-Driven and Metal-Organic Framework Synergetic Loaded DNA Tetrahedral Amplifier for Exonuclease III-Powered All-in-One Biosensing and Chemotherapy in Live Biosystems. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410886 DOI: 10.1021/acsami.3c06626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
As a result of inaccurate biosensing and difficult synergetic loading, it is challenging to further impel DNA amplifiers to perform therapeutic application. Herein, we introduce some innovative solutions. First, a smart light-driven biosensing concept based on embedding nucleic acid modules with a simple photocleavage-linker is proposed. In this system, the target identification component is exposed on irradiation with ultraviolet light, thus avoiding an always-on biosensing response during biological delivery. Further, in addition to providing controlled spatiotemporal behavior and precise biosensing information, a metal-organic framework is used for the synergetic loading of doxorubicin in the internal pores, whereafter a rigid DNA tetrahedron-sustained exonuclease III-powered biosensing system is attached to prevent drug leakage and enhance resistance to enzymatic degradation. By selecting a next-generation breast cancer correlative noncoding microRNA biomarker (miRNA-21) as a model low-abundance analyte, a highly sensitive in vitro detection ability even allowing to distinguish single-base mismatching is demonstrated. Moreover, the all-in-one DNA amplifier shows excellent bioimaging competence and good chemotherapy efficacy in live biosystems. These findings will drive research into the use of DNA amplifiers in diagnosis and therapy integrated fields.
Collapse
Affiliation(s)
- Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
35
|
Li M, Li L. Enzyme-Triggered DNA Sensor Technology for Spatially-Controlled, Cell-Selective Molecular Imaging. Acc Chem Res 2023. [PMID: 37262339 DOI: 10.1021/acs.accounts.3c00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
ConspectusWith unparalleled programmability, DNA has evolved as a powerful scaffold for engineering intricate and dynamic systems that can perform diverse tasks. By allowing serial detection of molecular targets in complex cellular milieus, increasingly sophisticated DNA sensors have not only promoted significant advances in unveiling the fundamental mechanisms of various pathophysiological processes but also provided a useful toolkit for disease diagnostics based on molecular signatures. Despite much progress, an inherent limitation of DNA-based sensors is that they often lack spatial control and cell-type selectivity for the sensing activity because of their "always active" design mechanism. Since most molecular targets of interests are not exclusive to disease cells, they are also shared by normal cells, the application of such biosensors for disease-specific imaging is limited by inadequate signal-to-background ratios due to indistinguishable signal response in both disease and normal cells. Therefore, imparting biosensors with spatial controllability remains a key issue to achieve molecular imaging with high sensitivity and cell specificity.As a biocatalyst, enzyme has been found to be closely related with the pathological conditions of numerous diseases. For example, many nucleases, protease, and kinases have been identified overexpressed in disease cells and considered as important biomarkers of cancer, inflammation, and neurological diseases. Recently, we have envisioned that such pathophysiology-associated enzymes could be leveraged as endogenous triggers to achieve spatial control over the molecular imaging activity of the DNA-based sensors with improved cell-specificity. In this Account, we outline the research efforts from our group on the development of endogenous enzyme-triggered, DNA-based sensor technology that enables spatially controlled, cell-type selective molecular imaging. With programmable DNA design and further engineering of enzymatically cleavable sites, a series of DNAzyme- and aptamer-based sensors have been developed for enzyme-controlled imaging of various molecular targets (e.g., metal ions and small molecules) in a cancer cell-selective manner. In particular, by introduction of PNA as bridge molecules to engineer DNA-based sensors with functional peptides, the conceptual design of protease-activated DNA biosensors has been established for spatioselective molecular imaging in cancer cells and extracellular tumor microenvironments. Furthermore, enzyme-triggered signal amplification approaches, such as enzymatically activated molecular beacon and catalytic hairpin assembly, have been developed for spatially selective RNA imaging in specific disease cells (e.g., inflammatory cells and cancer cells), which enables enhanced disease-site specificity and thus improved signal-to-background ratio. The signal amplification strategy is further expanded to cell-selective amplified imaging of non-RNA species through the combination with functional DNA design. Finally, the challenges and potential future directions in this burgeoning field are discussed. We hope this Account offers insights into rational design of enzymatically controlled, DNA-based sensor platforms for opening new frontiers in spatially resolved, cell-selective molecular imaging. We believe that the continuing advances in DNA-based molecular sensing technology together with the discoveries of diverse disease-associated enzymes will promise to usher a new era of diagnosis.