1
|
Nakada K, Richards GJ, Hori A. Colorimetric Detection of Naphthalene Enabled by Intra- to Intermolecular Charge Transfer Interplay Induced by π-hole⋅⋅⋅π Interactions of a TPA-Attached Pyrazinacene. Chemistry 2025; 31:e202404487. [PMID: 39861975 DOI: 10.1002/chem.202404487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025]
Abstract
A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole⋅⋅⋅π interactions. Crystal structure analysis and DFT calculations confirm that the molecular recognition process is facilitated by the unique π-hole⋅⋅⋅π interactions, leading to a reversible color switching mechanism. The findings offer new insights into selective molecular recognition and ICT-CT interplay in nonporous adaptive crystals.
Collapse
Affiliation(s)
- Kazushi Nakada
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Gary James Richards
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Akiko Hori
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| |
Collapse
|
2
|
Baykov SV, Katlenok EA, Semenov AV, Baykova SO, Boyarskiy VP, Bokach NA, Kukushkin VY. Different Stacking Types in a Single Hybrid Cocrystal System: π···π- and π-Hole-Based Organic-Inorganic Planar Assemblies. Inorg Chem 2025; 64:4005-4016. [PMID: 39976573 DOI: 10.1021/acs.inorgchem.4c05326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The planar bis-chelated complex [Pd(N∩O)2] (1; N∩O = 4-MeC5H3NNC(O)NMe2) exhibits two distinct stacking modes with electron-deficient aromatics: π···π stacking with hexafluorobenzene (C6F6) versus charge-transfer π-hole interactions with 1,2,4,5-tetracyanobenzene (TCB). Cocrystallization of the complex with C6F6 or TCB yields cocrystals 1·3(C6F6) and 1·2TCB, respectively, which display different colors and stacking patterns despite similar structural motifs. Comprehensive analysis using X-ray diffraction, combined with quantum theory of atoms-in-molecules (QTAIM), an independent gradient model based on Hirshfeld partition (IGMH), extended transition state natural orbital for chemical valence theory with charge displacement function (ETS-NOCV/CDF), many-body interaction analysis, and symmetry-adapted perturbation theory (SAPT), reveals fundamentally different interaction mechanisms. In 1·3(C6F6), the stacking is primarily governed by intermolecular polarization without significant charge transfer, with dispersion forces contributing approximately 70% of the attractive energy. In contrast, 1·2TCB exhibits pronounced charge transfer (35 me) and significant inductive components alongside dispersion forces, characteristic of π-hole interactions. This dichotomy in stacking behavior provides new insights into the nature of organic-inorganic planar assemblies and demonstrates that seemingly similar structural patterns can arise from distinctly different combinations of noncovalent forces, which is essential for rational crystal engineering of hybrid materials.
Collapse
Affiliation(s)
- Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
| | - Eugene A Katlenok
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
| | - Artem V Semenov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
| | - Svetlana O Baykova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| |
Collapse
|
3
|
Shen Z, Li X, Zeng Y, Zhang X. Influence of Noncovalent Interaction on the Nucleophilicity and Electrophilicity of Metal Centers in [M II(S 2CNEt 2) 2] (M = Ni, Pd, Pt). J Phys Chem A 2024; 128:10796-10807. [PMID: 39652712 DOI: 10.1021/acs.jpca.4c05706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A systematic theoretical study was performed on the electrophilic and nucleophilic properties of Group 10 square-planar metal compounds [MII(S2CNEt2)2] (M = Ni 1, Pd 2, and Pt 3) and their complexes. The nucleophilic metal center and coordinated sulfur atom in [M(S2CNEt2)2] facilitate the formation of metal-involving and conventional noncovalent bonds. The presence a heavier metal center results in a more negative electrostatic potential and a larger nucleophilicity, which in turn leads to the formation of stronger metal-involving noncovalent bonds than those formed by a lighter metal center. The NiII center was observed to display electrophilic-nucleophilic dualism with regard to noncovalent interactions, forming both a metal-involving halogen bond (Ni···I) with iodine chloride (ICl) and a semicoordination bond (Ni···N) with N-bases. The nucleophilicity and electrophilicity of the NiII center are enhanced in the ternary complexes LB···1···XCl (X = H, I; LB = NH3, NHCH2, pyridine) due to the push-pull mechanism. The N···Ni semicoordination bond exerts a push effect on the dz2 orbital of the NiII center, while the Ni···X noncovalent bond provides a symbiotic pull effect on this orbital. Furthermore, the formation of metal-involving noncovalent bonds may enhance the electrophilic ability of the PdII and PtII center, resulting in the formation of stable ternary complexes Py···2/3···XCl (X = H, I), which are characterized by M···N and M···X interactions.
Collapse
Affiliation(s)
- Zixuan Shen
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Zhang L, Shen Z, Zeng Y, Li X, Zhang X. Insight into the Metal-Involving Chalcogen Bond in the Pd II/Pt II-Based Complexes: Comparison with the Conventional Chalcogen Bond. J Phys Chem A 2024; 128:5567-5577. [PMID: 39003760 DOI: 10.1021/acs.jpca.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The metal-involving Ch···M chalcogen bond and the conventional Ch···O chalcogen bond between ChX2 (Ch = Se, Te; X = CCH, CN) acting as a Lewis acid and M(acac)2 (M = Pd, Pt; Hacac = acetylacetone) acting as a Lewis base were studied by density functional theory calculations. It has been observed that the nucleophilicity of the PtII complexes is higher than that of the corresponding PdII complexes. As a result, the PtII complexes tend to exhibit a more negative interaction energy and larger orbital interaction. The strength of the chalcogen bond increases with the increase of the chalcogen atom and the electronegativity of the substituent on the Lewis acid and vice versa. The metal-involving chalcogen bond shows a typical weak closed-shell noncovalent interaction in the (HCC)2Ch···M(acac)2 complexes, while it exhibits a partially covalent nature in the (NC)2Ch···M(acac)2 complexes. The conventional Ch···O chalcogen bond displays the character of a weak noncovalent interaction, and its strength is generally weaker than that of metal-involving Ch···M interactions. It could be argued that the metal-involving chalcogen bond is primarily determined by the correlation term, whereas the conventional chalcogen bond is mainly governed by the electrostatic interaction.
