1
|
Yarava JR, Gautam I, Jacob A, Fu R, Wang T. Proton-Detected Solid-State NMR for Deciphering Structural Polymorphism and Dynamic Heterogeneity of Cellular Carbohydrates in Pathogenic Fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642223. [PMID: 40161786 PMCID: PMC11952318 DOI: 10.1101/2025.03.09.642223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Carbohydrate polymers in their cellular context display highly polymorphic structures and dynamics essential to their diverse functions, yet they are challenging to analyze biochemically. Proton-detection solid-state NMR spectroscopy offers high isotopic abundance and sensitivity, enabling rapid and high-resolution structural characterization of biomolecules. Here, an array of 2D/3D 1H-detection solid-state NMR techniques are tailored to investigate polysaccharides in fully protonated or partially deuterated cells of three prevalent pathogenic fungi: Rhizopus delemar, Aspergillus fumigatus, and Candida albicans, representing filamentous species and yeast forms. Selective detection of acetylated carbohydrates reveals fifteen forms of N-acetylglucosamine units in R. delemar chitin, which coexists with chitosan as separate domains or polymers and associates with proteins only at limited sites. This is supported by distinct order parameters and effective correlation times of their motions, analyzed through relaxation measurements and model-free analysis. Five forms of α-1,3-glucan with distinct structural origins and dynamics were identified in A. fumigatus, important for this buffering polysaccharide to perform diverse roles of supporting wall mechanics and regenerating soft matrix under antifungal stress. Eight α-1,2-mannan sidechain variants in C. albicans were resolved, highlighting the crucial role of mannan sidechains in maintaining interactions with other cell wall polymers to preserve structural integrity. These methodologies provide novel insights into the functional structures of key fungal polysaccharides and create new opportunities for exploring carbohydrate biosynthesis and modifications across diverse organisms.
Collapse
Affiliation(s)
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Yarava J, Orwick-Rydmark M, Ryoo D, Hofstetter A, Gumbart JC, Habeck M, van Rossum BJ, Linke D, Oschkinat H. Probing the Dynamics of Yersinia Adhesin A (YadA) in Outer Membranes Hints at Requirements for β-Barrel Membrane Insertion. J Am Chem Soc 2025; 147:8618-8628. [PMID: 40014811 PMCID: PMC11912334 DOI: 10.1021/jacs.4c17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
The vast majority of cells are protected and functionalized by a dense surface layer of glycans, proteoglycans, and glycolipids. This surface represents an underexplored space in structural biology that is exceedingly challenging to recreate in vitro. Here, we investigate β-barrel protein dynamics within an asymmetric outer membrane environment, with the trimeric autotransporter Yersinia adhesin A (YadA) as an example. Magic-angle spinning NMR relaxation data and a model-free approach reveal increased mobility in the second half of strand β2 after the conserved G72, which is responsible for membrane insertion and autotransport, and in the subsequent loop toward β3. In contrast, the protomer-protomer interaction sites (β1i-β4i-1) are rigid. Intriguingly, the mobility in the β-strand section following G72 is substantially elevated in the outer membrane and less so in the detergent environment of microcrystals. A possible source is revealed by molecular dynamics simulations that show the formation of a salt bridge involving E79 and R76 in competition with a dynamic interplay of calcium binding by E79 and the phosphate groups of the lipids. An estimation of overall barrel motion in the outer membrane and detergent-containing crystals yields values of around 41 ns for both. The global motion of YadA in the outer membrane has a stronger rotational component orthogonal to the symmetry axis of the trimeric porin than in the detergent-containing crystal. In summary, our investigation shows that the mobility in the second half of β2 and the loop to β3 required for membrane insertion and autotransport is maintained in the final folded form of YadA.