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Wang C, Hong Y, Dong L, Cheng H, Jin D, Zhao R, Yu Z, Yuan Y. An AND-gate bioluminescent probe for precise tumor imaging. Chem Sci 2023; 14:5768-5773. [PMID: 37265734 PMCID: PMC10231332 DOI: 10.1039/d3sc00556a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Sensitivity and specificity are two indispensable requirements to ensure diagnostic accuracy. Dual-locked probes with "AND-gate" logic theory have emerged as a powerful tool to enhance imaging specificity, avoid "false positive" results, and realize correlation analysis. In addition, bioluminescence imaging (BLI) is an excitation-free optical modality with high sensitivity and low background and can thus be combined with a dual-locked strategy for precise disease imaging. Here, we developed a novel AND-gate bioluminescent probe, FK-Luc-BH, which is capable of responding to two different tumor biomarkers (cathepsin L and ClO-). The good specificity of FK-Luc-BH was proven, as an obvious BL signal could only be observed in the solution containing both cathepsin L (CTSL) and ClO-. 4T1-fLuc cells and tumors treated with FK-Luc-BH exhibited significantly higher BL signals than those treated with unresponsive control compound Ac-Luc-EA or cotreated with FK-Luc-BH and a ClO- scavenger/cathepsin inhibitor, demonstrating the ability of FK-Luc-BH to precisely recognize tumors in which CTSL and ClO- coexist.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yajian Hong
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ling Dong
- Department of Chemistry and Chemical Engineering, Hefei Normal University Hefei Anhui 230061 China
| | - Hu Cheng
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Duo Jin
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ronghua Zhao
- Center for Biomedical Imaging, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zian Yu
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
37
|
Yao S, Zou R, Chen F, Gong H, Cai C. Engineering of catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine to rapidly detect mRNA. Mikrochim Acta 2023; 190:210. [PMID: 37169940 DOI: 10.1007/s00604-023-05708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
The catalytic hairpin-rigidified Y-shaped DNA through layer-by-layer assembly has been fixed on the surface of copper sulfide nanoparticles for the detection of survivin mRNA. The distance between the CHA probes fixed on the Y-shaped DNA is significantly shortened. The results show that the fluorescence of this nanomachine reached the maximum value in 50 min (excitation wavelength at 488 nm and emission wavelength 526 nm), and its reaction rate is more than 5-fold faster than that of the free-CHA control system. In addition, the nanomachine showed high sensitivity (LOD of 3.5 pM) and high specificity for the survivin mRNA detection. Given its fast response time and excellent detection performance, we envision that the catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine will offer potential applications in disease diagnostics and clinical applications.
Collapse
Affiliation(s)
- Shufen Yao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Rong Zou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
38
|
Sheng C, Zhao J, Yu F, Li L. Enzyme Translocation-Mediated Signal Amplification for Spatially Selective Aptasensing of ATP in Inflammatory Cells. Angew Chem Int Ed Engl 2023; 62:e202217551. [PMID: 36750407 DOI: 10.1002/anie.202217551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
Amplified ATP imaging in inflammatory cells is highly desirable. However, the spatial selectivity of current amplification methods is limited, that is, signal amplification is performed systemically and not in a disease site-specific manner. Here we present a versatile strategy, termed enzymatically triggerable, aptamer-based signal amplification (ETA-SA), that enables inflammatory cell-specific imaging of ATP through spatially-resolved signal amplification. The ETA-SA leverages a translocated enzyme in inflammatory cells to activate DNA aptamer probes and further drive cascade reactions through the consumption of hairpin fuels, which, however, exerts no ATP response activity in normal cells, leading to a significantly improved sensitivity and spatial specificity for the inflammation-specific ATP imaging in vivo. Benefiting from the improved spatial selectivity, enhanced signal-to-background ratios were achieved for ATP imaging during acute hepatitis.