Collapse
Affiliation(s)
- Lili Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zixuan Shen
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Medina JT, Tran QH, Hughes RP, Wang X, Brookhart M, Daugulis O. Ethylene Polymerizations Catalyzed by Fluorinated "Sandwich" Diimine-Nickel and Palladium Complexes. J Am Chem Soc 2024; 146:15143-15154. [PMID: 38781282 DOI: 10.1021/jacs.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Nickel and palladium complexes bearing "sandwich" diimine ligands with perfluorinated aryl caps have been synthesized, characterized, and explored in ethylene polymerization reactions. The X-ray crystallographic analysis of the precatalysts 16 and 6b shows differences from their nonfluorinated analogues 17 and 19, with the perfluorinated aryl caps centered precisely over the nickel and palladium centers, which results in higher buried volumes of the metal centers relative to the nonfluorinated analogues. The sandwich diimine-palladium complexes 5a and 5b containing perfluorinated aryl caps polymerize ethylene in a controlled fashion with activities that are substantially increased compared with their nonfluorinated analogues. Migratory insertion rates in relevant methyl ethylene complexes agree with the activities exhibited in bulk polymerization experiments. DFT studies suggest that facility of ethylene rotation from its preferred orientation perpendicular to the Pd-alkyl bond into a parallel in-plane conformation contributes to the higher polymerization activity for 5b relative to 18a. For these palladium systems, polymer molecular weights can be controlled via hydrogen addition (hydrogenolysis), which is unusual for late-transition-metal-catalyzed olefin polymerizations with no catalyst deactivation occurring. Sandwich diimine-nickel complexes 6a and 6b with perfluorinated aryl caps show ethylene polymerization activities that are about half of those of classical tetraisopropyl-substituted catalyst 2 but again are more active than the analogous nonfluorinated sandwich complexes. Ethylene polymerizations exhibit living behavior, and branched ultrahigh-molecular-weight polyethylenes (UHMWPEs) with very low-molecular-weight distributions (less than 1.1) are obtained. The activated nickel catalysts are stable in the absence of monomer and show good long-term stability at 25 °C.
Collapse
Affiliation(s)
- Joseph T Medina
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Quan H Tran
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Maurice Brookhart
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
6
|
Yin C, Ye H, Hai Y, Zou H, You L. Aromatic-Carbonyl Interactions as an Emerging Type of Non-Covalent Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310337. [PMID: 38561959 PMCID: PMC11165483 DOI: 10.1002/advs.202310337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aromatic-carbonyl (Ar···C═O) interactions, attractive interactions between the arene plane and the carbon atom of carbonyl, are in the infancy as one type of new supramolecular bonding forces. Here the study and functionalization of aromatic-carbonyl interactions in solution is reported. A combination of aromatic-carbonyl interactions and dynamic covalent chemistry provided a versatile avenue. The stabilizing role and mechanism of arene-aldehyde/imine interactions are elucidated through crystal structures, NMR studies, and computational evidence. The movement of imine exchange equilibria further allowed the quantification of the interplay between arene-aldehyde/imine interactions and dynamic imine chemistry, with solvent effects offering another handle and matching the electrostatic feature of the interactions. Moreover, arene-aldehyde/imine interactions enabled the reversal of kinetic and thermodynamic selectivity and sorting of dynamic covalent libraries. To show the functional utility diverse modulation of fluorescence signals is realized with arene-aldehyde/imine interactions. The results should find applications in many aspects, including molecular recognition, assemblies, catalysis, and intelligent materials.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Hebo Ye
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yu Hai
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Hanxun Zou
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Lei You
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| |
Collapse
|
7
|
Baykov SV, Katlenok EA, Baykova SO, Semenov AV, Bokach NA, Boyarskiy VP. Conformation-Associated C··· dz2-Pt II Tetrel Bonding: The Case of Cyclometallated Platinum(II) Complex with 4-Cyanopyridyl Urea Ligand. Int J Mol Sci 2024; 25:4052. [PMID: 38612862 PMCID: PMC11012616 DOI: 10.3390/ijms25074052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2] (2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt) and high-resolution mass spectrometry, as well as crystallized to obtain two crystalline forms (3 and 3·2MeCN), whose structures were determined by X-ray diffraction. In the crystalline structure of 3, two conformers (3A and 3B) were identified, while the structure 3·2MeCN had only one conformer 3A. The conformers differed by orientation of the N,N-dimethylcarbamoyl moiety relative to the metallacycle plane. In both crystals 3 and 3·2MeCN, the molecules of the Pt(II) complex are associated into supramolecular dimers, either {3A}2 or {3B}2, via stacking interactions between the planes of two metal centers, which are additionally supported by hydrogen bonding. The theoretical consideration, utilizing a number of computational approaches, demonstrates that the C···dz2(Pt) interaction makes a significant contribution in the total stacking forces in the geometrically optimized dimer [3A]2 and reveals the dz2(Pt)→π*(PyCN) charge transfer (CT). The presence of such CT process allowed for marking the C···Pt contact as a new example of a rare studied phenomenon, namely, tetrel bonding, in which the metal site acts as a Lewis base (an acceptor of noncovalent interaction).
