1
|
Reetz L, Schulze L, Kronenberger T, Selim KA, Schaefle T, Dema T, Zipperer A, Mößner J, Poso A, Grond S, Peschel A, Krismer B. The human microbiome-derived antimicrobial lugdunin self-regulates its biosynthesis by a feed-forward mechanism. mBio 2025; 16:e0357124. [PMID: 40099907 PMCID: PMC11980582 DOI: 10.1128/mbio.03571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Many human microbiome members inhibit bacterial competitors by production of antimicrobial compounds whose expression needs to be tightly controlled to balance the costs and benefits of compound biosynthesis. The nasal commensal Staphylococcus lugdunensis outcompetes Staphylococcus aureus using the antimicrobial lugdunin. The lugdunin biosynthetic gene cluster (BGC) encodes two potential regulators whose roles have remained unknown. Deletion of the regulator genes lugR or lugJ led to increased lugdunin production and/or immunity. While LugR was found to repress the transcription of the biosynthetic lugRABCTDZ operon, LugJ repressed the lugIEFGH export and immunity genes. Both regulators bound to different inverted repeats in the controlled promoter regions. Notably, both repressors were released from cognate promoters to allow transcription upon addition of exogenous lugdunin. Even minor structural changes disabled lugdunin derivatives to induce expression of its BGC, which is consistent with inferior binding to the predicted LugR and LugJ binding pockets. Thus, lugdunin controls its own biosynthesis through a feed-forward mechanism probably to avoid futile production.IMPORTANCEBiosynthetic gene clusters (BGCs) are usually tightly controlled to avoid production of costly goods at inappropriate time points or unfavorable conditions. However, in most cases, the regulatory signals of these clusters have remained unknown. Frequently, quorum sensing or two-component regulatory systems are involved in BGC expression control. This study elucidates the sophisticated regulation of lugdunin biosynthesis and secretion via two independent regulators, LugR and LugJ. Although belonging to different families of repressors, both directly interact with the antimicrobial lugdunin and thereby enhance biosynthesis and secretion in a feed forward-like mechanism.
Collapse
Affiliation(s)
- Leonie Reetz
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Lukas Schulze
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Thales Kronenberger
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Pharmaceutical and Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), University of Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Khaled A. Selim
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Phototrophic Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Timm Schaefle
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Taulant Dema
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Alexander Zipperer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Jens Mößner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Antti Poso
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Pharmaceutical and Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), University of Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stephanie Grond
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
He Y, Su J, Li M, Fareed MS, Ren Y, Wang P, Wang Z, Wan D, Ma T, Yan W, Zhang H, Wang K. Discovery of Cationic Lugdunin Derivatives with Membrane-Disrupting Activity against Resistant Bacteria via Radical Reactions and Amino Acid Mutations. J Med Chem 2025; 68:5699-5718. [PMID: 39983037 DOI: 10.1021/acs.jmedchem.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Lugdunin was the first reported new class of thiazolidine cyclopeptide antibiotic from human microbiomes. However, its structure could not accommodate polar amino acids or modules, limiting its potential for chemical modification and clinical application. Herein, we developed a combinatorial modification strategy based on in situ modification of tryptophan through a radical reaction and amino acid site-specific mutation, transforming lugdunin into a cationic cyclic peptide antibiotic. Among the derivatives of lugdunin, WK6 was identified as a highly potent membrane-active antibiotic with rapid bactericidal activity and low resistance development potential. Remarkably, it showed therapeutic efficacy in MRSA-infected murine models of keratitis, pneumonia, and peritonitis. Additionally, when grafted onto contact lens Surfaces, WK6 exhibited potent antifouling capabilities, highlighting its potential in implant antifouling applications. Therefore, this study developed an effective strategy to optimize lugdunin and unveiled a novel cationic lugdunin derivative WK6, which could be recognized as a promising lead compound to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Jie Su
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Min Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Muhammad S Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Yixuan Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Panpan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Daicao Wan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Ting Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Hailong Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Beck K, Nandy J, Hoernke M. Strong Membrane Permeabilization Activity Can Reduce Selectivity of Cyclic Antimicrobial Peptides. J Phys Chem B 2025; 129:2446-2460. [PMID: 39969852 DOI: 10.1021/acs.jpcb.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Selectivity is a key requirement for membrane-active antimicrobials to be viable in therapeutic contexts. Therefore, the rational design or suitable selection of new compounds requires adequate mechanistic understanding of peptide selectivity. In this study, we compare two similar cyclic peptides that differ only in the arrangement of their three hydrophobic tryptophan (W) and three positively charged arginine (R) residues, yet exhibit different selectivities. This family of peptides has previously been shown to target the cytoplasmic membrane of bacteria, but not to act directly by membrane permeabilization. We have systematically studied and compared the interactions of the two peptides with zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylglycerol/phosphatidylethanolamine (PG/PE) model membranes using various biophysical methods to elucidate the mechanism of the selectivity. Like many antimicrobial peptides, the cyclic, cationic hexapeptides investigated here bind more efficiently to negatively charged membranes than to zwitterionic ones. Consequently, the two peptides induce vesicle leakage, changes in lipid packing, vesicle aggregation, and vesicle fusion predominantly in binary, negatively charged PG/PE membranes. The peptide with the larger hydrophobic molecular surface (three adjacent W residues) causes all these investigated effects more efficiently. In particular, it induces leakage by asymmetry stress and/or leaky fusion in zwitterionic and charged membranes, which may contribute to high activity but reduces selectivity. The unselective type of leakage appears to be driven by the more pronounced insertion into the lipid layer, facilitated by the larger hydrophobic surface of the peptide. Therefore, avoiding local accumulation of hydrophobic residues might improve the selectivity of future membrane-active compounds.