Collapse
Affiliation(s)
- Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Yang X, Yuan L, Xu Y, He B. Target-catalyzed self-assembled spherical G-quadruplex/hemin DNAzymes for highly sensitive colorimetric detection of microRNA in serum. Anal Chim Acta 2023; 1247:340879. [PMID: 36781247 DOI: 10.1016/j.aca.2023.340879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The accurate and visual detection of circulating microRNA (miRNA) has attracted increasing interest due to its pivotal role in clinical disease diagnosis. Taking advantages of nucleic acid isothermal amplification and enzyme-catalyzed chromogenic reaction, here, a colorimetric sensing strategy was proposed for sensitive miRNA analysis. When the target miRNA was present, local catalytic hairpin assembly (CHA) would be triggered and proceed continuously to form dozens of double-stranded oligonucleotides with G-rich sticky ends on the gold nanoparticle, which could self-assemble into a spherical G-quadruplex (GQ)/hemin DNAzyme by binding with hemin and potassium ions. As a horseradish peroxidase-mimic, GQ/hemin DNAzyme could catalyze the redox reaction and color change of the substrates. Taking miRNA-21 as an example, the developed method exhibited satisfactory specificity as well as high sensitivity with a detection limit of 90.3 fM. Furthermore, the sensing platform has been successfully employed to detect miRNA-21 in spiked serum, providing a promising tool for early diagnosis of cancers.
Collapse
Affiliation(s)
- Xuejiao Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
40
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
41
|
Song J, Li S, Jie Z, Qiao Y, Yang XJ, Chen HY, Xu JJ. Triple signal amplification strategy for ultrasensitive in situ imaging of intracellular telomerase RNA. Anal Chim Acta 2023; 1256:341145. [PMID: 37037628 DOI: 10.1016/j.aca.2023.341145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Abnormal upregulation of telomerase RNA (TR) is a hallmark event at various stages of tumor progression, providing a universal marker for early diagnosis of cancer. Here, we have developed a triple signal amplification strategy for in situ visualization of TR in living cells, which sequentially incorporated the target-initiated strand displacement circuit, multidirectional rolling circle amplification (RCA), and Mg2+ DNAzyme-mediated amplification. All oligonucleotide probes and cofactors were transfected into cells in one go, and then escaped from lysosomes successfully. Owing to the specific base pairing, the amplification cascades could only be triggered by TR and performed as programmed, resulting in a satisfactory signal-to-background ratio. Especially, the netlike DNA structure generated by RCA encapsulated high concentrations of DNAzyme and substrates (FQS) in a local region, thereby improving the reaction efficiency and kinetics of the third amplification cycle. Under optimal conditions, the proposed method exhibited ultrasensitive detection of TR mimic with a detection limit at pM level. Most importantly, after transfection with the proposed sensing platform, tumor cells can be easily distinguished from normal cells based on TR abundance-related fluorescence signal, providing a new insight into initial cancer screening.
Collapse
|
42
|
Sun Z, Chen X, Niu R, Chen H, Zhu Y, Zhang C, Wang L, Mou H, Zhang H, Luo Y. Liposome fusogenic enzyme-free circuit enables high-fidelity determination of single exosomal RNA. Mater Today Bio 2023; 19:100613. [PMID: 37009069 PMCID: PMC10060373 DOI: 10.1016/j.mtbio.2023.100613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Accurate determination of single exosomal inclusions in situ presents a significant challenge due to their extremely low abundance as well sub-100 nm vesicle dimensions. Here, we created a Liposome Fusogenic Enzyme-free circuit (LIFE) approach for the high-fidelity identification of exosome-encapsulated cargoes without destroying the vesicle integrity. The probe-loaded cationic fusogenic liposome could capture and fuse with a single target exosome, enabling probes delivery and target biomolecule-initiated cascaded signal amplification in situ. Then the DNAzyme probe encountered conformal change upon exosomal microRNA activation, and generated a convex DNAzyme structure to cleave the RNA site of substrate probe. After that, the target microRNA could be released to introduce a cleavage cycle to yield amplified fluorescence readout. Therefore, trace cargoes in a single exosome could be accurately determined by elaborately controlling the ratio of introduced LIFE probe, paving the way toward the exploration of a universal sensing platform for the assessment of exosomal cargoes to facilitate early disease diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Zixin Sun
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Sanxia Hospital, Chongqing University, Chongqing, 404100, PR China
| | - Xiaohui Chen
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Key Laboratory for Biotechnological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Ruyan Niu
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Key Laboratory for Biotechnological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Hengyi Chen
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Ying Zhu
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Chong Zhang
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Key Laboratory for Biotechnological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Liu Wang
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Huaming Mou
- Sanxia Hospital, Chongqing University, Chongqing, 404100, PR China
- Corresponding author.
