1
|
Fuchigami T, Shimo K, Hiwatashi T, Andoh Y, Munekane M, Mishiro K, Echigo H, Wakabayashi H, Kitamura Y, Kinuya S, Ogawa K. Development of a Radiogallium-Labeled Heterodivalent Imaging Probe Targeting Negative Charges and Integrin on the Surface of Cancer Cell Membranes. Mol Pharm 2025; 22:2053-2064. [PMID: 40066788 DOI: 10.1021/acs.molpharmaceut.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Radiopharmaceuticals targeting tumor-specific environments are powerful tools for cancer diagnosis and treatment. We previously demonstrated the considerable high tumor uptake of the cationic amphiphilic peptide, 67Ga-NOTA-KV6, in vivo. However, because this radioligand shows a relatively rapid clearance from the tumor over time, further structural optimization is necessary. In this study, to enhance tumor accumulation and retention, we synthesized and evaluated a heterobivalent radiogallium-labeled radiotracer, [67Ga]Ga-DOTA-KV6-Mal-c(RGDyK) ([67Ga]6a), fusing the KV6 peptide targeting negatively charged sites on the cancer cell membrane and cyclic RGD peptide targeting integrin αvβ3 on the cancer cell membrane. Cellular uptake study revealed high accumulation of [67Ga]6a in integrin αvβ3-expressing U-87MG cancer cells, but uptake was significantly inhibited in the presence of an excess of the cyclic RGD peptide, c(RGDyK) (1). Peptide 6a exhibited integrin αvβ3-binding affinity comparable to those of RGD peptides 1 and DOTA-Mal-c(RGDyK) (8). In vivo biodistribution studies of U-87MG tumor-bearing mice revealed that [67Ga]6a exhibited better accumulation and retention in tumor tissues than [67Ga]Ga-DOTA-KV6-Mal-Et ([67Ga]6b; without the RGD peptide motif) and [67Ga]Ga-DOTA-Mal-c(RGDyK) ([67Ga]9; without the KV6 peptide motif). Single-photon emission computed tomography analysis also revealed high signals of [67Ga]6a in tumor tissues, which were significantly blocked in the presence of excess peptide 1. Although reducing radiotracer accumulation in nontumor tissues, such as the kidneys, remains a challenge, our developed approach exhibits potential to enhance the selectivity and retention of radiopharmaceuticals in tumor tissues.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohei Shimo
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toya Hiwatashi
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuka Andoh
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masayuki Munekane
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Echigo
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Gupta K, Parlea L, Viard M, Smith K, Puri A, Bergman JT, Kim T, Shapiro BA. Co-incubation of Short Amphiphilic Peptides with Dicer Substrate RNAs Results in β-Sheet Fibrils for Enhanced Gene Silencing in Cancer Cells. RNA NANOMED 2024; 1:61-78. [PMID: 40255273 PMCID: PMC12007892 DOI: 10.59566/isrnn.2024.0101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
RNA can interact with positively charged, amphiphilic peptides to cooperatively assemble into fibrils that enable RNA transport across cancer cellular membranes. RNA decreases the folding energy barrier imposed by the electrostatic repulsion between these charged peptides, thus partaking in RNA-peptide self-assembly along particular pathways in the energy landscape. Specific amphiphilic peptides capable of protecting and transporting RNA across a membrane have Type II' β-turn hairpin forming motifs in their structures, which aids self-assembly into β-sheet fibrils. We employed a set of such cationic, amphiphilic peptides that have random coiled structures in the absence of folding stimuli, to characterize the (peptides):(RNA) assembly. We subjected these complexes to extensive biophysical characterization in vitro and in cell culture. We show that short RNAs (such as Dicer substrate RNAs) can lead these peptides to self-assemble into β-sheet fibrils that have RNA transport capabilities and can act as non-viral delivery vectors for RNA. Modulation in the peptide sequence implicitly alters the way they bind RNA and influence the peptides' ability to transport nucleic acids across membranes.