Collapse
Affiliation(s)
- Katharina Beck
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
- Experimental Physics I, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Janina Nandy
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Hoernke
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Physical Chemistry, Martin-Luther-Universität, 06120 Halle (S.), Germany
| |
Collapse
|
4
|
Süssmuth RD, Kulike-Koczula M, Gao P, Kosol S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew Chem Int Ed Engl 2025; 64:e202414325. [PMID: 39611429 DOI: 10.1002/anie.202414325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
In the fight against bacterial infections, particularly those caused by multi-resistant pathogens known as "superbugs", the need for new antibacterials is undoubted in scientific communities and is by now also widely perceived by the general population. However, the antibacterial research landscape has changed considerably over the past years. With few exceptions, the majority of big pharma companies has left the field and thus, the decline in R&D on antibacterials severely impacts the drug pipeline. In recent years, antibacterial research has increasingly relied on smaller companies or academic research institutions, which mostly have only limited financial resources, to carry a drug discovery and development process from the beginning and through to the beginning of clinical phases. This review formulates the requirements for an antibacterial in regard of targeted pathogens, resistance mechanisms and drug discovery. Strategies are shown for the discovery of new antibacterial structures originating from natural sources, by chemical synthesis and more recently from artificial intelligence approaches. This is complemented by principles for the computer-aided design of antibacterials and the refinement of a lead structure. The second part of the article comprises a compilation of antibacterial molecules classified according to bacterial target structures, e.g. cell wall synthesis, protein synthesis, as well as more recently emerging target classes, e.g. fatty acid synthesis, proteases and membrane proteins. Aspects of the origin, the antibacterial spectrum, resistance and the current development status of the presented drug molecules are highlighted.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, TC2, 10629, Berlin, Germany
| | - Marcel Kulike-Koczula
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, TC2, 10629, Berlin, Germany
| | - Peng Gao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, TC2, 10629, Berlin, Germany
| | - Simone Kosol
- Medical School Berlin, Department Human Medicine, Rüdesheimer Strasse 50, 14195, Berlin, Germany
| |
Collapse
|
5
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2025; 42:151-194. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Murrieta-Dionicio U, Calzada F, Barbosa E, Valdés M, Reyes-Trejo B, Zuleta-Prada H, Guerra-Ramírez D, Del Río-Portilla F. Antiprotozoal Activity Against Entamoeba hystolitica and Giardia lamblia of Cyclopeptides Isolated from Annona diversifolia Saff. Molecules 2024; 29:5636. [PMID: 39683795 DOI: 10.3390/molecules29235636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Diseases caused by intestinal parasites such as protozoa represent a worldwide problem mainly for developing countries. From morbidity in different groups of people to cases of mortality in children and/or immunocompromised patients. In addition to the above, there is growing resistance to the drugs used in the treatment of these diseases, as well as undesirable side effects in patients. Therefore, there is an interest in the search for new alternatives for the base and/or development of new drugs with antiparasitic activities without harmful effects. In this sense, natural products offer to be a diverse source of compounds with biological activities. In this work, we describe the isolation and elucidation by 1D and 2D NMR spectroscopy of three cyclopeptides obtained from seeds of A. diversifolia Saff.: cherimolacyclopeptide D (1), squamin D (2), and squamin C (3). The fractions enriched in cyclopeptides, as well as a pure compound (1), showed antiprotozoal activity against E. hystolitica Schaudinn and Giardia lamblia Kunstler in vitro assays, with values of IC50 = 3.49 and 5.39 μg mL-1, respectively. The molecular docking study revealed that 1 has a strong interaction with targets used, including aldose reductase and PFOR enzymes. The antiprotozoal activity of cherimolacyclopeptide D is reported for the first time in this study.
Collapse
Affiliation(s)
- Ulises Murrieta-Dionicio
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Elizabeth Barbosa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Miguel Valdés
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Benito Reyes-Trejo
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Holber Zuleta-Prada
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Diana Guerra-Ramírez
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Federico Del Río-Portilla
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Du J, Yang C, Deng Y, Guo H, Gu M, Chen D, Liu X, Huang J, Yan W, Liu J. Discovery of AMPs from random peptides via deep learning-based model and biological activity validation. Eur J Med Chem 2024; 277:116797. [PMID: 39197254 DOI: 10.1016/j.ejmech.2024.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
The ample peptide field is the best source for discovering clinically available novel antimicrobial peptides (AMPs) to address emerging drug resistance. However, discovering novel AMPs is complex and expensive, representing a major challenge. Recent advances in artificial intelligence (AI) have significantly improved the efficiency of identifying antimicrobial peptides from large libraries, whereas using random peptides as negative data increases the difficulty of discovering antimicrobial peptides from random peptides using discriminative models. In this study, we constructed three multi-discriminator models using deep learning and successfully screened twelve AMPs from a library of 30,000 random peptides. three candidate peptides (P2, P11, and P12) were screened by antimicrobial experiments, and further experiments showed that they not only possessed excellent antimicrobial activity but also had extremely low hemolytic activity. Mechanistic studies showed that these peptides exerted their bactericidal effects through membrane disruption, thus reducing the possibility of bacterial resistance. Notably, peptide 12 (P12) showed significant efficacy in a mouse model of Staphylococcus aureus wound infection with low toxicity to major organs at the highest tested dose (400 mg/kg). These results suggest deep learning-based multi-discriminator models can identify AMPs from random peptides with potential clinical applications.
Collapse
Affiliation(s)
- Jun Du
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China; Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Changyan Yang
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China; Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Yabo Deng
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China
| | - Hai Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Mengyun Gu
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China
| | - Danna Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xia Liu
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China.
| | - Jinqi Huang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Wenjin Yan
- School of Basic Medical Sciences, Lanzhou University, Donggang West Road, Lanzhou, 730000, China.
| | - Jian Liu
- Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Ruppelt D, Ackermann ELM, Robinson T, Steinem C. Assessing the mechanism of facilitated proton transport across GUVs trapped in a microfluidic device. Biophys J 2024; 123:3267-3274. [PMID: 39066477 PMCID: PMC11428277 DOI: 10.1016/j.bpj.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Proton transport across lipid membranes is one of the most fundamental reactions that make up living organisms. In vitro, however, the study of proton transport reactions can be very challenging due to limitations imposed by proton concentrations, compartment size, and unstirred layers as well as buffer exchange and buffer capacity. In this study, we have developed a proton permeation assay based on the microfluidic trapping of giant vesicles enclosing the pH-sensitive dye pyranine to address some of these challenges. Time-resolved fluorescence imaging upon a rapid pH shift enabled us to investigate the facilitated H+ permeation mediated by either a channel or a carrier. Specifically, we compared the proton transport rates as a function of different proton gradients of the channel gramicidin D and the proton carrier carbonyl cyanide-m-chlorophenyl hydrazone. Our results demonstrate the efficacy of the assay in monitoring proton transport reactions and distinguishing between a channel-like and a carrier-like mechanism. This groundbreaking result enabled us to elucidate the enigmatic mode of the proton permeation mechanism of the recently discovered natural fibupeptide lugdunin.