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (E.A.K.); (A.V.S.); (V.P.B.)
| | | | | | | | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (E.A.K.); (A.V.S.); (V.P.B.)
| | | |
Collapse
|
8
|
Popova VG, Kulik LV, Samoilova RI, Stass DV, Kokovkin VV, Glebov EM, Berezin AS, Novikov AS, Garcia A, Tuan HT, Rodriguez RD, Sokolov MN, Abramov PA. Noncovalent Dualism in Perylene-Diimide-Based Keggin Anion Complexes: Theoretical and Experimental studies. Inorg Chem 2023; 62:19677-19689. [PMID: 37977192 DOI: 10.1021/acs.inorgchem.3c03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We report the synthesis and comprehensive characterization of organic-inorganic hybrid salts formed by bis-cationic N,N'-bis(2-(trimethylammonium)ethylene)perylene-3,4,9,10-tetracarboxylic acid bisimide (PTCD2+) and Keggin-type [XW12O40]n- (X = Si, n = 4; X = P, n = 3) polyoxometalates. (PTCD)3[PW12O40]2·3DMSO·2H2O (2) and (PTCD)2[SiW12O40]·DMSO·2H2O (3) were structurally characterized by single crystal X-ray diffraction. The cations in both structures exhibited infinite chainlike arrangements through π-π interactions, contrasting with the previously reported cation-anion stacking observed in naphthalene diimide derivatives. A detailed theoretical study employing topological analysis of the electron density distribution within the quantum theory of atoms in molecules approach provided further insights into this structural dualism. Atomic force microscopy analyses revealed the formation of self-assembled supramolecular structures on graphite from molecular monolayers (3 nm of thick) to submicrometer aggregates for 2. Hyperspectral Raman spectroscopy imaging revealed that such heterostructures are likely formed by an enhanced π-π interactions. Both complexes demonstrated interesting electrochemical behavior, photoluminescence and X-ray-induced luminescence. Electron spin resonance analysis confirmed charge separation in both compounds, with enhanced efficiency observed in compound 2. Our findings of these perylene-based organic-inorganic hybrid salts offer the potential for their application in optoelectronic devices and functional materials.
Collapse
Affiliation(s)
- Victoria G Popova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Leonid V Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Rimma I Samoilova
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Dmitri V Stass
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Vasily V Kokovkin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Evgeni M Glebov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, Moscow 117198, Russia
| | - Aura Garcia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Hoang Tran Tuan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Raul D Rodriguez
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad Lavrentiev Avenue, Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| |
Collapse
|
9
|
Paderina A, Slavova S, Petrovskii S, Grachova E. Alkynylphosphonium Pt(II) Complexes: Synthesis, Characterization, and Features of Photophysical Properties in Solution and in the Solid State. Inorg Chem 2023; 62:18056-18068. [PMID: 37886882 DOI: 10.1021/acs.inorgchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A series of heteroleptic bis-alkynyl-diimine mononuclear Pt(II) complexes with alkynylphosphonium and di-tert-butyl-2,2'-bipyridine (dtbpy) ligands have been prepared and characterized by spectroscopic methods and single-crystal XRD. The Pt(II) complexes obtained in the present study demonstrate triplet emission in solution, which originates from 3MLCT/3LC states where the nature of the π-conjugated linker in the alkynylphosphonium ligand manages the contributions of each transition, and this conclusion is supported by DFT calculations. Additionally, the presence of the phosphonium group connected to alkynyl through the π-conjugated linker enhances nonlinear optical properties of the Pt(II) complexes increasing two-photon absorption cross section up to 400 GM. In the solid state, the Pt(II) complexes demonstrate emission that is attributed to 3MMLCT transitions due to the presence of Pt-Pt metallophilic interactions, and the reversible assembly and disassembly of these interactions by grinding and solvent treatment are responsible for the mechanochromic luminescence. It has been experimentally shown that stimuli-responsive emission of the Pt(II) complexes is the result of a "monomer/dimer" transformation; this conclusion is confirmed by DFT calculations for discrete complexes and different dimers with or without Pt-Pt interactions.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislav Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| |
Collapse
|
10
|
Burguera S, Bauzá A, Frontera A. Tuning the Nucleophilicity and Electrophilicity of Group 10 Elements through Substituent Effects: A DFT Study. Int J Mol Sci 2023; 24:15597. [PMID: 37958580 PMCID: PMC10648789 DOI: 10.3390/ijms242115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, a series of electron donor (-NH2, -NMe2 and -tBu) and electron-withdrawing substituents (-F, -CN and -NO2) were used to tune the nucleophilicity or electrophilicity of a series of square planar Ni2+, Pd2+ and Pt2+ malonate coordination complexes towards a pentafluoroiodobenzene and a pyridine molecule. In addition, Bader's theory of atoms in molecules (AIM), noncovalent interaction plot (NCIplot), molecular electrostatic potential (MEP) surface and natural bond orbital (NBO) analyses at the PBE0-D3/def2-TZVP level of theory were carried out to characterize and discriminate the role of the metal atom in the noncovalent complexes studied herein. We hope that the results reported herein may serve to expand the current knowledge regarding these metals in the fields of crystal engineering and supramolecular chemistry.
Collapse
Affiliation(s)
| | | | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122 Palma, Baleares, Spain; (S.B.); (A.B.)
| |
Collapse
|
11
|
Suslov DS, Bykov MV, Pakhomova MV, Orlov TS, Abramov ZD, Suchkova AV, Ushakov IA, Abramov PA, Novikov AS. Novel Route to Cationic Palladium(II)-Cyclopentadienyl Complexes Containing Phosphine Ligands and Their Catalytic Activities. Molecules 2023; 28:molecules28104141. [PMID: 37241882 DOI: 10.3390/molecules28104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The Pd(II) complexes [Pd(Cp)(L)n]m[BF4]m were synthesized via the reaction of cationic acetylacetonate complexes with cyclopentadiene in the presence of BF3∙OEt2 (n = 2, m = 1: L = PPh3 (1), P(p-Tol)3, tris(ortho-methoxyphenyl)phosphine (TOMPP), tri-2-furylphosphine, tri-2-thienylphosphine; n = 1, m = 1: L = dppf, dppp (2), dppb (3), 1,5-bis(diphenylphosphino)pentane; n = 1, m = 2 or 3: 1,6-bis(diphenylphosphino)hexane). Complexes 1-3 were characterized using X-ray diffractometry. The inspection of the crystal structures of the complexes enabled the recognition of (Cp-)⋯(Ph-group) and (Cp-)⋯(CH2-group) interactions, which are of C-H…π nature. The presence of these interactions was confirmed theoretically via DFT calculations using QTAIM analysis. The intermolecular interactions in the X-ray structures are non-covalent in origin with an estimated energy of 0.3-1.6 kcal/mol. The cationic palladium catalyst precursors with monophosphines were found to be active catalysts for the telomerization of 1,3-butadiene with methanol (TON up to 2.4∙104 mol 1,3-butadiene per mol Pd with chemoselectivity of 82%). Complex [Pd(Cp)(TOMPP)2]BF4 was found to be an efficient catalyst for the polymerization of phenylacetylene (PA) (catalyst activities up to 8.9 × 103 gPA·(molPd·h)-1 were observed).