Collapse
Affiliation(s)
- Jayasubba
Reddy Yarava
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | | - David Ryoo
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Albert Hofstetter
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - James C. Gumbart
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael Habeck
- Microscopic
Image Analysis Group, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Barth-Jan van Rossum
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dirk Linke
- Department
of Biosciences, University of Oslo, P.O.Box 1066 Blindern, 0316 Oslo, Norway
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Freie
Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Smith AA, Pacull EM, Stecher S, Hildebrand PW, Vogel A, Huster D. Analysis of the Dynamics of the Human Growth Hormone Secretagogue Receptor Reveals Insights into the Energy Landscape of the Molecule. Angew Chem Int Ed Engl 2023; 62:e202302003. [PMID: 37205715 DOI: 10.1002/anie.202302003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
G protein-coupled receptors initiate signal transduction in response to ligand binding. Growth hormone secretagogue receptor (GHSR), the focus of this study, binds the 28 residue peptide ghrelin. While structures of GHSR in different states of activation are available, dynamics within each state have not been investigated in depth. We analyze long molecular dynamics simulation trajectories using "detectors" to compare dynamics of the apo and ghrelin-bound states yielding timescale-specific amplitudes of motion. We identify differences in dynamics between apo and ghrelin-bound GHSR in the extracellular loop 2 and transmembrane helices 5-7. NMR of the GHSR histidine residues reveals chemical shift differences in these regions. We evaluate timescale specific correlation of motions between residues of ghrelin and GHSR, where binding yields a high degree of correlation for the first 8 ghrelin residues, but less correlation for the helical end. Finally, we investigate the traverse of GHSR over a rugged energy landscape via principal component analysis.
Collapse
Affiliation(s)
- Albert A Smith
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Emelyne M Pacull
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Sabrina Stecher
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107, Leipzig, Germany
| |
Collapse
|
4
|
Zuiderweg ER, Case DA. New experimental evidence for pervasive dynamics in proteins. Protein Sci 2023; 32:e4630. [PMID: 36949673 PMCID: PMC10108438 DOI: 10.1002/pro.4630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
There is ample computational, but only sparse experimental data suggesting that pico-ns motions with 1 Å amplitude are pervasive in proteins in solution. Such motions, if present in reality, must deeply affect protein function and protein entropy. Several NMR relaxation experiments have provided insights into motions of proteins in solution, but they primarily report on azimuthal angle variations of vectors of covalently-linked atoms. As such, these measurements are not sensitive to distance fluctuations, and cannot but under-represent the dynamical properties of proteins. Here we analyze a novel NMR relaxation experiment to measure amide proton transverse relaxation rates in uniformly 15 N labeled proteins, and present results for protein domain GB1 at 283 and 303 K. These relaxation rates depend on fluctuations of dipolar interactions between 1 HN and many nearby protons on both the backbone and sidechains. Importantly, they also report on fluctuations in the distances between these protons. We obtained a large mismatch between rates computed from the crystal structure of GB1 and the experimental rates. But when the relaxation rates were calculated from a 200 ns molecular dynamics trajectory using a novel program suite, we obtained a substantial improvement in the correspondence of experimental and theoretical rates. As such, this work provides novel experimental evidence of widespread motions in proteins. Since the improvements are substantial, but not sufficient, this approach may also present a new benchmark to help improve the theoretical forcefields underlying the molecular dynamics calculations.
Collapse
Affiliation(s)
- Erik R.P. Zuiderweg
- Radboud UniversityInstitute for Molecules and MaterialsNijmegenXZ6525The Netherlands
- University of Michigan Medical School, Department of Biological ChemistryAnn ArborMichigan41109USA
| | - David A. Case
- Rutgers University, Department of Chemistry & Chemical Biology PiscatawayNew Jersey08854USA
| |
Collapse
|
5
|
Bolik-Coulon N, Ferrage F. Explicit models of motions to analyze NMR relaxation data in proteins. J Chem Phys 2022; 157:125102. [DOI: 10.1063/5.0095910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a tool of choice to characterize molecular motions. In biological macromolecules, pico- to nano-second motions, in particular, can be probed by nuclear spin relaxation rates which depend on the time fluctuations of the orientations of spin interaction frames. For the past 40 years, relaxation rates have been successfully analyzed using the Model Free (MF) approach which makes no assumption on the nature of motions and reports on the effective amplitude and time-scale of the motions. However, obtaining a mechanistic picture of motions from this type of analysis is difficult at best, unless complemented with molecular dynamics (MD) simulations. In spite of their limited accuracy, such simulations can be used to obtain the information necessary to build explicit models of motions designed to analyze NMR relaxation data. Here, we present how to build such models, suited in particular to describe motions of methyl-bearing protein side-chains and compare them with the MF approach. We show on synthetic data that explicit models of motions are more robust in the presence of rotamer jumps which dominate the relaxation in methyl groups of protein side-chains. We expect this work to motivate the use of explicit models of motion to analyze MD and NMR data.
