1
|
Krappmann D, Hirsch A. Synthesis and photoinduced switching properties of C 7-heteroatom containing push-pull norbornadiene derivatives. Beilstein J Org Chem 2025; 21:807-816. [PMID: 40297250 PMCID: PMC12035880 DOI: 10.3762/bjoc.21.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
We report the synthesis and characterization of heteroatom-incorporated norbornadiene (NBD) derivatives. Push-pull substitution on the 2 and 3 position as well as introduction of oxygen or nitrogen at position 7 of the NBD scaffold have led to the development of a new family of photoswitches. We studied the potential conversion of norbornadiene to quadricyclane (QC) isomers. As main investigation tools, UV-vis and NMR spectroscopy were utilized. We determined significant spectral features of the formed NBD species, including λmax and λonset values, all of which exhibit redshifts compared to their isocyclic counterparts. Additionally, the selected QC isomers were subjected to thermal and catalytic back-conversion studies.
Collapse
Affiliation(s)
- Daniel Krappmann
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Diao W, Lu J, Li J, Wu X, Cai H, He X, Pan L, Cheng Z, Wu H, Jia Z, Mao W. Cysteine-Specific 18F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging. J Med Chem 2025; 68:1526-1539. [PMID: 39754584 DOI: 10.1021/acs.jmedchem.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the 18F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient 18F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (18F-P10a), the integrin αvβ3 (18F-P12a), and the platelet-derived growth factor receptor β (18F-ZPDGFRβ), with a radiochemical yield exceeding 90%. Preliminary evaluations revealed excellent hydrophilicity across these tracers, with 18F-P12a effectively visualizing integrin αvβ3 expression (tumor uptake: 1.57 ± 0.54%ID/g at 2 h). Additionally, we explored the potential for development of PET/near-infrared (NIR) dual-labeling agents using this method. The dual-modality agent 18F-Cy5-P12d enables specificity and colocalized imaging integrin αvβ3 expression (tumor uptake: 1.35 ± 0.24%ID/g at 2 h). Overall, this strategy offers a versatile platform for peptide radiolabeling and dual-modality agent development.
Collapse
Affiliation(s)
- Wei Diao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Elctronic Science and Technology of China, Chengdu 610041, China
| | - Jing Lu
- Medical Insurance Office, West China Hospital of Sichuan University, Chengdu 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuzhong Cheng
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Elctronic Science and Technology of China, Chengdu 610041, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Krappmann D, Hirsch A. Synthesis, Characterization and Interconversion of p-Tolylsulfone-Functionalized Norbornadiene/Quadricyclane Couples. Chemistry 2024; 30:e202401391. [PMID: 38984830 DOI: 10.1002/chem.202401391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
We report the synthesis and characterization of library of new 2,3-disubstituted norbornadiene/quadricyclane couples. For the first time, the para-tolylsulfone moiety was employed as electron-withdrawing substituent in combination with a variety of different electron donors as counterparts. Comprehensive characterization was conducted for every interconversion couple. By comparison with structurally related molecules published before we established the tosyl moiety as suitable alternative to previously investigated ester functionalities by providing similar photophysical properties. The photo-induced interconversion behavior was investigated via UV/Vis- and NMR-spectroscopy. The UV/Vis experiments were carried out exclusively in acetonitrile, whereas several solvents were investigated in the NMR studies. A detailed description and comparison of the isomerization behavior is provided, while examining relevant optical properties like λmax and λonset. Thereby, an enhanced red-shift up to λmax=394 nm combined with an λonset value of 469 nm could be generated which is necessary for potential applications.
Collapse
Affiliation(s)
- Daniel Krappmann
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
5
|
Carranza M, Carmona AT, Navo CD, Robina I, Fratta S, Newburn C, Jiménez-Osés G, Moreno-Vargas AJ. Experimental and Theoretical Analysis of the Thiol-Promoted Fragmentation of 2-Halo-3-tosyl-oxanorbornadienes. Org Lett 2023; 25:7481-7485. [PMID: 37815231 PMCID: PMC10594659 DOI: 10.1021/acs.orglett.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 10/11/2023]
Abstract
2-Halo-3-tosyl-oxanorbornadienes are able to accept two thiol molecules through an initial nucleophilic substitution, giving isolable oxabicyclic thiovinyl sulfones that, subsequently, can react with a second thiol molecule via thio-Michael addition. The resulting oxanorbornenic thioketals undergo retro-Diels-Alder (rDA) fragmentation to release a furan derivative and a ketene S,S-acetal. The substitution pattern of the oxanorbornadienic skeleton influences the rate of the rDA through electronic and steric factors examined by quantum mechanical calculations.