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, PR China
- Corresponding author.
| | - Yang Luo
- Department of Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
- Corresponding author.
| |
Collapse
|
43
|
Tang J, Liang A, Yao C, Yang D. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials. Chemistry 2023; 29:e202202673. [PMID: 36263767 DOI: 10.1002/chem.202202673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Abstract
The Review by Yang, Yao and colleagues (DOI: 10.1002/chem.202202673) describes recent developments in biofunctional DNA hydrogels and DNA nanocomplexes based on rolling circle amplification (RCA) and introduces assembly strategies and functionalization methods of the ultralong single-strand DNA produced by RCA to construct biofunctional materials.
Collapse
Affiliation(s)
- Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Aiqi Liang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
44
|
Zhang Q, Wang Y, Wang W, Min Q, Zhang JR, Zhu JJ. A Telomerase-Assisted Strategy for Regeneration of DNA Nanomachines in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202213884. [PMID: 36478372 DOI: 10.1002/anie.202213884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
DNA nanomachines have been engineered into diverse personalized devices for diagnostic imaging of biomarkers; however, the regeneration of DNA nanomachines in living cells remains challenging. Here, we report an ingenious DNA nanomachine that can implement telomerase (TE)-activated regeneration in living cells. Upon apurinic/apyrimidinic endonuclease 1 (APE1)-responsive initiation of the nanomachine, the walker of the nanomachine moves along tracks regenerated by TE, generating multiply amplified signals through which APE1 can be imaged in situ. Additionally, augmentation of the signal due to the regeneration of the nanomachines could reveal differential expression of TE in different cell lines. To the best of our knowledge, this is the first proof-of-concept demonstration of the use of biomarkers to assist in the regeneration of nanomachines in living cells. This study offers a new paradigm for the development of more applicable and efficient DNA nanomachines.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing, 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
45
|
Zeng T, Fang J, Jiang Y, Xing C, Lu C, Yang H. Spherical Nucleic Acid Probe Based on 2'-Fluorinated DNA Functionalization for High-Fidelity Intracellular Sensing. Anal Chem 2022; 94:18009-18016. [PMID: 36519891 DOI: 10.1021/acs.analchem.2c04294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditional spherical nucleic acids (SNAs) based on gold nanoparticles (AuNPs) assembled through Au-S covalent bonds are widely used in DNA-programmable assembly, biosensing, imaging, and therapeutics. However, biological thiols and other chemical substances can break the Au-S bonds and cause response distortion during the application process, specifically in cell environments. Herein, we report a new type of SNAs based on 2'-fluorinated DNA-functionalized AuNPs with excellent colloidal stability under high salt conditions (up to 1 M NaCl) and over a broad pH range (1-14), as well as resistance to biothiols. The fluorinated spherical nucleic acid probe (Au/FDNA probe) could detect targeted cancer cells with high fidelity. Compared to the traditional thiolated DNA-functionalized AuNP probe (Au-SDNA probe), the Au/FDNA probe exhibited a higher sensitivity to the target and a lower signal-to-background ratio. Furthermore, the Au/FDNA probe could discriminate target cancer cells in a mixed culture system. Using the proposed FDNA functionalization method, previously developed SNAs based on AuNPs could be directly adapted, which might open a new avenue for the design and application of SNAs.