Collapse
Affiliation(s)
| | - Fabien Ferrage
- Departement de chimie, Ecole Normale Superieure Departement de Chimie, France
| |
Collapse
|
6
|
Xue K, Sarkar R, Tošner Z, Reif B. Field and magic angle spinning frequency dependence of proton resonances in rotating solids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:47-61. [PMID: 36113917 DOI: 10.1016/j.pnmrs.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology, Am Fassberg. 11, Goettingen, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Praha 2, Czech Republic
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
7
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
8
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
9
|
Malär AA, Callon M, Smith AA, Wang S, Lecoq L, Pérez-Segura C, Hadden-Perilla JA, Böckmann A, Meier BH. Experimental Characterization of the Hepatitis B Virus Capsid Dynamics by Solid-State NMR. Front Mol Biosci 2022; 8:807577. [PMID: 35047563 PMCID: PMC8762115 DOI: 10.3389/fmolb.2021.807577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Protein plasticity and dynamics are important aspects of their function. Here we use solid-state NMR to experimentally characterize the dynamics of the 3.5 MDa hepatitis B virus (HBV) capsid, assembled from 240 copies of the Cp149 core protein. We measure both T1 and T1ρ relaxation times, which we use to establish detectors on the nanosecond and microsecond timescale. We compare our results to those from a 1 microsecond all-atom Molecular Dynamics (MD) simulation trajectory for the capsid. We show that, for the constituent residues, nanosecond dynamics are faithfully captured by the MD simulation. The calculated values can be used in good approximation for the NMR-non-detected residues, as well as to extrapolate into the range between the nanosecond and microsecond dynamics, where NMR has a blind spot at the current state of technology. Slower motions on the microsecond timescale are difficult to characterize by all-atom MD simulations owing to computational expense, but are readily accessed by NMR. The two methods are, thus, complementary, and a combination thereof can reliably characterize motions covering correlation times up to a few microseconds.
Collapse
Affiliation(s)
| | | | - Albert A Smith
- Institute of Medical Physics and Biophysics, Universität Leipzig, Leipzig, Germany
| | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS-Université de Lyon, Labex Ecofect, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Smith AA, Vogel A, Engberg O, Hildebrand PW, Huster D. A method to construct the dynamic landscape of a bio-membrane with experiment and simulation. Nat Commun 2022; 13:108. [PMID: 35013165 PMCID: PMC8748619 DOI: 10.1038/s41467-021-27417-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecular function is based on a complex hierarchy of molecular motions. While biophysical methods can reveal details of specific motions, a concept for the comprehensive description of molecular dynamics over a wide range of correlation times has been unattainable. Here, we report an approach to construct the dynamic landscape of biomolecules, which describes the aggregate influence of multiple motions acting on various timescales and on multiple positions in the molecule. To this end, we use 13C NMR relaxation and molecular dynamics simulation data for the characterization of fully hydrated palmitoyl-oleoyl-phosphatidylcholine bilayers. We combine dynamics detector methodology with a new frame analysis of motion that yields site-specific amplitudes of motion, separated both by type and timescale of motion. In this study, we show that this separation allows the detailed description of the dynamic landscape, which yields vast differences in motional amplitudes and correlation times depending on molecular position.