Collapse
Affiliation(s)
- Dominik Ruppelt
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany
| | - Elena L M Ackermann
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany
| | - Tom Robinson
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Berscheid A, Straetener J, Schilling NA, Ruppelt D, Konnerth MC, Schittek B, Krismer B, Peschel A, Steinem C, Grond S, Brötz-Oesterhelt H. The microbiome-derived antibacterial lugdunin acts as a cation ionophore in synergy with host peptides. mBio 2024; 15:e0057824. [PMID: 39133006 PMCID: PMC11389392 DOI: 10.1128/mbio.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Lugdunin is a microbiome-derived antibacterial agent with good activity against Gram-positive pathogens in vitro and in animal models of nose colonization and skin infection. We have previously shown that lugdunin depletes bacterial energy resources by dissipating the membrane potential of Staphylococcus aureus. Here, we explored the mechanism of action of lugdunin in more detail and show that lugdunin quickly depolarizes cytoplasmic membranes of different bacterial species and acidifies the cytoplasm of S. aureus within minutes due to protonophore activity. Varying the salt species and concentrations in buffers revealed that not only protons are transported, and we demonstrate the binding of the monovalent cations K+, Na+, and Li+ to lugdunin. By comparing known ionophores with various ion transport mechanisms, we conclude that the ion selectivity of lugdunin largely resembles that of 15-mer linear peptide gramicidin A. Direct interference with the main bacterial metabolic pathways including DNA, RNA, protein, and cell wall biosyntheses can be excluded. The previously observed synergism of lugdunin with dermcidin-derived peptides such as DCD-1 in killing S. aureus is mechanistically based on potentiated membrane depolarization. We also found that lugdunin was active against certain eukaryotic cells, however strongly depending on the cell line and growth conditions. While adherent lung epithelial cell lines were almost unaffected, more sensitive cells showed dissipation of the mitochondrial membrane potential. Lugdunin seems specifically adapted to its natural environment in the respiratory tract. The ionophore mechanism is refractory to resistance development and benefits from synergy with host-derived antimicrobial peptides. IMPORTANCE The vast majority of antimicrobial peptides produced by members of the microbiome target the bacterial cell envelope by many different mechanisms. These compounds and their producers have evolved side-by-side with their host and were constantly challenged by the host's immune system. These molecules are optimized to be well tolerated at their physiological site of production, and their modes of action have proven efficient in vivo. Imbalancing the cellular ion homeostasis is a prominent mechanism among antibacterial natural products. For instance, over 120 naturally occurring polyether ionophores are known to date, and antimicrobial peptides with ionophore activity have also been detected in microbiomes. In this study, we elucidated the mechanism underlying the membrane potential-dissipating activity of the thiazolidine-containing cycloheptapeptide lugdunin, the first member of the fibupeptides discovered in a commensal bacterium from the human nose, which is a promising future probiotic candidate that is not prone to resistance development.
Collapse
Affiliation(s)
- Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Jan Straetener
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Dominik Ruppelt
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Martin C Konnerth
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, University of Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| | - Andreas Peschel
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
- Max-Planck-Institute for Dynamics and Self Organization, Göttingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Microbial Bioactive Compounds, University of Tübingen, Cluster of Excellence EXC 2124-Controlling Microbes to Fight Infections, Tubingen, Germany
| |
Collapse
|
11
|
Chen J, Wang W, Hu X, Yue Y, Lu X, Wang C, Wei B, Zhang H, Wang H. Medium-sized peptides from microbial sources with potential for antibacterial drug development. Nat Prod Rep 2024; 41:1235-1263. [PMID: 38651516 DOI: 10.1039/d4np00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xubin Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Yue
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenjie Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Das BK, Chowdhury A, Chatterjee S, Tripathi NM, Pati B, Dutta S, Bandyopadhyay A. Harnessing a bis-electrophilic boronic acid lynchpin for azaborolo thiazolidine (ABT) grafting in cyclic peptides. Chem Sci 2024:d4sc04348k. [PMID: 39144456 PMCID: PMC11320178 DOI: 10.1039/d4sc04348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
Collapse
Affiliation(s)
- Basab Kanti Das
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Soumit Dutta
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
13
|
Li T, Jiang S, Li T, Xu H, Zhang X, Yan R, Wu X, Jin Y, Wang Z. Exploring the Potential of Cyclic Peptidyl Antitumor Agents Derived from Natural Macrocyclic Peptide Phakellistatin 13. J Med Chem 2024; 67:11789-11813. [PMID: 38990190 DOI: 10.1021/acs.jmedchem.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The exploration of novel anticancer compounds based on natural cyclopeptides has emerged as a pivotal paradigm in the contemporary advancement of macrocyclic pharmaceuticals. Phakellistatin 13 is a cycloheptapeptide derived from the brown snubby sponge and exhibits remarkable antitumor activity. In this study, we have designed and synthesized a series of chiral cyclopeptides incorporating the rigid isoindolinone moiety at various sites within the natural cycloheptapeptide Phakellistatin 13, with the aim of investigating conformationally constrained cyclopeptides as potential antitumor agents. Cyclopeptide 3, comprising alternating l-/d-amino acid residues, exhibited promising antihepatocellular carcinoma effects. Detailed biological experiments have revealed that Phakellistatin 13 analogs effectively inhibit the proliferation of tumor cells and induce apoptosis and autophagy, while also causing cell cycle arrest through the modulation of the p53 and mitogen-activated protein kinase (MAPK) signaling pathway. This study not only provides valuable insights into chemical structural modifications but also contributes to a deeper understanding of the biological mechanisms underlying the development of natural cyclopeptide-based drugs.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Shitian Jiang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Tingting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hongyu Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiong Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
14
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
15
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
16
|
Trirattanaporn N, Rattanajak R, Dokladda K, Kamchonwongpaisan S, Thongyoo P. Design, synthesis and Anti-Plasmodial activity of Mortiamide-Lugdunin conjugates. Bioorg Chem 2024; 146:107307. [PMID: 38537337 DOI: 10.1016/j.bioorg.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
In this study, two linear and corresponding cyclic heptapeptide versions of mortiamide A-lugdunin hybrids were designed and synthesized by integrating an anti-malarial peptide epitope derived from Mortiamide A, combined with four residues known for their membrane interactions. Using this synthetic strategy, the sequence of mortiamide A was partly re-engineered with an epitope sequence of lugdunin along with an amino acid replacement using all-L and D/L configurations. Importantly, the re-engineered cyclic mortiamides with all-L (3) and D/L (4) configurations exhibited promising anti-malarial activities against the P. falciparum drug-sensitive TM4/8 strain with half-maximal inhibitory concentration (IC50) values of 6.2 ± 0.5 and 4.8 ± 0.1 μM, respectively. Additionally, they exhibited anti-malarial activities against the P. falciparum multidrug-resistant V1/S strain with IC50 values of 5.0 ± 2.6 and 3.7 ± 0.7 μM, respectively. Interestingly, a linear re-engineered mortiamide with D/L configuration (2) exhibited promising anti-malarial activities, surpassing those of the re-engineered cyclic mortiamides (3 and 4), against both the P. falciparum sensitive TM4/8 and multidrug-resistant V1/S strains with IC50 values of 3.6 ± 0.5 and 2.8 ± 0.7 μM (IC50 of Mortiamide A = 7.85 ± 0.97, 5.31 ± 0.24 μM against 3D7 and Dd2 strains) without any cytotoxicity at >100 µM. The presence of D/L forms in a linear structure significantly impacted the anti-malarial activity against both the P. falciparum sensitive TM4/8 strain and the multidrug-resistant V1/S strain.
Collapse
Affiliation(s)
- Nattamon Trirattanaporn
- Medicinal Chemistry Research Unit, Chemistry Department, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Kanchana Dokladda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Panumart Thongyoo
- Medicinal Chemistry Research Unit, Chemistry Department, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand.
| |
Collapse
|
17
|
Ruppelt D, Trollmann MFW, Dema T, Wirtz SN, Flegel H, Mönnikes S, Grond S, Böckmann RA, Steinem C. The antimicrobial fibupeptide lugdunin forms water-filled channel structures in lipid membranes. Nat Commun 2024; 15:3521. [PMID: 38664456 PMCID: PMC11045845 DOI: 10.1038/s41467-024-47803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel β-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell's membrane potential.