Collapse
Affiliation(s)
- Kshitij Gupta
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Present address: Genes N Life Healthcare Pvt. Ltd., Hyderabad, Telangana,500082, India
| | - Lorena Parlea
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Mathias Viard
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Basic Science Program, Leidos Biomedical, Research Inc., Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Katelyn Smith
- Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Inc, Kenilworth New Jersey, USA
| | - Anu Puri
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Joseph T. Bergman
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Taejin Kim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
- Department of Physical Sciences, West Virginia University Institute of Technology, Beckley 25801, West Virginia, USA
| | - Bruce A. Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
3
|
Han H, Li Z, Feng Y, Song H, Fang Z, Zhang D, Yuan D, Shi J. Peptide Degrader-Based Targeting of METTL3/14 Improves Immunotherapy Response in Cutaneous Melanoma. Angew Chem Int Ed Engl 2024; 63:e202407381. [PMID: 39136347 DOI: 10.1002/anie.202407381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/30/2024]
Abstract
METTL3 has emerged as a promising therapeutic target in cancer treatment, although its oncogenic functions in melanoma development and potential for therapeutic targeting drug have not been fully explored. In this study, we define the oncogenic role of METTL3 in melanoma development and progression. Building on this insight, we examine our recently designed peptide inhibitor RM3, which targets the binding interface of METTL3/14 complex for disruption and subsequent ubiquitin-mediated proteasomal degradation via the E3 ligase STUB1. RM3 treatment reduces proliferation, migration, and invasion, and induces apoptosis in melanoma cells in vitro and in vivo. Subsequent transcriptomic analysis identified changes in immuno-related genes following RM3-mediated suppression of METTL3/14 N6-methyladenosine (m6A) methyltransferase activity, suggesting a potential for interaction with immunotherapy. A combination treatment of RM3 with anti-PD-1 antibody results in significantly higher beneficial tumor response in vivo, with a good safety profile. Collectively, these findings not only delineate the oncogenic role of METTL3 in melanoma but also showcase RM3, acting as a peptide degrader, as a novel and promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Hong Han
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - Zenghui Li
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - Yuqing Feng
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - He Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P. R. China
| | - Zhixiong Fang
- Affiliated Hospital of Hunan University, Department of Infectious Disease and Public Health, Hunan province, P. R. China
| | - Dingxiao Zhang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, 518000, P. R. China
| | - Dan Yuan
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
| | - Junfeng Shi
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, P. R. China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, 518000, P. R. China
| |
Collapse
|
4
|
Gan S, Yang L, Heng Y, Chen Q, Wang D, Zhang J, Wei W, Liu Z, Njoku DI, Chen JL, Hu Y, Sun H. Enzyme-Directed and Organelle-Specific Sphere-to-Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells. SMALL METHODS 2024; 8:e2301551. [PMID: 38369941 PMCID: PMC11579569 DOI: 10.1002/smtd.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme-responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co-assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase-induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme-responsive nanoplatform is expanded to selectively target mitochondria by mitochondria-specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co-assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme-instructed in situ fibrillar transformation of peptide/photosensitizers co-assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme-responsive biomaterials for cancer therapy.
Collapse
Affiliation(s)
- Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Liu Yang
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Yiyuan Heng
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610072China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| | - Demian Ifeanyi Njoku
- Department of Applied ScienceHong Kong Metropolitan UniversityHo Man TinKowloonHong Kong999077China
| | - Jian Lin Chen
- Department of Applied ScienceHong Kong Metropolitan UniversityHo Man TinKowloonHong Kong999077China
| | - Yi Hu
- State Key Laboratory of ComplexSevereand Rare DiseasesBiomedical Engineering Facility of National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijing100730China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super‐Diamond and Advanced Films) City University of Hong KongHong Kong999077China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057China
| |
Collapse
|
5
|
Ren X, Wei J, Luo X, Liu Y, Li K, Zhang Q, Gao X, Yan S, Wu X, Jiang X, Liu M, Cao D, Wei L, Zeng X, Shi J. HydrogelFinder: A Foundation Model for Efficient Self-Assembling Peptide Discovery Guided by Non-Peptidal Small Molecules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400829. [PMID: 38704695 PMCID: PMC11234452 DOI: 10.1002/advs.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2024] [Indexed: 05/07/2024]
Abstract
Self-assembling peptides have numerous applications in medicine, food chemistry, and nanotechnology. However, their discovery has traditionally been serendipitous rather than driven by rational design. Here, HydrogelFinder, a foundation model is developed for the rational design of self-assembling peptides from scratch. This model explores the self-assembly properties by molecular structure, leveraging 1,377 self-assembling non-peptidal small molecules to navigate chemical space and improve structural diversity. Utilizing HydrogelFinder, 111 peptide candidates are generated and synthesized 17 peptides, subsequently experimentally validating the self-assembly and biophysical characteristics of nine peptides ranging from 1-10 amino acids-all achieved within a 19-day workflow. Notably, the two de novo-designed self-assembling peptides demonstrated low cytotoxicity and biocompatibility, as confirmed by live/dead assays. This work highlights the capacity of HydrogelFinder to diversify the design of self-assembling peptides through non-peptidal small molecules, offering a powerful toolkit and paradigm for future peptide discovery endeavors.