Collapse
Affiliation(s)
- Dmitry S Suslov
- Research Institute of Oil and Coal Chemical Synthesis, Irkutsk State University, ul. K. Marksa, 1, Irkutsk 664003, Russia
| | - Mikhail V Bykov
- Research Institute of Oil and Coal Chemical Synthesis, Irkutsk State University, ul. K. Marksa, 1, Irkutsk 664003, Russia
| | - Marina V Pakhomova
- Research Institute of Oil and Coal Chemical Synthesis, Irkutsk State University, ul. K. Marksa, 1, Irkutsk 664003, Russia
| | - Timur S Orlov
- Research Institute of Oil and Coal Chemical Synthesis, Irkutsk State University, ul. K. Marksa, 1, Irkutsk 664003, Russia
- School of High Technologies, National Research Irkutsk State Technical University, Lermontov St., 83, Irkutsk 664074, Russia
| | - Zorikto D Abramov
- Research Institute of Oil and Coal Chemical Synthesis, Irkutsk State University, ul. K. Marksa, 1, Irkutsk 664003, Russia
| | - Anastasia V Suchkova
- Research Institute of Oil and Coal Chemical Synthesis, Irkutsk State University, ul. K. Marksa, 1, Irkutsk 664003, Russia
| | - Igor A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, Favorsky St., 1, Irkutsk 664033, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, pr-kt Akad. Lavrentieva, 3, Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 117198, Russia
| |
Collapse
|
12
|
Liu WC, Gabbaï FP. Placing gold on a π +-surface: ligand design and impact on reactivity. Chem Sci 2023; 14:277-283. [PMID: 36687358 PMCID: PMC9811580 DOI: 10.1039/d2sc05574k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
We describe a novel gold chloride complex supported by an ambiphilic phosphine/xanthylium ligand in which the AuCl moiety interacts with the π+ surface of the xanthylium unit as indicated by structural studies. Energy decomposition analyses carried out on a model system indicates the prevalence of non-covalent interactions in which the electrostatic and dispersion terms cumulatively dominate. The presence of these AuCl-π+ interactions correlates with the high catalytic activity of this complex in the cyclisation of 2-(phenylethynyl)phenylboronic acid, N-propargyl-t-butylamide, and 2-allyl-2-(2-propynyl)malonate. Comparison with the significantly less active acridinium and the 9-oxa-10-boraanthracene analogues reinforces this conclusion.
Collapse
Affiliation(s)
- Wei-Chun Liu
- Department of Chemistry, Texas A&M UniversityCollege StationTX 77843USA
| | | |
Collapse
|
13
|
Sun MJ, Anhalt O, Sárosi MB, Stolte M, Würthner F. Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207331. [PMID: 36210750 DOI: 10.1002/adma.202207331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)2 ) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (ΦPL ) exceeding 25% and a phosphorescence lifetime (τPh ) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.
Collapse
Affiliation(s)
- Meng-Jia Sun
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Olga Anhalt
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Menyhárt B Sárosi
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
14
|
Shmelev MA, Voronina YK, Gogoleva NV, Kiskin MA, Sidorov AA, Eremenko IL. Synthesis and Crystal Structure of {$${\text{Eu}}_{2}^{\text{III}}$$Cd2}, {$${\text{Tb}}_{2}^{{{\text{III}}}}$$Cd2} and {$$\text{Eu}_{2}^{\text{III}}$$Zn2} Complexes with Pentafluorobenzoic Acid Anions and Acetonitrile. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Romashev NF, Abramov PA, Bakaev IV, Fomenko IS, Samsonenko DG, Novikov AS, Tong KKH, Ahn D, Dorovatovskii PV, Zubavichus YV, Ryadun AA, Patutina OA, Sokolov MN, Babak MV, Gushchin AL. Heteroleptic Pd(II) and Pt(II) Complexes with Redox-Active Ligands: Synthesis, Structure, and Multimodal Anticancer Mechanism. Inorg Chem 2022; 61:2105-2118. [PMID: 35029379 DOI: 10.1021/acs.inorgchem.1c03314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of heteroleptic square-planar Pt and Pd complexes with bis(diisopropylphenyl) iminoacenaphtene (dpp-Bian) and Cl, 1,3-dithia-2-thione-4,5-dithiolate (dmit), or 1,3-dithia-2-thione-4,5-diselenolate (dsit) ligands have been prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis, and cyclic voltammetry (CV). The intermolecular noncovalent interactions in the crystal structures were assessed by density functional theory (DFT) calculations. The anticancer activity of Pd complexes in breast cancer cell lines was limited by their solubility. Pd(dpp-Bian) complexes with dmit and dsit ligands as well as an uncoordinated dpp-Bian ligand were devoid of cytotoxicity, while the [Pd(dpp-Bian)Cl2] complex was cytotoxic. On the contrary, all Pt(dpp-Bian) complexes demonstrated anticancer activity in a low micromolar concentration range, which was 8-20 times higher than the activity of cisplatin, and up to 2.5-fold selectivity toward cancer cells over healthy fibroblasts. The presence of a redox-active dpp-Bian ligand in Pt and Pd complexes resulted in the induction of reactive oxygen species (ROS) in cancer cells. In addition, these complexes were able to intercalate into DNA, indicating the dual mechanism of action.
Collapse
Affiliation(s)
- Nikolai F Romashev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Ivan V Bakaev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 1 Pirogov st., Novosibirsk 630090, Russia
| | - Iakov S Fomenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia
| | - Kelvin K H Tong
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Dohyun Ahn
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis, 5 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Aleksey A Ryadun
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Olga A Patutina
- Institute of Chemical Biology and Fundamental Medicine, 8 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Blasi D, Nicolai V, Gomila RM, Mercandelli P, Frontera A, Carlucci L. Unprecedented {dz2-CuIIO4}···π-hole interactions: the case of a cocrystal of Cu(II) bis-β-diketonate complex with 1,4-diiodotetrafluoro-benzene. Chem Commun (Camb) 2022; 58:9524-9527. [DOI: 10.1039/d2cc03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of bis[1-(4-pyridyl)butane-1,3-dionato]copper(II) (1) complex and 1,4-diiodoperfluorobenzene in the presence of pyridine yields to a 1:1 cocrystal where both the σ and π-holes of 1,4-diiodoperfluorobenzene play a role. The crystal...