Collapse
Affiliation(s)
- Dominik Ruppelt
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Marius F W Trollmann
- Computational Biology, Department Biologie & Erlangen National High Perfomance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Taulant Dema
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Sebastian N Wirtz
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Hendrik Flegel
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Sophia Mönnikes
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department Biologie & Erlangen National High Perfomance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany.
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
18
|
King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023; 8:2420-2434. [PMID: 37973865 DOI: 10.1038/s41564-023-01524-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Human-associated bacteria secrete modified peptides to control host physiology and remodel the microbiota species composition. Here we scanned 2,229 Human Microbiome Project genomes of species colonizing skin, gastrointestinal tract, urogenital tract, mouth and trachea for gene clusters encoding RiPPs (ribosomally synthesized and post-translationally modified peptides). We found 218 lanthipeptides and 25 lasso peptides, 70 of which were synthesized and expressed in E. coli and 23 could be purified and functionally characterized. They were tested for activity against bacteria associated with healthy human flora and pathogens. New antibiotics were identified against strains implicated in skin, nasal and vaginal dysbiosis as well as from oral strains selectively targeting those in the gut. Extended- and narrow-spectrum antibiotics were found against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Mining natural products produced by human-associated microbes will enable the elucidation of ecological relationships and may be a rich resource for antimicrobial discovery.
Collapse
Affiliation(s)
- Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Piro Siuti
- Synthetic Biology Group, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Wang W, Gu L, Wang J, Hu X, Wei B, Zhang H, Wang H, Chen J. Recent Advances in Polypeptide Antibiotics Derived from Marine Microorganisms. Mar Drugs 2023; 21:547. [PMID: 37888482 PMCID: PMC10608164 DOI: 10.3390/md21100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
20
|
Chang SC, Kao CY, Lin LC, Hidrosollo JH, Lu JJ. Lugdunin production and activity in Staphylococcus lugdunensis isolates are associated with its genotypes. Microbiol Spectr 2023; 11:e0129823. [PMID: 37732790 PMCID: PMC10580833 DOI: 10.1128/spectrum.01298-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/20/2023] [Indexed: 09/22/2023] Open
Abstract
Lugdunin produced by Staphylococcus lugdunensis has been shown to have broad inhibitory activity against Gram-positive bacteria; however, lugdunin activity among S. lugdunensis isolates and its association with different agr, SCCmec, and sequence types remain unclear. We used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to identify S. lugdunensis and collected 202 S. lugdunensis samples for further assays. Agar spot tests were performed to characterize S. lugdunensis lugdunin production and activity. Multilocus sequence typing, SCCmec, and agr genotyping were performed on S. lugdunensis. In all, 91 Staphylococcus aureus strains with varying vancomycin susceptibilities were used to examine lugdunin activity in S. lugdunensis. In total, 48 S. lugdunensis strains (23.8%) were found to be oxacillin-resistant S. lugdunensis (ORSL), whereas 154 (76.2%) were classified as oxacillin-sensitive S. lugdunensis (OSSL). Moreover, 16 (33.3%) ORSL and 35 (22.7%) OSSL strains showed antibacterial activity against S. aureus. Our data showed that most lugdunin-producing ORSL strains (14/48, 29.2%) were of ST3-SCCmec V-agr II genotypes, whereas most lugdunin-producing OSSL strains (15/154, 9.7%) were of ST3-agr II, followed by ST1-agr I (10/154, 6.5%). Our data also revealed that lugdunin exhibited weak inhibitory activity against the VISA ST239 isolate. In addition, we observed that ST239 VSSA was more resistant to lugdunin than ST5, ST59, and ST45 VSSA. Taken together, our data pioneered the epidemiology of lugdunin production in S. lugdunensis isolates and revealed its association with genotypes. However, further molecular and bioinformatics investigations are needed to elucidate the regulatory mechanisms of lugdunin production and activity. IMPORTANCE Lugdunin is active against both methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci by dissipating their membrane potential. However, the association of lugdunin activity with the genotypes of Staphylococcus lugdunensis has not been addressed. Here, we show the high prevalence of lugdunin-producing strains among ST1 (83.3%), ST2 (66.7%), and ST3 (53.3%) S. lugdunensis. Moreover, we identified the antibacterial activity of lugdunin-producing strains against VISA and hVISA. These results shed light on the potential application of lugdunin for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Chai LN, Wu H, Wang XJ, He LJ, Guo CF. The Mechanism of Antimicrobial Activity of Conjugated Bile Acids against Lactic Acid Bacilli. Microorganisms 2023; 11:1823. [PMID: 37512995 PMCID: PMC10386348 DOI: 10.3390/microorganisms11071823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanism underlying antimicrobial activity of conjugated bile acids against strains of lactic acid bacilli is not well understood. The purpose of this study was to investigate two typical conjugated bile acids (glycochenodeoxycholic acid and taurochenodeoxycholic acid) for their mechanisms of antimicrobial activity against four strains of different species of lactic acid bacilli at the physiological pH of the small intestine of humans. The bacterial cell membrane integrity, transmembrane potential, and transmembrane pH gradient were examined using the fluorescence probes SYTO 9 plus propidium iodide, 3,3'-dipropylthiadicarbocyanine iodide, and 5(6)-carboxyfluorescein diacetate N-succinimidyl ester, respectively. The intracellular ATP levels were measured by the firefly luciferase-based bioluminescence method. It was found that the antimicrobial activity of conjugated bile acids against the strains of lactic acid bacilli is strain-specific, and glycochenodeoxycholic acid showed significantly greater antimicrobial activity than taurochenodeoxycholic acid against the strains of lactic acid bacilli. The conjugated bile acids inhibited the growth of strains of lactic acid bacilli by disrupting membrane integrity, dissipating transmembrane potential, reducing the transmembrane pH gradient, and depleting intracellular ATP. In conclusion, the antimicrobial activity of conjugated bile acids against lactic acid bacilli is a multifactorial phenomenon. This study will provide valuable information for developing strategies to improve the ability of lactic acid bacilli to tolerate bile in vivo.
Collapse
Affiliation(s)
- Li-Na Chai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Hua Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xue-Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Li-Juan He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chun-Feng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
22
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
23
|
Ballantine RD, Al Ayed K, Bann SJ, Hoekstra M, Martin NI, Cochrane SA. Linearization of the Brevicidine and Laterocidine Lipopeptides Yields Analogues That Retain Full Antibacterial Activity. J Med Chem 2023; 66:6002-6009. [PMID: 37071814 PMCID: PMC10150354 DOI: 10.1021/acs.jmedchem.3c00308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Brevicidine and laterocidine are macrocyclic lipodepsipeptides with selective activity against Gram-negative bacteria, including colistin-resistant strains. Previously, the macrocyclic core of these peptides was thought essential for antibacterial activity. In this study, we show that C-terminal amidation of linear brevicidine and laterocidine scaffolds, and substitution of the native Thr9, yields linear analogues that retain the potent antibacterial activity and low hemolysis of the parent compounds. Furthermore, an alanine scan of both peptides revealed that the aromatic and basic amino acids within the common central scaffold are essential for antibacterial activity. This linearization strategy for modification of cyclic peptides is a highly effective way to reduce the time and cost of peptide synthesis and may be applicable to other non-ribosomal antibacterial peptides.