Collapse
Affiliation(s)
- Xuanbai Ren
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Jiaying Wei
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xiaoli Luo
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Yuansheng Liu
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Kenli Li
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Qiang Zhang
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou311200China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310013China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Sizhe Yan
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Xingyue Jiang
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| | - Mingquan Liu
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410003China
| | - Leyi Wei
- School of SoftwareShandong UniversityJinan250100China
- Joint SDU‐NTU Centre for Artificial Intelligence Research (C‐FAIR)Shandong UniversityJinan250100China
| | - Xiangxiang Zeng
- College of Information Science and EngineeringHunan UniversityChangsha410003China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio‐Sensing and Chemometrics, School of Biomedical SciencesHunan UniversityChangsha410003China
| |
Collapse
|
6
|
Zhou H, Zhu Y, Yang B, Huo Y, Yin Y, Jiang X, Ji W. Stimuli-responsive peptide hydrogels for biomedical applications. J Mater Chem B 2024; 12:1748-1774. [PMID: 38305498 DOI: 10.1039/d3tb02610h] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Stimuli-responsive hydrogels can respond to external stimuli with a change in the network structure and thus have potential application in drug release, intelligent sensing, and scaffold construction. Peptides possess robust supramolecular self-assembly ability, enabling spontaneous formation of nanostructures through supramolecular interactions and subsequently hydrogels. Therefore, peptide-based stimuli-responsive hydrogels have been widely explored as smart soft materials for biomedical applications in the last decade. Herein, we present a review article on design strategies and research progress of peptide hydrogels as stimuli-responsive materials in the field of biomedicine. The latest design and development of peptide hydrogels with responsive behaviors to stimuli are first presented. The following part provides a systematic overview of the functions and applications of stimuli-responsive peptide hydrogels in tissue engineering, drug delivery, wound healing, antimicrobial treatment, 3D cell culture, biosensors, etc. Finally, the remaining challenges and future prospects of stimuli-responsive peptide hydrogels are proposed. It is believed that this review will contribute to the rational design and development of stimuli-responsive peptide hydrogels toward biomedical applications.
Collapse
Affiliation(s)
- Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yanhua Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Bingbing Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
7
|
Zhou J, Cai Y, Li T, Zhou H, Dong H, Wu X, Li Z, Wang W, Yuan D, Li Y, Shi J. Aflibercept Loaded Eye-Drop Hydrogel Mediated with Cell-Penetrating Peptide for Corneal Neovascularization Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302765. [PMID: 37679056 DOI: 10.1002/smll.202302765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Corneal neovascularization (CoNV) is a major cause of visual impairment worldwide. Currently, available treatment options have limited efficacy and are associated with adverse effects due to biological barriers and clearance mechanisms. To address this challenge, a novel topical delivery system is developed-Gel 2_1&Eylea-an aflibercept-loaded eye-drop hydrogel mediated with cell-penetrating peptide 1. Gel 2_1&Eylea demonstrates superior membrane permeability, increased stability, and prolonged drug retention time on the ocular surface, and thus may improve drug efficacy. In a rabbit CoNV model, Gel 2_1&Eylea significantly reduces the density of neovascularization with no adverse effects on normal corneoscleral limbal vessels, demonstrating high efficacy and biocompatibility. This work identifies a promising treatment for CoNV which has the potential to benefit other ocular neovascular diseases.