Collapse
|
17
|
Zelenkov LE, Eliseeva AA, Baykov S, Ivanov DM, Sumina AI, Gomila RM, Frontera A, Kukushkin VY, Bokach NA. Inorganic–Organic {dz2-MIIS4}···π-Hole Stacking in Reverse Sandwich Structures. The Case of Cocrystals of Group 10 Metal Dithiocarbamates with Electron-deficient Arenes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00438k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of the dithiocarbamate complexes [M(S2CNEt2)2] (M = Ni 1, Pd 2, Pt 3) and X-substituted perfluoroarenes (X = I, Br; 1,2-dibromoperfluorobenzene FBrB and 1,2-diiodoperfluorobenzene FIB) gives isomorphous cocrystals of...
Collapse
|
18
|
Bulatov E, Eskelinen T, Ivanov AY, Tolstoy PM, Kalenius E, Hirva P, Haukka M. Noncovalent Axial I⋅⋅⋅Pt⋅⋅⋅I Interactions in Platinum(II) Complexes Strengthen in the Excited State. Chemphyschem 2021; 22:2044-2049. [PMID: 34328257 PMCID: PMC8596824 DOI: 10.1002/cphc.202100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Indexed: 11/18/2022]
Abstract
Coordination compounds of platinum(II) participate in various noncovalent axial interactions involving metal center. Weakly bound axial ligands can be electrophilic or nucleophilic; however, interactions with nucleophiles are compromised by electron density clashing. Consequently, simultaneous axial interaction of platinum(II) with two nucleophilic ligands is almost unprecedented. Herein, we report structural and computational study of a platinum(II) complex possessing such intramolecular noncovalent I⋅⋅⋅Pt⋅⋅⋅I interactions. Structural analysis indicates that the two iodine atoms approach the platinum(II) center in a "side-on" fashion and act as nucleophilic ligands. According to computational studies, the interactions are dispersive, weak and anti-cooperative in the ground electronic state, but strengthen substantially and become partially covalent and cooperative in the lowest excited state. Strengthening of I⋅⋅⋅Pt⋅⋅⋅I contacts in the excited state is also predicted for the sole previously reported complex with analogous axial interactions.
Collapse
Affiliation(s)
- Evgeny Bulatov
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Toni Eskelinen
- Department of ChemistryUniversity of Eastern FinlandP.O. Box 11180101JoensuuFinland
| | - Alexander Yu. Ivanov
- Center for Magnetic ResonanceSt. Petersburg State University198504St. PetersburgRussia
| | - Peter M. Tolstoy
- Center for Magnetic ResonanceSt. Petersburg State University198504St. PetersburgRussia
| | - Elina Kalenius
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Pipsa Hirva
- Department of ChemistryUniversity of Eastern FinlandP.O. Box 11180101JoensuuFinland
| | - Matti Haukka
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| |
Collapse
|
19
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
20
|
Rozhkov AV, Katlenok EA, Zhmykhova MV, Ivanov AY, Kuznetsov ML, Bokach NA, Kukushkin VY. Metal-Involving Chalcogen Bond. The Case of Platinum(II) Interaction with Se/Te-Based σ-Hole Donors. J Am Chem Soc 2021; 143:15701-15710. [PMID: 34529411 DOI: 10.1021/jacs.1c06498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum(II) complexes exhibiting an expressed dz2-nucleophilicity of the positively charged metal centers, namely, [Pt(ppy)(acac)] (1; acacH is acetylacetone; ppyH is 2-Ph-pyridine) and [Pt(ppy)(tmhd)] (2; tmhdH is 2,2,6,6-tetramethylheptanedione-3,5), were cocrystallized with the chalcogen bond donors (4-NC5F4)2Ch (Ch = Se, Te) to form two isostructural cocrystals 1·1/2(4-NC5F4)2Ch, and 2·2/3(4-NC5F4)2Se and 2·(4-NC5F4)2Te. The X-ray data for these cocrystals and appropriate theoretical DFT calculations (PBE0-D3BJ) allowed the recognition of the metal-involving chalcogen bond, namely, Ch···dz2-PtII (its energy spans from -7 to -12 kcal/mol). In 1·1/2(4-NC5F4)2Ch, Ch···dz2-PtII bonding is accompanied by the C···dz2-PtII interaction, representing a three-center bifurcate, whereas in 2·(4-NC5F4)2Te the chalcogen bond Te···dz2-PtII is purely two-centered and is stronger than that in 1·1/2(4-NC5F4)2Ch because of more efficient orbital overlap. The association of 2 with (4-NC5F4)2Te and the structure of the formed adduct in CDCl3 solutions was studied by using 1H, 13C, 19F, 195Pt, 125Te NMR, 19F-1H HOESY, and diffusion NMR methods. The 195Pt and 125Te NMR titration and the isothermal titration calorimetry results revealed a 1:1 association of 2 with (4-NC5F4)2Te.