Collapse
Affiliation(s)
- Ross D Ballantine
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Karol Al Ayed
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Samantha J Bann
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Michael Hoekstra
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, U.K
| |
Collapse
|
24
|
Mousa WK, Ghemrawi R, Abu-Izneid T, Ramadan A, Al-Marzooq F. Discovery of Lactomodulin, a Unique Microbiome-Derived Peptide That Exhibits Dual Anti-Inflammatory and Antimicrobial Activity against Multidrug-Resistant Pathogens. Int J Mol Sci 2023; 24:6901. [PMID: 37108065 PMCID: PMC10138793 DOI: 10.3390/ijms24086901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The human body is a superorganism that harbors trillions of microbes, most of which inhabit the gut. To colonize our bodies, these microbes have evolved strategies to regulate the immune system and maintain intestinal immune homeostasis by secreting chemical mediators. There is much interest in deciphering these chemicals and furthering their development as novel therapeutics. In this work, we present a combined experimental and computational approach to identifying functional immunomodulatory molecules from the gut microbiome. Based on this approach, we report the discovery of lactomodulin, a unique peptide from Lactobacillus rhamnosus that exhibits dual anti-inflammatory and antibiotic activities and minimal cytotoxicity in human cell lines. Lactomodulin reduces several secreted proinflammatory cytokines, including IL-8, IL-6, IL-1β, and TNF-α. As an antibiotic, lactomodulin is effective against a range of human pathogens, and is most potent against antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The multifunctional activity of lactomodulin affirms that the microbiome encodes evolved functional molecules with promising therapeutic potential.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Tareq Abu-Izneid
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Azza Ramadan
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
25
|
Zhao P, Zhang Y, Chen X, Xu C, Guo J, Deng M, Qu X, Huang P, Feng Z, Zhang J. Versatile Hydrogel Dressing with Skin Adaptiveness and Mild Photothermal Antibacterial Activity for Methicillin-Resistant Staphylococcus Aureus-Infected Dynamic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206585. [PMID: 36776018 PMCID: PMC10104652 DOI: 10.1002/advs.202206585] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Bacterial infection often induces chronic repair of wound healing owing to aggravated inflammation. Hydrogel dressing exhibiting intrinsic antibacterial activity may substantially reduce the use of antibiotics for infected wound management. Hence, a versatile hydrogel dressing (rGB/QCS/PDA-PAM) exhibiting skin adaptiveness on dynamic wounds and mild photothermal antibacterial activity is developed for safe and efficient infected wound treatment. Phenylboronic acid-functionalized graphene (rGB) and oxadiazole-decorated quaternary carboxymethyl chitosan (QCS) are incorporated into a polydopamine-polyacrylamide (PDA-PAM) network with multiple covalent and noncovalent bonds, which conferred the hydrogel with flexible mechanical properties, strong tissue adhesion and excellent self-healing ability on the dynamic wounds. Moreover, the glycocalyx-mimicking phenylboronic acid on the surface of rGB enables the hydrogel to specifically capture bacteria. The enhanced membrane permeability of QCS enhanced bacterial vulnerability to photothermal therapy(PTT), which is demonstrated by efficient mild PTT antibacteria against methicillin-resistant Staphylococcus aureus in vitro and in vivo at temperatures of <49.6 °C. Consequently, the hydrogel demonstrate accelerated tissue regeneration on MRSA-infected wound in vivo, with an intact epidermis, abundant collagen deposition and prominent angiogenesis. Therefore, rGB/QCS/PDA-PAM is a versatile hydrogel dressing exhibiting inherent antibacterial activity and has considerable potential in treating wounds infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Peng Zhao
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Yu Zhang
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Xiaoai Chen
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Chang Xu
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Meigui Deng
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College236 Baidi Road, Nankai DistrictTianjin300192P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College236 Baidi Road, Nankai DistrictTianjin300192P. R. China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| |
Collapse
|
26
|
Hu Y, Xing Y, Ye P, Yu H, Meng X, Song Y, Wang G, Diao Y. The antibacterial activity and mechanism of imidazole chloride ionic liquids on Staphylococcus aureus. Front Microbiol 2023; 14:1109972. [PMID: 36814568 PMCID: PMC9939751 DOI: 10.3389/fmicb.2023.1109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
Ionic liquids (ILs) have garnered increasing attention in the biomedical field due to their unique properties. Although significant research has been conducted in recent years, there is still a lack of understanding of the potential applications of ILs in the biomedical field and the underlying principles. To identify the antibacterial activity and mechanism of ILs on bacteria, we evaluated the antimicrobial potency of imidazole chloride ILs (CnMIMCl) on Staphylococcus aureus (S. aureus). The toxicity of ILs was positively correlated to the length of the imidazolidinyl side chain. We selected C12MIMCl to study the mechanism of S. aureus. Through the simultaneous change in the internal and external parts of S. aureus, C12MIMCl caused the death of the bacteria. The production of large amounts of reactive oxygen species (ROS) within the internal parts stimulated oxidative stress, inhibited bacterial metabolism, and led to bacterial death. The external cell membrane could be destroyed, causing the cytoplasm to flow out and the whole cell to be fragmented. The antibacterial effect of C12MIMCl on skin abscesses was further verified in vivo in mice.
Collapse
Affiliation(s)
- Yanhui Hu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China,Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Haikuan Yu
- Senior Department of Orthopedics, Chinese PLA Medical School, Beijing, China
| | - Xianglei Meng
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Song
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Gongying Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Gongying Wang ✉
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China,Yanyan Diao ✉
| |
Collapse
|
27
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
28
|
Bernal FA, Hammann P, Kloss F. Natural products in antibiotic development: is the success story over? Curr Opin Biotechnol 2022; 78:102783. [PMID: 36088735 DOI: 10.1016/j.copbio.2022.102783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Natural product (NP)-based antibiotics have been exploited for more than eighty years and continue saving uncountable lives every year. However, antimicrobial R&D is inadequate to counteract antimicrobial resistance. The majority of marketed antibiotics are inspired by NP classes that were discovered more than 50 years ago. With the advent of advanced genomic approaches, cultivation methods, and modern analytical techniques, NP discovery holds promise that there are way more powerful antibiotic scaffolds to be discovered. However, the currently lean antibiotic R&D pipeline shows a clear trend away from NP-based programs and innovative compounds are also rare in early stages. Within this review, we give an overview of the current NP antibiotic development pipeline, elaborate constraints the field is facing, and suggest measures to streamline NP-based antibiotic discovery. It is unlikely that NPs have lost significance, but reinforcement of discovery will require more targeted efforts and support to revitalize this established source.