Collapse
Affiliation(s)
- Albert A Smith
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Oskar Engberg
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| |
Collapse
|
11
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Xue K, Movellan KT, Zhang XC, Najbauer EE, Forster MC, Becker S, Andreas LB. Towards a native environment: structure and function of membrane proteins in lipid bilayers by NMR. Chem Sci 2021; 12:14332-14342. [PMID: 34880983 PMCID: PMC8580007 DOI: 10.1039/d1sc02813h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe both the structure and dynamics of membrane proteins, revealing protein function in a near-native lipid bilayer environment. The main limitation of the method is spectral resolution and sensitivity, however recent developments in ssNMR hardware, including the commercialization of 28 T magnets (1.2 GHz proton frequency) and ultrafast MAS spinning (<100 kHz) promise to accelerate acquisition, while reducing sample requirement, both of which are critical to membrane protein studies. Here, we review recent advances in ssNMR methodology used for structure determination of membrane proteins in native and mimetic environments, as well as the study of protein functions such as protein dynamics, and interactions with ligands, lipids and cholesterol.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Kumar Tekwani Movellan
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Xizhou Cecily Zhang
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Eszter E Najbauer
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Marcel C Forster
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology Am Fassberg. 11 Goettingen Germany
| |
Collapse
|
13
|
Abstract
Relaxation in nuclear magnetic resonance is a powerful method for obtaining spatially resolved, timescale-specific dynamics information about molecular systems. However, dynamics in biomolecular systems are generally too complex to be fully characterized based on NMR data alone. This is a familiar problem, addressed by the Lipari-Szabo model-free analysis, a method that captures the full information content of NMR relaxation data in case all internal motion of a molecule in solution is sufficiently fast. We investigate model-free analysis, as well as several other approaches, and find that model-free, spectral density mapping, LeMaster's approach, and our detector analysis form a class of analysis methods, for which behavior of the fitted parameters has a well-defined relationship to the distribution of correlation times of motion, independent of the specific form of that distribution. In a sense, they are all "model-free." Of these methods, only detectors are generally applicable to solid-state NMR relaxation data. We further discuss how detectors may be used for comparison of experimental data to data extracted from molecular dynamics simulation, and how simulation may be used to extract details of the dynamics that are not accessible via NMR, where detector analysis can be used to connect those details to experiments. We expect that combined methodology can eventually provide enough insight into complex dynamics to provide highly accurate models of motion, thus lending deeper insight into the nature of biomolecular dynamics.
Collapse
Affiliation(s)
- Kai Zumpfe
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert A Smith
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
14
|
Bonaccorsi M, Le Marchand T, Pintacuda G. Protein structural dynamics by Magic-Angle Spinning NMR. Curr Opin Struct Biol 2021; 70:34-43. [PMID: 33915352 DOI: 10.1016/j.sbi.2021.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
Magic-Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) is a fast-developing technique, capable of complementing solution NMR, X-ray crystallography, and electron microscopy for the biophysical characterization of microcrystalline, poorly crystalline or disordered protein samples, such as enzymes, biomolecular assemblies, membrane-embedded systems or fibrils. Beyond structures, MAS NMR is an ideal tool for the investigation of dynamics, since it is unique in its ability to distinguish static and dynamic disorder, and to characterize not only amplitudes but also timescales of motion. Building on seminal work on model proteins, the technique is now ripe for widespread application in structural biology. This review briefly summarizes the recent evolutions in biomolecular MAS NMR and accounts for the growing number of systems where this spectroscopy has provided a description of conformational dynamics over the very last few years.
Collapse
Affiliation(s)
- Marta Bonaccorsi
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Tanguy Le Marchand
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très hauts Champs, UMR 5280 (CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
15
|
Smith AA, Bolik-Coulon N, Ernst M, Meier BH, Ferrage F. How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution? JOURNAL OF BIOMOLECULAR NMR 2021; 75:119-131. [PMID: 33759077 PMCID: PMC8018934 DOI: 10.1007/s10858-021-00361-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The dynamics of molecules in solution is usually quantified by the determination of timescale-specific amplitudes of motions. High-resolution nuclear magnetic resonance (NMR) relaxometry experiments-where the sample is transferred to low fields for longitudinal (T1) relaxation, and back to high field for detection with residue-specific resolution-seeks to increase the ability to distinguish the contributions from motion on timescales slower than a few nanoseconds. However, tumbling of a molecule in solution masks some of these motions. Therefore, we investigate to what extent relaxometry improves timescale resolution, using the "detector" analysis of dynamics. Here, we demonstrate improvements in the characterization of internal dynamics of methyl-bearing side chains by carbon-13 relaxometry in the small protein ubiquitin. We show that relaxometry data leads to better information about nanosecond motions as compared to high-field relaxation data only. Our calculations show that gains from relaxometry are greater with increasing correlation time of rotational diffusion.
Collapse
Affiliation(s)
- Albert A Smith
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany.