Collapse
Affiliation(s)
- Tao Zeng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiahui Fang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
46
|
Cheng S, Shi Y, Su C, Li Y, Zhang X. MnO 2 nanosheet-mediated generalist probe: Cancer-targeted dual-microRNAs detection and enhanced CDT/PDT synergistic therapy. Biosens Bioelectron 2022; 214:114550. [PMID: 35834977 DOI: 10.1016/j.bios.2022.114550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
While integrated nanoplatform for diagnosis and therapy has received much recent interest, its widespread application has been hampered by the complicated preparation process, high-cost and low-efficacy. Herein, we designed a MnO2 nanosheet-mediated generalist probe (MNSGP), for intracellular dual-microRNAs (miRNAs) imaging and enhanced synergistic therapy of chemodynamic therapy (CDT) and photodynamic therapy (PDT). Because MNSGP can specifically target nucleolin receptor overexpressed on the cancer cell surface, it can be internalized via a receptor-mediated endocytosis pathway. After entering the cells, MnO2 NS was degraded to Mn2+ by the excessive glutathione (GSH), releasing the DNA probes for cyclic amplification detection of miR-155 and miR-21 based on toehold-mediated strand displacement amplification (TSDA). Meanwhile, the produced O2 by MnO2 NS catalysis can promote the photosensitizer TMPyP4 to produce singlet oxygen (1O2) for PDT. The degraded Mn2+, as Fenton reagent, can convert endogenous H2O2 to cytotoxic hydroxyl radical (·OH) for CDT. In addition, the depletion of GSH impairs the antioxidant defense system (ADS), enhancing the CDT/PDT synergistic effect. The prepared generalist probe was fully characterized. Accuracy of dual-miRNAs detection and the high curative effect of enhanced CDT/PDT synergistic therapy were attested via in vitro and in vivo experiments. Unarguably, MNSGP broadens new horizons in the design of nucleic acid nanoplatform, cancer-targeted detection and theranostic application.
Collapse
Affiliation(s)
- Simin Cheng
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Shi
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Cong Su
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
47
|
Chen Z, Wang WT, Wang W, Huang J, Liao JY, Zeng S, Qian L. Sensitive Imaging of Cellular RNA via Cascaded Proximity-Induced Fluorogenic Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44054-44064. [PMID: 36153979 DOI: 10.1021/acsami.2c10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to its important biological functions, RNA has become a promising molecular biomarker of various diseases. With a dynamic change in its expression level and a relatively low amount within the complicated biological matrix, signal amplification detection based on DNA probes has been put forward, which is helpful for early diagnosis and prognostic prediction. However, conventional methods are confined to cell lysates or dead cells and are not only time-consuming in sample preparation but also inaccessible to the spatial-temporal information of target RNAs. To achieve live-cell imaging of specific RNAs, both the detection sensitivity and intracellular delivery issues should be addressed. Herein, a new cascaded fluorogenic system based on the combination of hybridization chain reactions (HCRs) and proximity-induced bioorthogonal chemistry is developed, in which a bioorthogonal reaction pair (a tetrazine-quenched dye and its complementary dienophile) is brought into spatial proximity upon target RNA triggering the HCR to turn on and amplify the fluorescence in one step, sensitively indicating the cellular distribution of RNA with minimal false positive results caused by unspecific degradation. Facilitated by a biodegradable carrier based on black phosphorus with high loading capacity and excellent biocompatibility, the resulting imaging platform allows wash-free tracking of target RNAs inside living cells.