Collapse
Affiliation(s)
- Freddy A Bernal
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| |
Collapse
|
29
|
Zhao Q, Liu J, Liu S, Han J, Chen Y, Shen J, Zhu K, Ma X. Multipronged Micelles-Hydrogel for Targeted and Prolonged Drug Delivery in Chronic Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46224-46238. [PMID: 36201628 DOI: 10.1021/acsami.2c12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chronic diabetic wounds are a growing threat globally. Many aspects contribute to its deterioration, including bacterial infection, unbalanced microenvironment, dysfunction of cell repair, etc. In this work, we designed a multipronged micelles-hydrogel platform loaded with curcumin and rifampicin (CRMs-hydrogel) for bacteria-infected chronic wound treatment. The curcumin- and rifampicin-loaded micelles (CRMs) exhibited both MMP9-responsive and epidermal growth factor receptor (EGFR)-targeting abilities. On the one hand, drugs could be released from micelles due to responsive disassembly by MMP9, a matrix metalloproteinase overexpressed in a chronic wound environment; on the other hand, CRMs showed specific targeting to EGFR on epithelial cells and fibroblasts and therefore increased intracellular drug delivery. The thermosensitive CRMs-hydrogel could form strong adhesion with the wound area and served as a suitable matrix for sustained release of CRMs directly at the wound bed, with excellent intracellular and extracellular bacterial elimination efficiency and wound healing promotion capability. We found that a single dose of CRMs-hydrogel achieved 99% antibacterial rate at the MRSA-infected diabetic wound, which effectively reduced inflammatory response and promoted the neovascularization and re-epithelialization process, with nearly half reduction of the skin barrier regeneration period. Collectively, our thermosensitive, MMP9-responsive, and targeted micelles-hydrogel nanoplatform is promising for chronic wound treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Translational Research Center, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing102218, China
| | - Suhan Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Junhua Han
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Yingxian Chen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Kui Zhu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| | - Xiaowei Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
30
|
Maslowska-Jarzyna K, Cataldo A, Marszalik A, Ignatikova I, Butler SJ, Stachowiak R, Chmielewski MJ, Valkenier H. Dissecting transmembrane bicarbonate transport by 1,8-di(thio)amidocarbazoles. Org Biomol Chem 2022; 20:7658-7663. [PMID: 36134504 DOI: 10.1039/d2ob01461k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport by carbazoles with two amido/thioamido groups using a bicarbonate-sensitive europium(III) probe in liposomes and found a highly remarkable transporter concentration dependence. This can be explained by a combination of two distinct transport mechanisms: HCO3-/Cl- exchange and a combination of unassisted CO2 diffusion and HCl transport, of which the respective contributions were quantified. The compounds studied were found to be highly potent HCl transporters. Based on the mechanistic insights on anion transport, we have tested the antimicrobial activity of these compounds and found a good correlation with their ion transport properties and a high activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Alessio Cataldo
- Université libre de Bruxelles, Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium.
| | - Anna Marszalik
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ilona Ignatikova
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Stephen J Butler
- Loughborough University, Department of Chemistry, Epinal Way, LE11 3TU, Loughborough, UK
| | - Radosław Stachowiak
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Hennie Valkenier
- Université libre de Bruxelles, Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050 Brussels, Belgium.
| |
Collapse
|
31
|
Wei G, He Y. Antibacterial and Antibiofilm Activities of Novel Cyclic Peptides against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2022; 23:8029. [PMID: 35887376 PMCID: PMC9321466 DOI: 10.3390/ijms23148029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has led to serious infections, especially in hospitals and clinics, where treatment and prevention have become more difficult due to the formation of biofilms. Owing to biofilm-derived antibiotic tolerance, the currently available traditional antibiotics have failed to treat MRSA infections. Hence, there is a urgent need to develop novel antibiotics for treating life-threatening MRSA infections. Lugdunin (cyclic peptide-1), a nonribosomal cyclic peptide produced by Staphylococcus lugdunensis, exhibits potent antimicrobial activity against MRSA. Amazingly, cyclic peptide-1 and its analogues cyclic peptide-11 and cyclic peptide-14 have the ability to disperse mature MRSA biofilms and show anti-clinical MRSA activity, including MRSA persister cells. In addition, these three cyclic peptide compounds have non-toxicity, lower hemolytic activity and lack of resistance development. Our results indicate that cyclic peptide-1, cyclic peptide-11, and cyclic peptide-14 have great potential as new antimicrobial drug candidates for the treatment of clinical MRSA infections.
Collapse
Affiliation(s)
- Guoxing Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
32
|
Xiao S, Wang Z, Zhang H, Zhao L, Chang Q, Zhang X, Yan R, Wu X, Jin Y. Photoinduced Synthesis of Methylated Marine Cyclopeptide Galaxamide Analogs with Isoindolinone as Anticancer Agents. Mar Drugs 2022; 20:md20060379. [PMID: 35736182 PMCID: PMC9227305 DOI: 10.3390/md20060379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The methylation of amino acid residues has played an important role in the biological function of bioactive peptides. In this paper, various methyl-modified and stereostructural-modified marine cyclopeptide galaxamide analogs with isoindolinone were synthesized by a photoinduced single electron transfer cyclization reaction. It was found that the single-methyl substitution was beneficial for the bioactivity of cyclic analogs with isoindolinone fragments, and the influence of methylation on bioactivity is uncertain and is sometimes case-specific. The compound with a single methyl group at Gly5 (compound 8) showed the strongest antiproliferative activity against HepG-2 cells. The tumor cell apoptosis, cell cycle, mitochondrial membrane potential, intracellular Ca2+ concentration and lactate dehydrogenase activity have been studied extensively to evaluate the antitumor potential of compound 8. Western blotting tests showed that compound 8 could decrease the MDM2 level and increase p53 levels efficiently. Careful molecular docking suggested that cyclic peptide 8 could bind firmly with MDM2 oncoprotein, indicating that MDM2 may be a potential drug target of the prepared peptides.
Collapse
|
33
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 751] [Impact Index Per Article: 250.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
34
|
Arisetti N, Fuchs HLS, Coetzee J, Orozco M, Ruppelt D, Bauer A, Heimann D, Kuhnert E, Bhamidimarri SP, Bafna JA, Hinkelmann B, Eckel K, Sieber SA, Müller PP, Herrmann J, Müller R, Winterhalter M, Steinem C, Brönstrup M. Total synthesis and mechanism of action of the antibiotic armeniaspirol A. Chem Sci 2021; 12:16023-16034. [PMID: 35024125 PMCID: PMC8672772 DOI: 10.1039/d1sc04290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols.