Collapse
Affiliation(s)
- Anton V Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Eugene A Katlenok
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Margarita V Zhmykhova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Alexander Yu Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
21
|
Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules 2021; 26:molecules26185706. [PMID: 34577177 PMCID: PMC8465707 DOI: 10.3390/molecules26185706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
A new monoiminoacenaphthenone 3,5-(CF3)2C6H3-mian (complex 2) was synthesized and further exploited, along with the already known monoiminoacenaphthenone dpp-mian, to obtain oxidovanadium(IV) complexes [VOCl2(dpp-mian)(CH3CN)] (3) and [VOCl(3,5-(CF3)2C6H3-bian)(H2O)][VOCl3(3,5-(CF3)2C6H3-bian)]·2.85DME (4) from [VOCl2(CH3CN)2(H2O)] (1) or [VCl3(THF)3]. The structure of all compounds was determined using X-ray structural analysis. The vanadium atom in these structures has an octahedral coordination environment. Complex 4 has an unexpected structure. Firstly, it contains 3,5-(CF3)2C6H3-bian instead of 3,5-(CF3)2C6H3-mian. Secondly, it has a binuclear structure, in contrast to 3, in which two oxovanadium parts are linked to each other through V=O···V interaction. This interaction is non-covalent in origin, according to DFT calculations. In structures 2 and 3, non-covalent π-π staking interactions between acenaphthene moieties of the neighboring molecules (distances are 3.36–3.40 Å) with an estimated energy of 3 kcal/mol were also found. The redox properties of the obtained compounds were studied using cyclic voltammetry in solution. In all cases, the reduction processes initiated by the redox-active nature of the mian or bian ligand were identified. The paramagnetic nature of complexes 3 and 4 has been proven by EPR spectroscopy. Complexes 3 and 4 exhibited high catalytic activity in the oxidation of alkanes and alcohols with peroxides. The yields of products of cyclohexane oxidation were 43% (complex 3) and 27% (complex 4). Based on the data regarding the study of regio- and bond-selectivity, it was concluded that hydroxyl radicals play the most crucial role in the reaction. The initial products in the reactions with alkanes are alkyl hydroperoxides, which are easily reduced to their corresponding alcohols by the action of triphenylphosphine (PPh3). According to the DFT calculations, the difference in the catalytic activity of 3 and 4 is most likely associated with a different mechanism for the generation of ●OH radicals. For complex 4 with electron-withdrawing CF3 substituents at the diimine ligand, an alternative mechanism, different from Fenton’s and involving a redox-active ligand, is assumed.
Collapse
|
22
|
Sivchik V, Kochetov A, Eskelinen T, Kisel KS, Solomatina AI, Grachova EV, Tunik SP, Hirva P, Koshevoy IO. Modulation of Metallophilic and π-π Interactions in Platinum Cyclometalated Luminophores with Halogen Bonding. Chemistry 2021; 27:1787-1794. [PMID: 32970903 DOI: 10.1002/chem.202003952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC6 F5 as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC6 F5 has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC6 F5 .
Collapse
Affiliation(s)
- Vasily Sivchik
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Aleksandr Kochetov
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Toni Eskelinen
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Kristina S Kisel
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Anastasia I Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
23
|
Mukhacheva AA, Komarov VY, Kokovkin VV, Novikov AS, Abramov PA, Sokolov MN. Unusual π–π interactions directed by the [{(C 6H 6)Ru} 2W 8O 30(OH) 2] 6− hybrid anion. CrystEngComm 2021. [DOI: 10.1039/d1ce00319d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The [{(C6H6)Ru}2W8O30(OH)2]6− hybrid anion as a new type of π–π stacking induced building block and methanol oxidation precatalyst.
Collapse
|
24
|
Abramov PA, Novikov AS, Sokolov MN. Interactions of aromatic rings in the crystal structures of hybrid polyoxometalates and Ru clusters. CrystEngComm 2021. [DOI: 10.1039/d1ce00716e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Computational analysis for π–π interaction energies of {(arene)Ru}2+ containing complexes and relative group 5 hybrid polyoxometalates reveals different frameworks. Some perspectives on πOF materials processing and crystal engineering were discussed.
Collapse
Affiliation(s)
- Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave., 630090, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave., 630090, Russia
| |
Collapse
|
25
|
Zelenkov LE, Eliseeva AA, Baykov SV, Suslonov VV, Galmés B, Frontera A, Kukushkin VY, Ivanov DM, Bokach NA. Electron belt-to-σ-hole switch of noncovalently bound iodine(i) atoms in dithiocarbamate metal complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00314c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nature of metals in the isostructural series of dithiocarbamate complexes affects the electron belt-to-σ-hole switch of noncovalently bound iodine(i) leading to either semicoordination, or halogen bonding.
Collapse
Affiliation(s)
- Lev E. Zelenkov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Department of Physics and Engineering
| | - Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vitalii V. Suslonov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Bartomeu Galmés
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Laboratory of Crystal Engineering of Functional Materials
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| |
Collapse
|
26
|
Torubaev YV, Skabitsky IV, Rozhkov AV, Galmés B, Frontera A, Kukushkin VY. Highly polar stacking interactions wrap inorganics in organics: lone-pair–π-hole interactions between the PdO 4 core and electron-deficient arenes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01067k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Each PdO4 plane of Pd3(OAc)6 behaved as a 5-center nucleophile (O lone pairs and the dz2-PdII orbital) that interacts with π-donating arenes to afford highly polar circular stacking, where organics wrapped inorganics.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N. S. Kurnakov Institute of General and Inorganic Chemistry, of Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - Ivan V. Skabitsky
- N. S. Kurnakov Institute of General and Inorganic Chemistry, of Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - Anton V. Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034 Russian Federation
| | - Bartomeu Galmés
- Department of Chemistry, Universitat de les IllesBalears, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les IllesBalears, 07122 Palma de Mallorca, Baleares, Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034 Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
27
|
Local Vibrational Mode Analysis of π–Hole Interactions between Aryl Donors and Small Molecule Acceptors. CRYSTALS 2020. [DOI: 10.3390/cryst10070556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
11 aryl–lone pair and three aryl–anion π –hole interactions are investigated, along with the argon–benzene dimer and water dimer as reference compounds, utilizing the local vibrational mode theory, originally introduced by Konkoli and Cremer, to quantify the strength of the π –hole interaction in terms of a new local vibrational mode stretching force constant between the two engaged monomers, which can be conveniently used to compare different π –hole systems. Several factors have emerged which influence strength of the π –hole interactions, including aryl substituent effects, the chemical nature of atoms composing the aryl rings/ π –hole acceptors, and secondary bonding interactions between donors/acceptors. Substituent effects indirectly affect the π –hole interaction strength, where electronegative aryl-substituents moderately increase π –hole interaction strength. N-aryl members significantly increase π –hole interaction strength, and anion acceptors bind more strongly with the π –hole compared to charge neutral acceptors (lone–pair donors). Secondary bonding interactions between the acceptor and the atoms in the aryl ring can increase π –hole interaction strength, while hydrogen bonding between the π –hole acceptor/donor can significantly increase or decrease strength of the π –hole interaction depending on the directionality of hydrogen bond donation. Work is in progress expanding this research on aryl π –hole interactions to a large number of systems, including halides, CO, and OCH3− as acceptors, in order to derive a general design protocol for new members of this interesting class of compounds.