Collapse
Affiliation(s)
- Zhiyan Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Huang
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Zhang Q, Zhao R, Li CC, Zhang Y, Tang C, Luo X, Ma F, Zhang CY. Construction of an Entropy-Driven Dumbbell-Type DNAzyme Assembly Circuit for Lighting Up Uracil-DNA Glycosylase in Living Cells. Anal Chem 2022; 94:13978-13986. [PMID: 36179339 DOI: 10.1021/acs.analchem.2c03223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive monitoring of intracellular uracil-DNA glycosylase (UDG) in living cells is essential to understanding the DNA repair pathways and discovery of anticancer drugs. Herein, we demonstrate the construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up UDG in living cells via the integration of entropy-driven DNA catalysis (EDC) with the DNAzyme biocatalyst. Target UDG excises the damaged uracil base, causing the breakage of detection probe and the release of trigger. The released trigger can initiate the downstream EDC reaction to form two catalytically active DNAzyme units. The resultant dual Mg2+-DNAzyme units serve as the signal transducers to cyclically cleave the fluorophore/quenched-modified reporters, generating an enhanced fluorescence signal. In contrast to the single-layered EDC method with a linear amplification, the proposed doublet EDC-DNAzyme strategy exhibits high signal gain and achieves a detection limit of 8.71 × 10-6 U/mL. Notably, this assay can be performed in one-step manner at room temperature without the requirement of strict temperature control and complicated reaction procedures, and it can further screen the UDG inhibitors, measure kinetic parameters, and discriminate cancer cells from normal cells. Moreover, this strategy can monitor intracellular UDG activity with improved signal gain, and it may be exploited for sensing and imaging of other types of DNA modifying enzymes with the integration of the corresponding detection substrate, providing a facile and robust approach for biological research studies and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ran Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chunying Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
49
|
Xing C, Lin Q, Gao X, Cao T, Chen J, Liu J, Lin Y, Wang J, Lu C. Intracellular miRNA Imaging Based on a Self-Powered and Self-Feedback Entropy-Driven Catalyst-DNAzyme Circuit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39866-39872. [PMID: 36018586 DOI: 10.1021/acsami.2c11923] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNAzyme-based signal amplification circuits promote the advances in low-abundant miRNA imaging in living cells. However, due to the insufficient cofactor in living cells and unsustainable target utilization, self-powered and self-feedback DNAzyme amplification circuits have rarely been achieved. Here, a MnO2 nanosheet-mediated self-powered and self-feedback entropy-driven catalyst (EDC)-DNAzyme nanoprobe (MnPFEDz) was demonstrated for sensitive imaging of intracellular microRNA (miRNA). In this strategy, MnPFEDz was formed by adsorbing EDC modules and substrate probes on MnO2 nanosheets. The MnO2 nanosheets acted not only as glutathione (GSH)-responsive nanocarriers for efficient delivery of DNA probes but also as a DNAzyme cofactor supplier to power the DNAzyme biocatalysis and promote signal transduction in a feedback way. When entering the cells, GSH could decompose MnO2 nanosheets to generate numerous Mn2+ ion cofactors, leading to the release of DNA probes. Subsequently, the target miRNA initiated EDC cycles to generate amplified fluorescence signals and exposed the complete DNAzyme. Meanwhile, each of the exposed DNAzyme then cleaved the substrate probes with the help of Mn2+ ion cofactors and released a new trigger analogue for the next round of EDC cycles, initiating additional fluorescence signals in a feedback way. As a multiple signal amplification strategy, the MnPFEDz nanoprobe facilitated the effective detection of intracellular molecules with enhanced sensitivity and provided a versatile strategy for the construction of self-powered and self-feedback DNA circuits in living cells.
Collapse
Affiliation(s)
- Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Qitian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xue Gao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Ting Cao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jing Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jialing Liu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
50
|
Sheng C, Zhao J, Di Z, Huang Y, Zhao Y, Li L. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat Biomed Eng 2022; 6:1074-1084. [PMID: 36050523 DOI: 10.1038/s41551-022-00932-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
The in vivo optical imaging of RNA biomarkers of inflammation is hindered by low signal-to-background ratios, owing to non-specific signal amplification in healthy tissues. Here we report the design and in vivo applicability, for the imaging of inflammation-associated messenger RNAs (mRNAs), of a molecular beacon bearing apurinic/apyrimidinic sites, whose amplification of fluorescence is triggered by human apurinic/apyrimidinic endonuclease 1 on translocation from the nucleus into the cytoplasm specifically in inflammatory cells. We assessed the sensitivity and tissue specificity of an engineered molecular beacon targeting interleukin-6 (IL-6) mRNA in live mice, by detecting acute inflammation in their paws and drug-induced inflammation in their livers. This enzymatic-amplification strategy may enable the specific and sensitive imaging of other disease-relevant RNAs in vivo.
Collapse
Affiliation(s)
- Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China.,GBA Research Innovation Institute for Nanotechnology, Guangdong, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China. .,College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China. .,GBA Research Innovation Institute for Nanotechnology, Guangdong, China.
| |
Collapse
|