Collapse
Affiliation(s)
- Nanaji Arisetti
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
| | - Hazel L S Fuchs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Janetta Coetzee
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Manuel Orozco
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Dominik Ruppelt
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry Tammannstraße 2 37077 Göttingen Germany
| | - Armin Bauer
- Sanofi R&D Industriepark Höchst 65926 Frankfurt Germany
| | - Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Eric Kuhnert
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | | | - Jayesh A Bafna
- Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Konstantin Eckel
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Peter P Müller
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Jennifer Herrmann
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | | | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry Tammannstraße 2 37077 Göttingen Germany
- Max-Planck-Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Center for Biomolecular Drug Research (BMWZ), Leibniz Universität 30159 Hannover Germany
| |
Collapse
|
35
|
Next-generation microbial drugs developed from microbiome's natural products. ADVANCES IN GENETICS 2021; 108:341-382. [PMID: 34844715 DOI: 10.1016/bs.adgen.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Scientists working in natural products chemistry have been enticed by the current advancements being made in the discovery of novel "magic bullets" from microbes homed to all conceivable environments. Even though researchers continue to face challenges funneling the novel bioactive compounds in the global therapeutic industries, it seems most likely that the discovery of some "hit molecules" with significant biomedical applications is not that far. We applaud novel natural products for their ability to combat the spread of superbugs and aid in the prevention of currently observed antibiotic resistance. This in-depth investigation covers a wide range of microbiomes with a proclivity for synthesizing novel compounds to combat the spread of superbugs. Furthermore, we use this opportunity to explore various groups of secondary metabolites and their biosynthetic pathways in various microbiota found in mammals, insects, and humans. This systematic study, when taken as a whole, offers detail understanding on the biomedical fate of various groups of compounds originated from diverse microbiomes. For gathering all information that has been uncovered and released so far, we have also presented the huge diversity of microbes that are associated with humans and their metabolic products. To conclude, this concrete review suggests novel ideas that will prove immensely helpful in reducing the danger posed by superbugs while also improving the efficacy of antibiotics.
Collapse
|
36
|
Yang J, Yu G, Sessler JL, Shin I, Gale PA, Huang F. Artificial transmembrane ion transporters as potential therapeutics. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
38
|
Torres Salazar BO, Heilbronner S, Peschel A, Krismer B. Secondary Metabolites Governing Microbiome Interaction of Staphylococcal Pathogens and Commensals. Microb Physiol 2021; 31:198-216. [PMID: 34325424 DOI: 10.1159/000517082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
Various Staphylococcus species colonize skin and upper airways of warm-blooded animals. They compete successfully with many other microorganisms under the hostile and nutrient-poor conditions of these habitats using mechanisms that we are only beginning to appreciate. Small-molecule mediators, whose biosynthesis requires complex enzymatic cascades, so-called secondary metabolites, have emerged as crucial components of staphylococcal microbiome interactions. Such mediators belong to a large variety of compound classes and several of them have attractive properties for future drug development. They include, for instance, bacteriocins such as lanthipeptides, thiopeptides, and fibupeptides that inhibit bacterial competitor species; signaling molecules such as thiolactone peptides that induce or inhibit sensory cascades in other bacteria; or metallophores such as staphyloferrins and staphylopine that scavenge scant transition metal ions. For some secondary metabolites such as the aureusimines, the exact function remains to be elucidated. How secondary metabolites shape the fitness of Staphylococcus species in the complex context of other microbial and host defense factors remains a challenging field of future research. A detailed understanding will help to harness staphylococcal secondary metabolites for excluding the pathogenic species Staphylococcus aureus from the nasal microbiomes of at-risk patients, and it will be instrumental for the development of advanced anti-infective interventions.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Barber CC, Zhang W. Small molecule natural products in human nasal/oral microbiota. J Ind Microbiol Biotechnol 2021; 48:6129854. [PMID: 33945611 PMCID: PMC8210680 DOI: 10.1093/jimb/kuab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Small molecule natural products are a chemically diverse class of biomolecules that fulfill myriad biological functions, including autoregulation, communication with microbial neighbors and the host, interference competition, nutrient acquisition, and resistance to oxidative stress. Human commensal bacteria are increasingly recognized as a potential source of new natural products, which may provide insight into the molecular ecology of many different human body sites as well as novel scaffolds for therapeutic development. Here, we review the scientific literature on natural products derived from residents of the human nasal/oral cavity, discuss their discovery, biosynthesis, and ecological roles, and identify key questions in the study of these compounds.
Collapse
Affiliation(s)
- Colin Charles Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley 94720, USA.,Chan-Zuckerberg Biohub, San Francisco 94158, USA
| |
Collapse
|
40
|
Saur JS, Wirtz SN, Schilling NA, Krismer B, Peschel A, Grond S. Distinct Lugdunins from a New Efficient Synthesis and Broad Exploitation of Its MRSA-Antimicrobial Structure. J Med Chem 2021; 64:4034-4058. [PMID: 33779184 DOI: 10.1021/acs.jmedchem.0c02170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new solid-phase peptide synthesis and bioprofiling of the antimicrobial activity of lugdunin, a fibupeptide, enable a comprehensive structure-activity relationship (SAR) study (MRSA Staphylococcus aureus). Distinct lugdunin analogues with variation of the three important amino acids Val2, Trp3, and Leu4 are readily available based on the established high-output synthesis. This efficient synthesis concept takes advantage of the presynthesized thiazolidine building block. To gain further knowledge of SAR, d-Val2, and d-Leu4 were replaced with aliphatic amino acids. For l-Trp3 derivatization, a set of non-natural aromatic amino acids with manifold substitution and annulation patterns precisely shows structural imperatives, starting from the exchange of d-Val6 → d-Trp6 with a 2-fold improved biological activity. d-Trp6-lugdunin analogues with additional variation of d-Val2 and d-Leu4 residues were designed and synthesized followed by antimicrobial profiling. For the first time, these SAR studies deliver valuable information on the tolerance of other amino acids to d-Val2, l-Trp3, and d-Leu4 in the sequence of lugdunin.
Collapse
Affiliation(s)
- Julian S Saur
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Sebastian N Wirtz
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Bernhard Krismer
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Andreas Peschel
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.,German Center for Infection Research (DZIF), Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 18, 72076 Tuebingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Eberhard Karls University Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
41
|
Koeninger L, Osbelt L, Berscheid A, Wendler J, Berger J, Hipp K, Lesker TR, Pils MC, Malek NP, Jensen BAH, Brötz-Oesterhelt H, Strowig T, Jan Wehkamp. Curbing gastrointestinal infections by defensin fragment modifications without harming commensal microbiota. Commun Biol 2021; 4:47. [PMID: 33420317 PMCID: PMC7794397 DOI: 10.1038/s42003-020-01582-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
The occurrence and spread of multidrug-resistant pathogens, especially bacteria from the ESKAPE panel, increases the risk to succumb to untreatable infections. We developed a novel antimicrobial peptide, Pam-3, with antibacterial and antibiofilm properties to counter this threat. The peptide is based on an eight-amino acid carboxyl-terminal fragment of human β-defensin 1. Pam-3 exhibited prominent antimicrobial activity against multidrug-resistant ESKAPE pathogens and additionally eradicated already established biofilms in vitro, primarily by disrupting membrane integrity of its target cell. Importantly, prolonged exposure did not result in drug-resistance to Pam-3. In mouse models, Pam-3 selectively reduced acute intestinal Salmonella and established Citrobacter infections, without compromising the core microbiota, hence displaying an added benefit to traditional broad-spectrum antibiotics. In conclusion, our data support the development of defensin-derived antimicrobial agents as a novel approach to fight multidrug-resistant bacteria, where Pam-3 appears as a particularly promising microbiota-preserving candidate.