Collapse
Affiliation(s)
- Jianan Zhou
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huilei Dong
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xia Wu
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, Guangdong, 518116, China
| | - Zenghui Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Wenjie Wang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
8
|
Luo H, Cao H, Jia H, Shang Y, Liu J, Gui H, Yang C, Ren C, Wang Z, Liu J. EISA in Tandem with ICD to Form In Situ Nanofiber Vaccine for Enhanced Tumor Radioimmunotherapy. Adv Healthc Mater 2023; 12:e2301083. [PMID: 37300544 DOI: 10.1002/adhm.202301083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radiotherapy (RT) can produce a vaccine effect and remodel a tumor microenvironment (TME) by inducing immunogenic cell death (ICD) and inflammation in tumors. However, RT alone is insufficient to elicit a systemic antitumor immune response owing to limited antigen presentation, immunosuppressive microenvironment, and chronic inflammation within the tumor. Here, a novel strategy is reported for the generation of in situ peptide-based nanovaccines via enzyme-induced self-assembly (EISA) in tandem with ICD. As ICD progresses, the peptide Fbp-GD FD FD pY (Fbp-pY), dephosphorylated by alkaline phosphatase (ALP) forms a fibrous nanostructure around the tumor cells, resulting in the capture and encapsulation of the autologous antigens produced by radiation. Utilizing the adjuvant and controlled-release advantages of self-assembling peptides, this nanofiber vaccine effectively increases antigen accumulation in the lymph nodes and cross-presentation by antigen-presenting cells (APCs). In addition, the inhibition of cyclooxygenase 2 (COX-2) expression by the nanofibers promotes the repolarization of M2-macrophages into M1 and reduces the number of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) required for TME remodeling. As a result, the combination of nanovaccines and RT significantly enhances the therapeutic effect on 4T1 tumors compared with RT alone, suggesting a promising treatment strategy for tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Hongjing Luo
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Haixue Jia
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yuna Shang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Han Gui
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
9
|
Yang X, Wu B, Zhou J, Lu H, Zhang H, Huang F, Wang H. Controlling Intracellular Enzymatic Self-Assembly of Peptide by Host-Guest Complexation for Programming Cancer Cell Death. NANO LETTERS 2022; 22:7588-7596. [PMID: 35925772 DOI: 10.1021/acs.nanolett.2c02612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling the enzymatic reaction of macromolecules in living systems plays an essential role in determining the biological functions, which remains challenging in the synthetic system. This work shows that host-guest complexation could be an efficient strategy to tune the enzymatic self-assembly of the peptide. The formed host-guest complexation prevents the enzymatic kinetics of peptide assemblies on the cell surface and promotes cellular uptake of assemblies. For uptake inside cells, the host-guest complex undergoes dissociation in the acidic lysosome, and the released peptide further self-assembles inside the mitochondria. Accumulating assemblies at mitochondria induce the ferroptosis of cancer cells, resulting in cancer cell death in vitro and the tumor-bearing mice model. As the first example of using host-guest complexation to modulate the kinetics of enzymatic self-assembly, this work provides a general method to control enzymatic self-assembly in living cells for selective programming cancer cell death.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bihan Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hongyue Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Department of Chemistry, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
10
|
Wang S, Ma Y, Ma C, Liu K, Huo Z, Shang Y. A supramolecular nanofiber formed by enzyme-instructed self-assembly for SKBR-3 cell selective inhibition. Chem Asian J 2022; 17:e202200301. [PMID: 35510693 DOI: 10.1002/asia.202200301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Indexed: 11/06/2022]
Abstract
Cell-targeted peptides are recommended for precision cancer treatment due to their comparable targeting properties, small molecular size and good biocompatibility. However, unpredictable bioactivity, low penetration rate and poor stability greatly limit its efficacy. Supramolecular self-assembly based on synthetic peptide has great potential to solve related problems and achieve better therapeutic effects. Herein, we report and compare the effects of two different assembly pathway, heating-cooling and enzyme instruction, on the penetrability of SKBR-3 cell targeted peptides. It was found that enzyme-instructed self-assembly (EISA) resulted in hydrogels composed of uniform supramolecular nanofibers, whereas heating-cooling resulted in solutions and precipitations composed of slightly different nanoparticles. The nanofibers formed by EISA showed enhanced cellular uptake (2.54 μM), which was significantly higher than the 1.06 μM of the nanoparticles formed by temperature regulation. Thus, EISA is a promising strategy to improve the cell penetration rate of targeted peptides, and could provide a better solution for precision cancer treatment.
Collapse
Affiliation(s)
- Shijiang Wang
- Shandong Cancer Hospital and Institute, Department of Radiotherapy, CHINA
| | - Yan Ma
- Shandong Cancer Hospital and Institute, Department of Gastrointestinal oncology, CHINA
| | - Changsheng Ma
- Shandong Cancer Hospital and Institute, Department of Radiotherapy, CHINA
| | - Kai Liu
- Shandong Cancer Hospital and Institute, Department of Gastrointestinal oncology, CHINA
| | - Zhijun Huo
- Shandong Cancer Hospital and Institute, Breast Cancer Center, CHINA
| | - Yuna Shang
- Tianjin Normal University, College of Chemistry, 393# Binshuixi road, 300387, Tianjin, CHINA
| |
Collapse
|
11
|
Song Y, Li M, Song N, Liu X, Wu G, Zhou H, Long J, Shi L, Yu Z. Self-Amplifying Assembly of Peptides in Macrophages for Enhanced Inflammatory Treatment. J Am Chem Soc 2022; 144:6907-6917. [PMID: 35388694 DOI: 10.1021/jacs.2c01323] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzyme-regulated in situ self-assembly of peptides represents one versatile strategy in the creation of theranostic agents, which, however, is limited by the strong dependence on enzyme overexpression. Herein, we reported the self-amplifying assembly of peptides precisely in macrophages associated with enzyme expression for improving the anti-inflammatory efficacy of conventional drugs. The self-amplifying assembling system was created via coassembling an enzyme-responsive peptide with its derivative functionalized with a protein ligand. Reduction of the peptides by the enzyme NAD(P)H quinone dehydrogenase 1 (NQO1) led to the formation of nanofibers with high affinity to the protein, thereby facilitating NQO1 expression. The improved NQO1 level conversely promoted the assembly of the peptides into nanofibers, thus establishing an amplifying relationship between the peptide assembly and the NQO1 expression in macrophages. Utilization of the amplifying assembling system as vehicles for drug dexamethasone allowed for its passive targeting delivery to acute injured lungs. Both in vitro and in vivo studies confirmed the capability of the self-amplifying assembling system to enhance the anti-inflammatory efficacy of dexamethasone via simultaneous alleviation of the reactive oxygen species side effect and downregulation of proinflammatory cytokines. Our findings demonstrate the manipulation of the assembly of peptides in living cells with a regular enzyme level via a self-amplification process, thus providing a unique strategy for the creation of supramolecular theranostic agents in living cells.