Collapse
Affiliation(s)
- Marina Carranza
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T. Carmona
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Inmaculada Robina
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Simone Fratta
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Carlos Newburn
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Antonio J. Moreno-Vargas
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| |
Collapse
|
6
|
García-Domínguez J, Carranza M, Jansons E, Carmona AT, Robina I, Moreno-Vargas AJ. Transferring Substituents from Alkynes to Furans and Pyrroles through Heteronorbornadienes as Intermediates: Synthesis of β-Substituted Pyrroles/Furans. J Org Chem 2023; 88:13331-13338. [PMID: 37616527 PMCID: PMC10507663 DOI: 10.1021/acs.joc.3c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 08/26/2023]
Abstract
The use of 7-oxa/azanorbornadienes as synthetic intermediates for the preparation of 3/4-substituted (β-substituted) furans/pyrroles is presented. The method lies in the inverse electron demand Diels-Alder (iEDDA) cycloaddition between a substituted heteronorbornadiene and an electron-poor tetrazine followed by spontaneous fragmentation of the resulting cycloadduct via two retro-Diels-Alder (rDA) reactions affording a β-substituted furan/pyrrole. The scope of this tandem iEDDA/rDA/rDA reaction was explored in the preparation of 29 heterocycles. A one-pot procedure starting directly from the alkyne precursors of the heteronorbornadiene intermediates is also described.
Collapse
Affiliation(s)
| | | | - Edijs Jansons
- Departamento
de Química Orgánica,
Facultad de Química, Universidad
de Sevilla, 41012 Sevilla, Spain
| | - Ana T. Carmona
- Departamento
de Química Orgánica,
Facultad de Química, Universidad
de Sevilla, 41012 Sevilla, Spain
| | - Inmaculada Robina
- Departamento
de Química Orgánica,
Facultad de Química, Universidad
de Sevilla, 41012 Sevilla, Spain
| | - Antonio J. Moreno-Vargas
- Departamento
de Química Orgánica,
Facultad de Química, Universidad
de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
7
|
Roldán-Peña JM, Puerta A, Dinić J, Jovanović Stojanov S, González-Bakker A, Hicke FJ, Mishra A, Piyasaengthong A, Maya I, Walton JW, Pešić M, Padrón JM, Fernández-Bolaños JG, López Ó. Biotinylated selenocyanates: Potent and selective cytostatic agents. Bioorg Chem 2023; 133:106410. [PMID: 36822000 DOI: 10.1016/j.bioorg.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.
Collapse
Affiliation(s)
- Jesús M Roldán-Peña
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Francisco J Hicke
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - Atreyee Mishra
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Akkharadet Piyasaengthong
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Bioscience Program, Faculty of Science, Kasetsart University, Bangkok 10900, Chatuchak, Thailand
| | - Inés Maya
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - James W Walton
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain.
| | - Óscar López
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain.
| |
Collapse
|
8
|
O WY, Cui JF, Yu Q, Kung KKY, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.
Collapse
Affiliation(s)
- Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, 518055, China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Karen Ka-Yan Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
9
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Spears RJ, Chrzastek A, Yap SY, Karu K, Aliev AE, Baker JR, Chudasama V. Unearthing the unique stability of thiophosphonium-C-terminal cysteine adducts on peptides and proteins. Chem Commun (Camb) 2022; 58:5359-5362. [PMID: 35394478 DOI: 10.1039/d2cc01090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a fundamental discovery on the use of tris(dialkylamino)phosphine reagents for peptide and protein modification. We discovered that C-terminal thiophosphonium species, which are uniquely stable, could be selectively and rapidly generated from their disulfide counterparts. In sharp and direct contrast, internal thiophosphonium species rapidly degrade to dehydroalanine. We demonstrate this remarkable chemoselectivity on a bis-cysteine model peptide, and the formation of a stable C-terminal-thiophosphonium adduct on an antibody fragment, as well as characterise the species in various small molecule/peptide studies.