- Physical Chemistry ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Nicolas Bolik-Coulon
- Laboratoire des biomolécules, LBM, Département de Chimie, École normale superieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Matthias Ernst
- Physical Chemistry ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Fabien Ferrage
- Laboratoire des biomolécules, LBM, Département de Chimie, École normale superieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
16
|
Mendelman N, Meirovitch E. SRLS Analysis of 15N- 1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy. J Phys Chem B 2021; 125:805-816. [PMID: 33449683 DOI: 10.1021/acs.jpcb.0c10124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on amide (N-H) NMR relaxation from the protein S100A1 analyzed with the slowly relaxing local structure (SRLS) approach. S100A1 comprises two calcium-binding "EF-hands" (helix-loop-helix motifs) connected by a linker. The dynamic structure of this protein, in both calcium-free and calcium-bound form, is described as the restricted local N-H motion coupled to isotropic protein tumbling. The restrictions are given by a rhombic potential, u (∼10 kT), the local motion by a diffusion tensor with rate constant D2 (∼109 s-1), and principal axis tilted from the N-H bond at angle β (10-20°). This parameter combination provides a physically insightful picture of the dynamic structure of S100A1 from the N-H bond perspective. Calcium binding primarily affects the C-terminal EF-hand, among others slowing down the motion of helices III and IV approximately 10-fold. Overall, it brings about significant changes in the shape of the local potential, u, and the orientation of the local diffusion axis, β. Conformational entropy derived from u makes an unfavorable entropic contribution to the free energy of calcium binding estimated at 8.6 ± 0.5 kJ/mol. The N-terminal EF-hand undergoes moderate changes. These findings provide new insights into the calcium-binding process. The same data were analyzed previously with the extended model-free (EMF) method, which is a simple limit of SRLS. In that interpretation, the protein tumbles anisotropically. Locally, calcium binding increases ordering in the loops of S100A1 and conformational exchange (Rex) in the helices of its N-terminal EF-hand. These are very unusual features. We show that they most likely stem from problematic data-fitting, oversimplifications inherent in EMF, and experimental imperfections. Rex is shown to be mainly a fit parameter. By reanalyzing the experimental data with SRLS, which is largely free of these deficiencies, we obtain-as delineated above-physically-relevant structural, kinetic, geometric, and binding information.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
17
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
18
|
Chashmniam S, Teixeira JMC, Paniagua JC, Pons M. A Methionine Chemical Shift Based Order Parameter Characterizing Global Protein Dynamics. Chembiochem 2020; 22:1001-1004. [PMID: 33166021 DOI: 10.1002/cbic.202000701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/05/2022]
Abstract
Coupling of side chain dynamics over long distances is an important component of allostery. Methionine side chains show the largest intrinsic flexibility among methyl-containing residues but the actual degree of conformational averaging depends on the proximity and mobility of neighboring residues. The 13 C NMR chemical shifts of the methyl groups of methionine residues located at long distances in the same protein show a similar scaling with respect to the values predicted from the static X-ray structure by quantum methods. This results in a good linear correlation between calculated and observed chemical shifts. The slope is protein dependent and ranges from zero for the highly flexible calmodulin to 0.7 for the much more rigid calcineurin catalytic domain. The linear correlation is indicative of a similar level of side-chain conformational averaging over long distances, and the slope of the correlation line can be interpreted as an order parameter of the global side-chain flexibility.
Collapse
Affiliation(s)
- Saeed Chashmniam
- Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran
| | - João M C Teixeira
- Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Program in Molecular Medicine, Hospital for Sick Children, 686 Bay Street, ON M5G0A4, Toronto, Ontario, Canada
| | - Juan Carlos Paniagua
- Department of Materials Science and Physical Chemistry and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Miquel Pons
- Department of Inorganic and Organic Chemistry, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Rovó P. Recent advances in solid-state relaxation dispersion techniques. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 108:101665. [PMID: 32574905 DOI: 10.1016/j.ssnmr.2020.101665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This review describes two rotating-frame (R1ρ) relaxation dispersion methods, namely the Bloch-McConnell Relaxation Dispersion and the Near-rotary Resonance Relaxation Dispersion, which enable the study of microsecond time-scale conformational fluctuations in the solid state using magic-angle-spinning nuclear magnetic resonance spectroscopy. The goal is to provide the reader with key ideas, experimental descriptions, and practical considerations associated with R1ρ measurements that are needed for analyzing relaxation dispersion and quantifying conformational exchange. While the focus is on protein motion, many presented concepts can be equally well adapted to study the microsecond time-scale dynamics of other bio- (e.g. lipids, polysaccharides, nucleic acids), organic (e.g. pharmaceutical compounds), or inorganic molecules (e.g., metal organic frameworks). This article summarizes the essential contributions made by recent theoretical and experimental solid-state NMR studies to our understanding of protein motion. Here we discuss recent advances in fast MAS applications that enable the observation and atomic level characterization of sparsely populated conformational states which are otherwise inaccessible for other experimental methods. Such high-energy states are often associated with protein functions such as molecular recognition, ligand binding, or enzymatic catalysis, as well as with disease-related properties such as misfolding and amyloid formation.