Collapse
Affiliation(s)
- Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingming Li
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangyao Wu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Mai R, Deng B, Zhao H, Li L, Fang Y, Li S, Deng X, Chen J. Design, Synthesis, and Bioevaluation of Novel Enzyme-Triggerable Cell Penetrating Peptide-Based Dendrimers for Targeted Delivery of Camptothecin and Cancer Therapy. J Med Chem 2022; 65:5850-5865. [PMID: 35380045 DOI: 10.1021/acs.jmedchem.2c00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel enzyme-triggerable cell penetrating peptide (ETCPP) dendrimers with a camptothecin (CPT) warhead were designed and synthesized based on an amphiphilic penetrating peptide (FKKFFRKLL, discovered by us before). Among the newly synthesized ETCPP dendrimer conjugates, BL_Oc-SS-CPT (a high-generation dendrimer) exhibited the highest activity with IC50s in the nanomolar range (31-747 nM) against a panel of cancer cells, which is 3-10 times better than that of CPT. BL_Oc-SS-CPT remained intact during transit to target cells and in normal tissues with a plasma half-life of 4.2 h, 2.3-fold longer than that of the monomer (1.8 h). Once reaching the tumor site, BL_Oc-SS-CPT gradually released CPT in the presence of excessive matrix metalloproteinase-2/9 and GSH in cancer cells. Importantly, BL_Oc-SS-CPT exhibited excellent in vivo tumor targeting capability and antitumor efficacy with benign toxicity profiles. Thus, the novel ETCPP dendrimer-based drug delivery system (e.g., BL_Oc-SS-CPT) represents a safe and effective strategy for targeted cancer therapy.
Collapse
Affiliation(s)
- Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Huiting Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yuyu Fang
- Department of Nephrology, First People's Hospital of Pingjiang County, Yueyang 414500, China
| | - Siming Li
- Analytical Applications Center, Shimadzu (China) Co., Ltd. Guangzhou Branch, 230 Gaotang Road, Guangzhou 510656, China
| | - Xin Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
13
|
Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. On-Resin Synthesis of Linear Aryl Thioether Containing Peptides and in-Solution Cyclization via Cysteine S NAr Reaction. Org Lett 2022; 24:1673-1677. [PMID: 35195423 DOI: 10.1021/acs.orglett.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic peptides represent one of the most promising therapeutic agents in drug discovery due to their good affinity and selectivity. Herein, an on-resin synthesis of aryl thioether containing peptides and a concise cyclization strategy via chemoselective cysteine SNAr reaction was developed. The arylation group could be incorporated into a series of amino acids and used for standard SPPS and peptides cyclization. Constructed cyclic peptides showed increased cellular uptakes compared to their linear peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ao Pang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
14
|
Yang S, Chang Y, Hazoor S, Brautigam C, Foss FW, Pan Z, Dong H. Modular Design of Supramolecular Ionic Peptides with Cell-Selective Membrane Activity. Chembiochem 2021; 22:3164-3168. [PMID: 34506664 PMCID: PMC11261884 DOI: 10.1002/cbic.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
The rational design of materials with cell-selective membrane activity is an effective strategy for the development of targeted molecular imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme-mediated molecular transformation followed by supramolecular assembly to form nanofibers in which cationic clusters are presented on a rigid β-sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self-assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramolecular nanomaterials with emerging membrane activity for a range of disease targeted molecular imaging and therapy applications.