Collapse
|
28
|
Abstract
The problem of non-covalent interactions in coordination and organometallic compounds is a hot topic in modern chemistry, material science, crystal engineering and related fields of knowledge. Researchers in various fields of chemistry and other disciplines (physics, crystallography, computer science, etc.) are welcome to submit their works on this topic for our Special Issue “Non-Covalent Interactions in Coordination and Organometallic Chemistry”. The aim of this Special Issue is to highlight and overview modern trends and draw the attention of the scientific community to various types of non-covalent interactions in coordination and organometallic compounds. In this editorial, I would like to briefly highlight the main successes of our research group in the field of the fundamental study of non-covalent interactions in coordination and organometallic compounds over the past 5 years.
Collapse
|
29
|
Rozhkov AV, Ananyev IV, Gomila RM, Frontera A, Kukushkin VY. π-Hole··· dz2[Pt II] Interactions with Electron-Deficient Arenes Enhance the Phosphorescence of Pt II-Based Luminophores. Inorg Chem 2020; 59:9308-9314. [PMID: 32516531 DOI: 10.1021/acs.inorgchem.0c01170] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two phosphorescent PtII-based cyclometalated complexes were co-crystallized with perfluorinated arenes to give 1:1 co-crystals. The X-ray study revealed that each of the complexes is embraced by arenesF to give infinite reverse sandwich structures. In four out of six structures, a dz2 orbital of PtII is directed to the arenesF ring via π-hole···dz2[PtII] interactions, whereas in the other two structures, the filled dz2 orbital is directed toward the arene C atoms. Computed molecular electrostatic potential surfaces of the arenesF and the complexes, noncovalent interaction indexes for the co-crystals, and natural bond orbital calculations indicate that π-hole···dz2[PtII] contacts (and, generally, the stacking) are of electrostatic origin. The solid-state photophysical study revealed up to 3.5-fold luminescence quantum yield and 15-fold lifetime enhancements in the co-crystals. This increase is associated with the strength of the π-hole···dz2[PtII] contact that is dependent on the π-acidity of the areneF and its spatial characteristics.
Collapse
Affiliation(s)
- Anton V Rozhkov
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ivan V Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds of RAS, 119991 Moscow, Russia
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, 07122 Palma de Mallorca, Baleares, Spain
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
30
|
Bolotin DS, Soldatova NS, Demakova MY, Novikov AS, Ivanov DM, Aliyarova IS, Sapegin A, Krasavin M. Pentacoordinated silver(I) complex featuring 8-phenylquinoline ligands: Interplay of coordination bonds, semicoordination, and stacking interactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ikumura Y, Habuka Y, Sakai S, Shinohara T, Yuge H, Rzeznicka II, Hori A. Enhanced and Heteromolecular Guest Encapsulation in Nonporous Crystals of a Perfluorinated Triketonato Dinuclear Copper Complex. Chemistry 2020; 26:5051-5060. [PMID: 32026510 DOI: 10.1002/chem.201905740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Indexed: 01/03/2023]
Abstract
The flexible host framework of a perfluorinated mononuclear copper complex, [Cu(L1 )2 ] (1, HL1 =3-hydroxy-1,3-bis(pentafluorophenyl)-2-propen-1-one), with a CuO4 core reversibly encapsulated several organic guest molecules through electrostatic interactions in its crystals. Hence, the corresponding dinuclear complex, [Cu2 (L2 )2 ] (2, H2 L2 =1,5-dihydroxy-1,5-bis(pentafluorophenyl)-1,4-pentadien-3-one), was prepared to enhance guest recognition and the ability to separate molecular mixtures. Complex 2 comprises a Cu2 O6 core and four pentafluorophenyl groups. In crystal 2, cavities are formed on the axial sites of the metal core that are surrounded by pentafluorophenyl groups. The crystal of 2 encapsulates various guest molecules, that is, benzene (3), toluene (4), xylene (5), mesitylene (6), durene (7), and anisole (8). X-ray crystallographic and thermogravimetric (TG) studies show that three guest molecules are present in the crystal cavities. The number of guest molecules found in complex 2 was higher than that in complex 1, for example, (2)3 ⋅(6)10 >1⋅(6)2 , (2)2 ⋅(7)7 >1⋅7, or 2⋅(8)3 >1⋅(8)2 . Naphthalene (9), was encapsulated in 2 to give 2⋅(9)3 , but not in 1. In the crystal of complex 2, heteromolecular guest encapsulation was confirmed, designated as 2⋅(3)2 ⋅9. TG analysis indicates that the thermal stability of the guest-included crystals of 2 is higher than that of 1.
Collapse
Affiliation(s)
- Yoshinori Ikumura
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Yusuke Habuka
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Shunichiro Sakai
- Department of Chemistry, School of Science, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Takanori Shinohara
- Department of Chemistry, School of Science, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Hidetaka Yuge
- Department of Chemistry, School of Science, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Izabela I Rzeznicka
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| | - Akiko Hori
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama-shi, Saitama, 337-8570, Japan
| |
Collapse
|
32
|
Phosphine Oxides as Spectroscopic Halogen Bond Descriptors: IR and NMR Correlations with Interatomic Distances and Complexation Energy. Molecules 2020; 25:molecules25061406. [PMID: 32204523 PMCID: PMC7144381 DOI: 10.3390/molecules25061406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
An extensive series of 128 halogen-bonded complexes formed by trimethylphosphine oxide and various F-, Cl-, Br-, I- and At-containing molecules, ranging in energy from 0 to 124 kJ/mol, is studied by DFT calculations in vacuum. The results reveal correlations between R–X⋅⋅⋅O=PMe3 halogen bond energy ΔE, X⋅⋅⋅O distance r, halogen’s σ-hole size, QTAIM parameters at halogen bond critical point and changes of spectroscopic parameters of phosphine oxide upon complexation, such as 31P NMR chemical shift, ΔδP, and P=O stretching frequency, Δν. Some of the correlations are halogen-specific, i.e., different for F, Cl, Br, I and At, such as ΔE(r), while others are general, i.e., fulfilled for the whole set of complexes at once, such as ΔE(ΔδP). The proposed correlations could be used to estimate the halogen bond properties in disordered media (liquids, solutions, polymers, glasses) from the corresponding NMR and IR spectra.