Collapse
Affiliation(s)
- Petra Rovó
- Department of Chemistry, Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany; Center for NanoScience (CeNS), Schellingstr. 4, 80799, Munich, Germany.
| |
Collapse
|
20
|
Hoffmann F, Mulder FAA, Schäfer LV. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers. J Chem Phys 2020; 152:084102. [DOI: 10.1063/1.5135379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Falk Hoffmann
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Frans A. A. Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Lars V. Schäfer
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
21
|
Espargaró A, Llabrés S, Saupe SJ, Curutchet C, Luque FJ, Sabaté R. On the Binding of Congo Red to Amyloid Fibrils. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| | - Salomé Llabrés
- School of ChemistryUniversity of Edimburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095CNRSUniversité de Bordeaux 1 rue Camille St Saens 33077 Bordeaux France
| | - Carles Curutchet
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
| | - F. Javier Luque
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
- Department of Nutrition, Food Sciences, and GastronomySchool of Pharmacy and Food SciencesUniversity of Barcelona Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institute of Biomedicine (IBUB) Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| |
Collapse
|
22
|
Espargaró A, Llabrés S, Saupe SJ, Curutchet C, Luque FJ, Sabaté R. On the Binding of Congo Red to Amyloid Fibrils. Angew Chem Int Ed Engl 2020; 59:8104-8107. [DOI: 10.1002/anie.201916630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| | - Salomé Llabrés
- School of ChemistryUniversity of Edimburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095CNRSUniversité de Bordeaux 1 rue Camille St Saens 33077 Bordeaux France
| | - Carles Curutchet
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
| | - F. Javier Luque
- Institute of Theoretical and Computational Chemistry (IQTCUB) Spain
- Department of Nutrition, Food Sciences, and GastronomySchool of Pharmacy and Food SciencesUniversity of Barcelona Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institute of Biomedicine (IBUB) Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-ChemistrySchool of Pharmacy and Food SciencesUniversity of Barcelona Joan XXIII, 27–31 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Spain
| |
Collapse
|
23
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Smith AA, Ernst M, Meier BH, Ferrage F. Reducing bias in the analysis of solution-state NMR data with dynamics detectors. J Chem Phys 2019; 151:034102. [PMID: 31325945 DOI: 10.1063/1.5111081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nuclear magnetic resonance (NMR) is sensitive to dynamics on a wide range of correlation times. Recently, we have shown that analysis of relaxation rates via fitting to a correlation function with a small number of exponential terms could yield a biased characterization of molecular motion in solid-state NMR due to limited sensitivity of experimental data to certain ranges of correlation times. We introduced an alternative approach based on "detectors" in solid-state NMR, for which detector responses characterize motion for a range of correlation times and reduce potential bias resulting from the use of simple models for the motional correlation functions. Here, we show that similar bias can occur in the analysis of solution-state NMR relaxation data. We have thus adapted the detector approach to solution-state NMR, specifically separating overall tumbling motion from internal motions and accounting for contributions of chemical exchange to transverse relaxation. We demonstrate that internal protein motions can be described with detectors when the overall motion and the internal motions are statistically independent. We illustrate the detector analysis on ubiquitin with typical relaxation data sets recorded at a single high magnetic field or at multiple high magnetic fields and compare with results of model-free analysis. We also compare our methodology to LeMaster's method of dynamics analysis.
Collapse
Affiliation(s)
- Albert A Smith
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Matthias Ernst
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Beat H Meier
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Fabien Ferrage
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|