Collapse
Affiliation(s)
- Su Yang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chad Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - He Dong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
15
|
Liu S, Zhang Q, Shy AN, Yi M, He H, Lu S, Xu B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J Am Chem Soc 2021; 143:15852-15862. [PMID: 34528792 DOI: 10.1021/jacs.1c07923] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shijiang Lu
- HebeCell, 21 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
16
|
Tu W, Xue K, Lou S, Zhu C, Yu Z. Self-assembly of virulent amyloid-derived peptides into nanoantibacterials. NANOSCALE 2021; 13:9864-9872. [PMID: 34037034 DOI: 10.1039/d1nr01622a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Current strategies for the design of antibacterial peptides show limitations in the development of assembled antibacterial peptides due to the challenges in simultaneously balancing the antibacterial activity and assembling behavior. Herein, we report on one strategy for the design of antibacterial peptides derived from virulent amyloids and investigate their self-assembly into nanostructures with remarkable antibacterial activity. The peptides were either directly truncated from virulent amyloid peptide PSM α3 or mutated from the original sequence by replacing the lysine and phenylalanine residues with arginine or tryptophan, leading to three undecapeptides. Conformational and morphological results indicated the formation of nanotubes and twisted nanoribbons by the truncated peptide and the mutated peptide, respectively, predominately driven by anti-parallel β-sheets. Bacterial culturing experiments revealed that the two mutated peptides possessed remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria by disrupting the bacterial membrane at a concentration above their critical aggregation concentrations, thus leading to two nanoantibacterials. Our findings demonstrate that biomimetic peptides originated from virulent amyloids exhibit great potential in the development of assembled antibacterial peptides, thus providing a new strategy for simultaneously addressing the antibacterial activity and pharmacokinetics of natural antibacterial peptides in the future.
Collapse
Affiliation(s)
- Wenlu Tu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
17
|
Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 2021; 13:530-539. [PMID: 33859390 DOI: 10.1038/s41557-021-00661-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular uptake of protein-CPP conjugates in a non-endocytic mode, even at low micromolar concentration. We show that such thiol- or HaloTag-reactive additives can result in covalently anchored CPPs on the cell surface, which are highly effective at co-delivering protein cargoes. Taking advantage of the thiol reactivity of our most effective CPP additive, we show that Cys-containing proteins can be readily delivered into the cytosol by simple co-addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our 'CPP-additive technique' in the delivery of functional enzymes, nanobodies and full-length immunoglobulin-G antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and efficiency of protein and antibody delivery, with minimal chemical or genetic engineering.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marina Kithil
- Technical University of Darmstadt, Darmstadt, Germany
| | | | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells*. Angew Chem Int Ed Engl 2021; 60:12796-12801. [PMID: 33783926 PMCID: PMC8159897 DOI: 10.1002/anie.202102601] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Indexed: 01/01/2023]
Abstract
Changing an oxygen atom of the phosphoester bond in phosphopeptides by a sulfur atom enables instantly targeting Golgi apparatus (GA) and selectively killing cancer cells by enzymatic self-assembly. Specifically, conjugating cysteamine S-phosphate to the C-terminal of a self-assembling peptide generates a thiophosphopeptide. Being a substrate of alkaline phosphatase (ALP), the thiophosphopeptide undergoes rapid ALP-catalyzed dephosphorylation to form a thiopeptide that self-assembles. The thiophosphopeptide enters cells via caveolin-mediated endocytosis and macropinocytosis and instantly accumulates in GA because of dephosphorylation and formation of disulfide bonds in Golgi by themselves and with Golgi proteins. Moreover, the thiophosphopeptide potently and selectively inhibits cancer cells (HeLa) with the IC50 (about 3 μM), which is an order of magnitude more potent than that of the parent phosphopeptide.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
19
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weiyi Tan
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qiuxin Zhang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqing Wang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Meihui Yi
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
20
|
Ferrando J, Solomon LA. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Life (Basel) 2021; 11:life11030225. [PMID: 33802210 PMCID: PMC7999464 DOI: 10.3390/life11030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
De novo protein design is a powerful methodology used to study natural functions in an artificial-protein context. Since its inception, it has been used to reproduce a plethora of reactions and uncover biophysical principles that are often difficult to extract from direct studies of natural proteins. Natural proteins are capable of assuming a variety of different structures and subsequently binding ligands at impressively high levels of both specificity and affinity. Here, we will review recent examples of de novo design studies on binding reactions for small molecules, nucleic acids, and the formation of protein-protein interactions. We will then discuss some new structural advances in the field. Finally, we will discuss some advancements in computational modeling and design approaches and provide an overview of some modern algorithmic tools being used to design these proteins.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Biology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +703-993-6418
| |
Collapse
|
21
|
Zhan J, Zhong J, Ma S, Ma W, Wang Y, Yu Z, Cai Y, Huang W. Dual-responsive self-assembly in lysosomes enables cell cycle arrest for locking glioma cell growth. Chem Commun (Camb) 2021; 56:6957-6960. [PMID: 32436508 DOI: 10.1039/c9cc09983b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein we first report a dual-responsive peptide substrate (Comp. 1) for preparing self-assembled nanomaterials triggered by pH and legumain. The dual-responsive self-assembly of Comp. 1 in glioma cells enables its long retention time in lysosomes, S phase arrest, and cell growth locking. We verified that the blocked degradation of HIF-1α in lysosomes played a key role in cell cycle arrest and decreased DNA replication. This work illustrates the disturbance of lysosomal function by self-assembled nanomaterials as a promising strategy for inhibiting glioma cell growth.