Collapse
Affiliation(s)
- Richard J Spears
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Alina Chrzastek
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Steven Y Yap
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Kersti Karu
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Abil E Aliev
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - James R Baker
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Vijay Chudasama
- UCL Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
11
|
Park Y, Baumann AL, Moon H, Byrne S, Kasper MA, Hwang S, Sun H, Baik MH, Hackenberger CPR. The mechanism behind enhanced reactivity of unsaturated phosphorus(v) electrophiles towards thiols. Chem Sci 2021; 12:8141-8148. [PMID: 34194704 PMCID: PMC8208129 DOI: 10.1039/d1sc01730f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vinyl- and ethynyl phosphorus(v) electrophiles are a versatile class of thiol-reactive reagents suitable for cysteine-selective peptide and protein modifications, especially for the generation of antibody conjugates. Herein we investigated the reactivity of various P(v) reagents towards thiol addition. Complementing previous studies, we observed that the heteroatoms X (X = S, O, NH) as well as the vinyl- vs. ethynyl-substituent bound to phosphorus greatly influence the overall reactivity. These experimentally observed trends, as well as the high Z-selectivity for thiol additions to ethynyl derivatives, were further elucidated using DFT calculations. Hyperconjugation was a key means of stabilizing the intermediate generated upon the thiol addition, thus determining both the reactivity and stereoselectivity of unsaturated P(v) electrophiles. Specifically, the energetically low-lying σ antibonding orbital of the P–S bond more readily stabilizes the electron density from the lone pair (LP) of the generated carbanion, rendering the phosphonothiolates more reactive compared to the derivatives bearing oxygen and nitrogen. Our studies provide a detailed mechanistic picture for designing P(v)-based electrophiles with fine-tuned reactivity profiles. Computational analysis of different unsaturated phosphorus(v) electrophiles revealed a mechanistic picture to rationalize their selectivity and reactivity in cysteine-selective peptide and protein modifications.![]()
Collapse
Affiliation(s)
- Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Alice L Baumann
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Hyejin Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Stephen Byrne
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Marc-André Kasper
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Songhwan Hwang
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Han Sun
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Christian P R Hackenberger
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany .,Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
12
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
13
|
Hymel D, Liu F. Proximity‐driven, Regioselective Chemical Modification of Peptides and Proteins. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Hymel
- Discovery Chemistry Novo Nordisk Research Center Seattle, Inc. 500 Fairview Ave Seattle WA 98109 USA
| | - Fa Liu
- Focus-X Therapeutics, Inc 3541 223rd Ave SE Sammamish WA 98075 USA
| |
Collapse
|
14
|
Wang Y, Zhang C, Wu H, Feng P. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs. Molecules 2020; 25:E5640. [PMID: 33266075 PMCID: PMC7731009 DOI: 10.3390/molecules25235640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Prodrugs, which remain inert until they are activated under appropriate conditions at the target site, have emerged as an attractive alternative to drugs that lack selectivity and show off-target effects. Prodrugs have traditionally been activated by enzymes, pH or other trigger factors associated with the disease. In recent years, bioorthogonal chemistry has allowed the creation of prodrugs that can be chemically activated with spatio-temporal precision. In particular, tetrazine-responsive bioorthogonal reactions can rapidly activate prodrugs with excellent biocompatibility. This review summarized the recent development of tetrazine bioorthogonal cleavage reaction and great promise for prodrug systems.
Collapse
Affiliation(s)
- Yayue Wang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Chang Zhang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Choi H, Kim M, Jang J, Hong S. Visible‐Light‐Induced Cysteine‐Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angew Chem Int Ed Engl 2020; 59:22514-22522. [DOI: 10.1002/anie.202010217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Myojeong Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
16
|
Choi H, Kim M, Jang J, Hong S. Visible‐Light‐Induced Cysteine‐Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Myojeong Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
17
|
Gil de Montes E, Martı Nez-Bailén M, Carmona AT, Robina I, Moreno-Vargas AJ. Regioselectivity of the 1,3-Dipolar Cycloaddition of Organic Azides to 7-Heteronorbornadienes. Synthesis of β-Substituted Furans/Pyrroles. J Org Chem 2020; 85:8923-8932. [PMID: 32519876 DOI: 10.1021/acs.joc.0c00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient procedure for the preparation of β-substituted furans/pyrroles is presented. The methodology is based on the use of 7-oxa/azanorbornadienes as dipolarophiles in 1,3-dipolar cycloaddition with benzyl azide. The triazoline cycloadduct thus formed spontaneously decomposes via a retro-Diels-Alder (rDA) reaction to afford a β-substituted furan/pyrrole derivative and a stable triazole. The scope of this tandem 1,3-dipolar cycloaddition/rDA reaction was studied with thirteen 7-heteronorbornadienes. This study allowed a deep knowledge of the regioselectivity of the reaction, which can be tuned through the substituents of the heteronorbornadienic systems.
Collapse
Affiliation(s)
- Enrique Gil de Montes
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Macarena Martı Nez-Bailén
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Ana T Carmona
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Inmaculada Robina
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| |
Collapse
|