Collapse
Affiliation(s)
- Louis Koeninger
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany.
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Berscheid
- Department for Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Judith Wendler
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Berger
- Max-Planck Institute for Developmental Biology, Electron Microscopy, Tübingen, Germany
| | - Katharina Hipp
- Max-Planck Institute for Developmental Biology, Electron Microscopy, Tübingen, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marina C Pils
- Mouse Pathology and Histology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin A H Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heike Brötz-Oesterhelt
- Department for Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility, Hannover, Germany
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, Tübingen, Germany
| |
Collapse
|
42
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
43
|
Maglangit F, Yu Y, Deng H. Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens). Nat Prod Rep 2021; 38:782-821. [PMID: 33119013 DOI: 10.1039/d0np00061b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the second quarter of 2020 Threat or treat? While pathogenic bacteria pose significant threats, they also represent a huge reservoir of potential pharmaceuticals to treat various diseases. The alarming antimicrobial resistance crisis and the dwindling clinical pipeline urgently call for the discovery and development of new antibiotics. Pathogenic bacteria have an enormous potential for natural products drug discovery, yet they remained untapped and understudied. Herein, we review the specialised metabolites isolated from entomopathogenic, phytopathogenic, and human pathogenic bacteria with antibacterial and antifungal activities, highlighting those currently in pre-clinical trials or with potential for drug development. Selected unusual biosynthetic pathways, the key roles they play (where known) in various ecological niches are described. We also provide an overview of the mode of action (molecular target), activity, and minimum inhibitory concentration (MIC) towards bacteria and fungi. The exploitation of pathogenic bacteria as a rich source of antimicrobials, combined with the recent advances in genomics and natural products research methodology, could pave the way for a new golden age of antibiotic discovery. This review should serve as a compendium to communities of medicinal chemists, organic chemists, natural product chemists, biochemists, clinical researchers, and many others interested in the subject.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines. and Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
44
|
Secretion of and Self-Resistance to the Novel Fibupeptide Antimicrobial Lugdunin by Distinct ABC Transporters in Staphylococcus lugdunensis. Antimicrob Agents Chemother 2020; 65:AAC.01734-20. [PMID: 33106269 PMCID: PMC7927808 DOI: 10.1128/aac.01734-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Lugdunin is the first reported nonribosomally synthesized antibiotic from human microbiomes. Its production by the commensal Staphylococcus lugdunensis eliminates the pathogen Staphylococcus aureus from human nasal microbiomes. The cycloheptapeptide lugdunin is the founding member of the new class of fibupeptide antibiotics, which have a novel mode of action and represent promising new antimicrobial agents. How S. lugdunensis releases and achieves producer self-resistance to lugdunin has remained unknown. We report that two ABC transporters encoded upstream of the lugdunin-biosynthetic operon have distinct yet overlapping roles in lugdunin secretion and self-resistance. While deletion of the lugEF transporter genes abrogated most of the lugdunin secretion, the lugGH transporter genes had a dominant role in resistance. Yet all four genes were required for full-level lugdunin resistance. The small accessory putative membrane protein LugI further contributed to lugdunin release and resistance levels conferred by the ABC transporters. Whereas LugIEFGH also conferred resistance to lugdunin congeners with inverse structures or with amino acid exchange at position 6, they neither affected the susceptibility to a lugdunin variant with an exchange at position 2 nor to other cyclic peptide antimicrobials such as daptomycin or gramicidin S. The obvious selectivity of the resistance mechanism raises hopes that it will not confer cross-resistance to other antimicrobials or to optimized lugdunin derivatives to be used for the prevention and treatment of S. aureus infections.
Collapse
|
45
|
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep 2020; 21:e51034. [PMID: 33400359 PMCID: PMC7726816 DOI: 10.15252/embr.202051034] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so-called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
46
|
Tietze A, Shi YN, Kronenwerth M, Bode HB. Nonribosomal Peptides Produced by Minimal and Engineered Synthetases with Terminal Reductase Domains. Chembiochem 2020; 21:2750-2754. [PMID: 32378773 PMCID: PMC7586950 DOI: 10.1002/cbic.202000176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) use terminal reductase domains for 2‐electron reduction of the enzyme‐bound thioester releasing the generated peptides as C‐terminal aldehydes. Herein, we reveal the biosynthesis of a pyrazine that originates from an aldehyde‐generating minimal NRPS termed ATRed in entomopathogenic Xenorhabdus indica. Reductase domains were also investigated in terms of NRPS engineering and, although no general applicable approach was deduced, we show that they can indeed be used for the production of similar natural and unnatural pyrazinones.
Collapse
Affiliation(s)
- Andreas Tietze
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yan-Ni Shi
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Max Kronenwerth
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany
| |
Collapse
|
47
|
The conventional turns rather than irregular γ-/β-turn secondary structures accounting for the antitumor activities of cyclic peptide Phakellistatin 6 analogs. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Bao Y, Zhao L, Wu J, Jiang S, Wang Z, Jin Y. Photo-induced synthesis of Axinastatin 3 analogs, the secondary structures and their in vitro antitumor activities. Bioorg Med Chem Lett 2019; 29:126730. [PMID: 31607609 DOI: 10.1016/j.bmcl.2019.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for drug development. In an effort to identify what conformation could be accounting for the bioactive disparity of natural and synthetic cyclic peptides, some structurally-constrained analogs of cyclopeptide Axinastatin 3 were prepared by photo-induced single electron transfer (SET) reaction. Detailed stereochemistry study was performed by experimental electronic circular dichroism combined with theoretical calculations. Our study suggested that the cyclopeptide 1 with βI-turn presented stronger antitumor activity comparing with those without such secondary structures. Moreover, a rare 'π helix unit' (compound 3) was realized because of the constrained cyclic structure, which could be considered an important research object for future study of unique helix secondary structures.
Collapse
Affiliation(s)
- Yujun Bao
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lishuang Zhao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jingwan Wu
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Shitian Jiang
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
49
|
Adebomi V, Cohen RD, Wills R, Chavers HAH, Martin GE, Raj M. CyClick Chemistry for the Synthesis of Cyclic Peptides. Angew Chem Int Ed Engl 2019; 58:19073-19080. [DOI: 10.1002/anie.201911900] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Victor Adebomi
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Ryan D. Cohen
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Rachel Wills
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | | | - Gary E. Martin
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Monika Raj
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| |
Collapse
|
50
|
Adebomi V, Cohen RD, Wills R, Chavers HAH, Martin GE, Raj M. CyClick Chemistry for the Synthesis of Cyclic Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Victor Adebomi
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Ryan D. Cohen
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Rachel Wills
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | | | - Gary E. Martin
- Analytical Research and Development Merck & Co. Inc. Rahway NJ 07065 USA
- Department of Chemistry & Biochemistry Seton Hall University South Orange NJ 07079 USA
| | - Monika Raj
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| |
Collapse
|