Collapse
Affiliation(s)
- Jie Zhan
- Shunde Hospital, Southern Medical University, the First People's Hospital of Shunde, Foshan 528300, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A Review for Antimicrobial Peptides with Anticancer Properties: Re-purposing of Potential Anticancer Agents. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract In recent years, various research on cancer treatment has achieved significant progress. However, some of these treatments remain disputable because of the emergence and development of drug resistance, and the toxic side effects that were brought about by the lack
of selectivity displayed by the treatments. Hence, there is considerable interest in a new class of anticancer molecules that is currently still under investigation termed the cationic antimicrobial peptides (AMPs). AMPs are a group of pervasive components of the innate immunity which can
be found throughout all classes of life. The small innate peptides cover a broad spectrum of antibacterial activities due to their electrostatic interactions with the negatively charged bacterial membrane. Compared with normal cells, cancer cells have increased proportions of negatively charged
molecules, including phosphatidylserine, glycoproteins, and glycolipids, on the outer plasma membrane. This provides an opportunity for exploiting the interaction between AMPs and negatively charged cell membranes in developing unconventional anticancer strategies. Some AMPs may also be categorized
into a group of potential anticancer agents called cationic anticancer peptides (ACPs) due to their relative selectivity in cell membrane penetration and lysis, which is similar to their interaction with bacterial membranes. Several examples of ACPs that are used in tumor therapy for their
ability in penetrating or lysing tumor cell membrane will be reviewed in this paper, along with a discussion on the recent advances and challenges in the application of ACPs.
Collapse
Affiliation(s)
- Cuiyu Zhong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiandong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Songyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
23
|
Dendronized polymer conjugates with amplified immunogenic cell death for oncolytic immunotherapy. J Control Release 2021; 329:1129-1138. [PMID: 33098912 DOI: 10.1016/j.jconrel.2020.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
The architecture of multivalent polymers exerts an amplified interaction between attached ligands and targets. In current research, we reveal that a dendronized polymer augments the efficacy of an oncolytic peptide (OP; KKWWKKWDipK) for immunotherapy by exploiting (i) "flexible" linear polymer backbone to facilitate interactions with biomembrane systems, and (ii) "rigid" dendronized side chains to enhance the membrane lytic property. We show that a dendronized N-(2-hydroxypropyl)methacrylamide (HPMA) polymer-OP conjugate (PDOP) adopts α-helix secondary structure and induces robust immunogenic cell death (ICD) in cancer cells as characterized by multiple damage-associated molecular patterns (DAMPs) which include intracellular formation of reactive oxygen species (ROS) and surface exposure of calreticulin (CRT). These events convert immunosuppressive 4T1 tumor to an immunoresponsive one by recruiting CD8+ cytotoxic T cells into tumor beds. Combination of PDOP with anti-PD-L1 immune checkpoint blockade (ICB) increases the number of effector memory T cells and completely eradicates 4T1 tumors in mice. Our findings suggest that PDOP is a promising platform for oncolytic immunotherapy.