Collapse
|
33
|
Abstract
In this review, we provide a consistent description of noncovalent interactions, covering most groups of the Periodic Table. Different types of bonds are discussed using their trivial names. Moreover, the new name “Spodium bonds” is proposed for group 12 since noncovalent interactions involving this group of elements as electron acceptors have not yet been named. Excluding hydrogen bonds, the following noncovalent interactions will be discussed: alkali, alkaline earth, regium, spodium, triel, tetrel, pnictogen, chalcogen, halogen, and aerogen, which almost covers the Periodic Table entirely. Other interactions, such as orthogonal interactions and π-π stacking, will also be considered. Research and applications of σ-hole and π-hole interactions involving the p-block element is growing exponentially. The important applications include supramolecular chemistry, crystal engineering, catalysis, enzymatic chemistry molecular machines, membrane ion transport, etc. Despite the fact that this review is not intended to be comprehensive, a number of representative works for each type of interaction is provided. The possibility of modeling the dissociation energies of the complexes using different models (HSAB, ECW, Alkorta-Legon) was analyzed. Finally, the extension of Cahn-Ingold-Prelog priority rules to noncovalent is proposed.
Collapse
|
34
|
Eliseeva AA, Ivanov DM, Novikov AS, Rozhkov AV, Kornyakov IV, Dubovtsev AY, Kukushkin VY. Hexaiododiplatinate(ii) as a useful supramolecular synthon for halogen bond involving crystal engineering. Dalton Trans 2020; 49:356-367. [DOI: 10.1039/c9dt04221k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
By performing combined XRD and theoretical studies, we established the modes of REWGI⋯I–Pt XBs with [Pt2(μ-I)2I4]2−acting as an XB acceptor.
Collapse
Affiliation(s)
- Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Anton V. Rozhkov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Ilya V. Kornyakov
- Institute of Earth Sciences
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Alexey Yu. Dubovtsev
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
- Institute of Macromolecular Compounds
| |
Collapse
|
35
|
Kostenko EA, Baykov SV, Novikov AS, Boyarskiy VP. Nucleophilic properties of the positively charged metal center in the solid state structure of Palladium(II)-Terpyridine complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Kusakawa T, Goto T, Hori A. Supramolecular association of M 2+⋯π induced by different electrostatic properties using naphthyl substituted β-diketonate complexes (metal = Cu, Pd, Pt). CrystEngComm 2020. [DOI: 10.1039/d0ce00416b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expanded π-conjugated coordination complexes, [M(L2)2] (M = Cu2+, Pd2+, Pt2+; L2 = dinaphthoylmethanido−), were prepared and their unique electron contributions and electrophile/nucleophile characteristics were found due to the supramolecular associations.
Collapse
Affiliation(s)
- Takumi Kusakawa
- Graduate School of Engineering and Science
- Shibaura Institute of Technology
- Saitama 337-8570
- Japan
| | - Takayuki Goto
- Physics Division
- Sophia University
- Tokyo 102-8544
- Japan
| | - Akiko Hori
- Graduate School of Engineering and Science
- Shibaura Institute of Technology
- Saitama 337-8570
- Japan
| |
Collapse
|
37
|
Białek MJ, Chmielewski PJ, Latos‐Grażyński L. C−H and C−M Activation, Aromaticity Tuning, and Co⋅⋅⋅Ru Interactions Confined in the Azuliporphyrin Framework. Chemistry 2019; 25:14536-14545. [DOI: 10.1002/chem.201903215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Michał J. Białek
- Department of Chemistry University of Wrocław F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J. Chmielewski
- Department of Chemistry University of Wrocław F. Joliot-Curie 14 50-383 Wrocław Poland
| | | |
Collapse
|
38
|
Kryukova MA, Ivanov DM, Kinzhalov MA, Novikov AS, Smirnov AS, Bokach NA, Yu Kukushkin V. Four-Center Nodes: Supramolecular Synthons Based on Cyclic Halogen Bonding. Chemistry 2019; 25:13671-13675. [PMID: 31232494 DOI: 10.1002/chem.201902264] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Indexed: 12/30/2022]
Abstract
The isocyanide trans-[PdBr2 (CNC6 H4 -4-X')2 ] (X'=Br, I) and nitrile trans-[PtX2 (NCC6 H4 -4-X')2 ] (X/X'=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C-X'⋅⋅⋅X-M halogen-bonding contacts and include one Type I M-X⋅⋅⋅X-M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6-2.9 kcal mol-1 .
Collapse
Affiliation(s)
- Mariya A Kryukova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Mikhail A Kinzhalov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Andrey S Smirnov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| |
Collapse
|
39
|
A. Katkova S, S. Mikherdov A, A. Kinzhalov M, S. Novikov A, A. Zolotarev A, Boyarskiy VP, Kukushkin VY. (Isocyano Group π‐Hole)⋅⋅⋅[d‐M
II
] Interactions of (Isocyanide)[M
II
] Complexes, in which Positively Charged Metal Centers (d
8
‐M=Pt, Pd) Act as Nucleophiles. Chemistry 2019; 25:8590-8598. [DOI: 10.1002/chem.201901187] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Svetlana A. Katkova
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| | - Alexander S. Mikherdov
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| | - Mikhail A. Kinzhalov
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| | - Alexander S. Novikov
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| | - Andrey A. Zolotarev
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| | - Vadim P. Boyarskiy
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University Universitetskaya Nab., 7/9 Saint Petersburg Russian Federation
| |
Collapse
|
40
|
Abstract
Halogens in a M–X bond are inhibited from forming a halogen bond but can do so in certain circumstances, with or without a σ-hole.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|