Collapse
|
24
|
He H, Lin X, Wu D, Wang J, Guo J, Green DR, Zhang H, Xu B. Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100270. [PMID: 33511360 PMCID: PMC7839975 DOI: 10.1016/j.xcrp.2020.100270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Xinyi Lin
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Douglas R. Green
- Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Hongwei Zhang
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
- Lead contact
- Correspondence:
| |
Collapse
|
25
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
26
|
Shy AN, Li J, Shi J, Zhou N, Xu B. Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels. J Drug Target 2020; 28:760-765. [PMID: 32668995 PMCID: PMC7729926 DOI: 10.1080/1061186x.2020.1797048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
This article reports enzyme-instructed self-assembly (EISA) of stereoisomers of pentapeptides as a simple approach for generating biocompatible supramolecular hydrogels as potential soft bionanomaterials. Peptide-based supramolecular hydrogels are emerging as a new type of biomaterials. The use of tyrosine phosphate offers a trigger for enzymatic hydrogelation, and the incorporation of D-amino acids can increase the proteolytic stability of peptides. This work compared four phosphorpeptides that are stereoisomers in terms of rate of dephosphorylation, proteolytic stability, and cell compatibility. The results show that the naphthyl (Nap)-capped pentapeptides, containing the amino acid sequence of Phe-Phe-Gly-Glu-pTyr, are able to undergo EISA to form the hydrogels consisting the nanofibres of the dephosphorylated pentapeptides. The naphthyl-capped D-phosphopentpeptides, contrasting to a naphthyl-capped D-phosphotripeptide (Nap-D-Phe-D-Phe-D-pTyr), are largely cell compatible. This result, suggesting that the sequence of phophopeptides also dedicates the cell compatibility of the peptide assemblies resulted from EISA, provides useful insights for developing supramolecular hydrogels as potential biomaterials with tailored properties.
Collapse
Affiliation(s)
- Adrianna N. Shy
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Jie Li
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Ning Zhou
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA USA
| |
Collapse
|
27
|
He H, Guo J, Lin X, Xu B. Enzyme-Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:9330-9334. [PMID: 32119754 PMCID: PMC7269854 DOI: 10.1002/anie.202000983] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 01/11/2023]
Abstract
Presently, little is known of how the inter-organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter-organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l- to d-aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme-instructed self-assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter-organelle communication in cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xingyi Lin
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
28
|
Xia J, Sun S, Wu X, Huang Y, Lei C, Nie Z. Enzyme-activated anchoring of peptide probes onto plasma membranes for selectively lighting up target cells. Analyst 2020; 145:3626-3633. [PMID: 32350495 DOI: 10.1039/d0an00487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a cellular microenvironment, numerous biomolecules are involved in various physiological and pathological processes. However, for the in-depth and comprehensive understanding of their roles at the molecular level, there is still a lack of detection techniques for the in situ tracking of these biomolecules in a local environment. Herein, we engineered a membrane insertion peptide (MIP) as an enzyme-activated membrane insertion peptide probe (eaMIP) that allowed the in situ tracking of the activity of target enzymes in living cells. In this strategy, the membrane insertion capacity of the MIP motif in each eaMIP was caged by appending a chemical moiety. In the presence of target enzymes, the caging moiety in each eaMIP was removed by enzymatic decaging, leading to the generation of active MIPs. The versatility of this design was demonstrated by lighting up different tumor cells with distinct fluorescence signal patterns, affording an alternative tool for clinical diagnostics, biochemical research and membrane engineering.
Collapse
Affiliation(s)
- Julan Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | |
Collapse
|
29
|
He H, Guo J, Lin X, Xu B. Enzyme‐Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqi Guo
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Xinyi Lin
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
30
|
Abstract
Enzymatic reactions and self-assembly are two fundamental attributes of cells. It is not surprising that one can use enzyme-instructed self-assembly (EISA)-the integration of enzymatic transformation and molecular self-assembly-to modulate the emergent properties of supramolecular assemblies for controlling cell behaviors. The exploration of EISA for developing cancer therapy and imaging has made considerable progress over the last five years. In this Topical Review, we discuss these exciting results and the future promise of EISA. After describing several key studies to illustrate the progress of EISA in developing cancer therapy, we discuss the use of EISA for molecular imaging. Then, we give the outlook of EISA for developing supramolecular anticancer medicine that inhibits multiple hallmark capabilities of cancer.
Collapse
Affiliation(s)
- Beom Jin Kim
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
31
|
Liang Y, Zhang X, Yuan Y, Bao Y, Xiong M. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater Sci 2020; 8:6858-6866. [PMID: 32815940 DOI: 10.1039/d0bm00801j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Helix is a two-edged sword for AMPs, and conformational modulation of AMPs can control the balance between antimicrobial activity and toxicity.
Collapse
Affiliation(s)
- Yangbin Liang
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Xinshuang Zhang
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yueling Yuan
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yan Bao
- Medical Research Center
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation
- Sun Yat-sen Memorial Hospital
- Sun Yat-sen University
- Guangzhou
| | - Menghua Xiong
- Guangzhou First People's Hospital
- School of Biomedical Sciences and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|