1
|
Zhang J, Fang X. Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs. Curr Opin Struct Biol 2024; 89:102944. [PMID: 39442417 DOI: 10.1016/j.sbi.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
RNA's inherent flexibility and dynamics pose great challenges to characterize its structure and dynamics using conventional techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy. Three complementary molecular ruler techniques, the electron paramagnetic resonance (EPR) spectroscopy, X-ray scattering interferometry (XSI) and Förster resonance energy transfer (FRET) which measure intramolecular and intermolecular pair-wise distance distributions in the nanometer range in a solution, have become increasingly popular and been widely used to explore RNA structure and dynamics. The prerequisites for successful application of such techniques are to achieve site-specific labeling of RNAs with spin labels, fluorescent tags, or gold nanoparticles, respectively, which are however, challenging, especially to large RNAs (generally >200 nts). Here, we briefly review the basics of these molecular rulers, how the NaM-TPT3 unnatural base pair system empower them, and their applications to explore conformational dynamics of large RNAs, especially in the context of flavivirus RNA genome.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianyang Fang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Hirsch M, Hofmann L, Yakobov I, Kahremany S, Sameach H, Shenberger Y, Gevorkyan-Airapetov L, Ruthstein S. An efficient EPR spin-labeling method enables insights into conformational changes in DNA. BIOPHYSICAL REPORTS 2024; 4:100168. [PMID: 38945453 PMCID: PMC11298882 DOI: 10.1016/j.bpr.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for elucidating both static and dynamic conformational alterations in macromolecules. However, to effectively utilize EPR for such investigations, the presence of paramagnetic centers, known as spin labels, is required. The process of spin labeling, particularly for nucleotides, typically demands intricate organic synthesis techniques. In this study, we introduce a unique addition-elimination reaction method with a simple spin-labeling process, facilitating the monitoring of structural changes within nucleotide sequences. Our investigation focuses on three distinct labeling positions with a DNA sequence, allowing the measurement of distance between two spin labels. The experimental mean distances obtained agreed with the calculated distances, underscoring the efficacy of this straightforward spin-labeling approach in studying complex biological processes such as transcription mechanism using EPR measurements.
Collapse
Affiliation(s)
- Melanie Hirsch
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Idan Yakobov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Shirin Kahremany
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Hila Sameach
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
3
|
Hoffmann ES, De Pascali MC, Neu L, Domnick C, Soldà A, Kath-Schorr S. Reverse transcription as key step in RNA in vitro evolution with unnatural base pairs. RSC Chem Biol 2024; 5:556-566. [PMID: 38846072 PMCID: PMC11151862 DOI: 10.1039/d4cb00084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Unnatural base pairs (UBPs) augment the chemical diversity of artificial nucleic acids and can thus enable the generation of new aptamers and catalytic nucleic acids by in vitro selection. However, owing to a lack of methodologies, the reverse transcription of UBPs, a key step in RNA aptamer selection, has not been sufficiently characterized. Here, we present a series of versatile assays to investigate the reverse transcription of the TPT3:NaM base pair as a representative for hydrophobic unnatural base pairs. We determine the fidelity and retention of the UBP for four different reverse transcriptases (RT) in the context of RNA in vitro evolution. The retention of the TPT3:NaM pair during the RNA in vitro selection process was investigated using a novel click-chemistry based electromobility shift assay. Real-time monitoring of reverse transcription kinetics revealed considerable differences in polymerase activity processing the TPT3:NaM base pair. Our findings identified SuperScript IV RT as the most efficient RT for processing the TPT3:NaM pair. Our approach can be applied universally to study newly developed UBPs, not only at the reverse transcription level, but also during PCR and in vitro transcription.
Collapse
Affiliation(s)
- Eva S Hoffmann
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Mareike C De Pascali
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience Garching 85748 Germany
- Dynamic Biosensors GmbH Perchtinger Str. 8/10 Munich 81379 Germany
| | - Lukas Neu
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Christof Domnick
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Alice Soldà
- Dynamic Biosensors GmbH Perchtinger Str. 8/10 Munich 81379 Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
4
|
Depmeier H, Kath-Schorr S. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage. J Am Chem Soc 2024; 146:7743-7751. [PMID: 38442021 DOI: 10.1021/jacs.3c14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Xeno nucleic acids (XNAs) constitute a class of synthetic nucleic acid analogues characterized by distinct, non-natural modifications within the tripartite structure of the nucleic acid polymers. While most of the described XNAs contain a modification in only one structural element of the nucleic acid scaffold, this work explores the XNA chemical space to create more divergent variants with modifications in multiple parts of the nucleosidic scaffold. Combining the enhanced nuclease resistance of α-l-threofuranosyl nucleic acid (TNA) and the almost natural-like replication efficiency and fidelity of the unnatural hydrophobic base pair (UBP) TPT3:NaM, novel modified nucleoside triphosphates with a dual modification pattern were synthesized. We investigated the enzymatic incorporation of these nucleotide building blocks by XNA-compatible polymerases and confirmed the successful enzymatic synthesis of TPT3-modified TNA, while the preparation of NaM-modified TNA presented greater challenges. This study marks the first enzymatic synthesis of TNA with an expanded genetic alphabet (exTNA), opening promising opportunities in nucleic acid therapeutics, particularly for the selection and evolution of nuclease-resistant, high-affinity aptamers with increased chemical diversity.
Collapse
Affiliation(s)
- Hannah Depmeier
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, Cologne 50939, Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, Cologne 50939, Germany
| |
Collapse
|
5
|
Manna S, Kimoto M, Truong J, Bommisetti P, Peitz A, Hirao I, Hammond MC. Systematic Mutation and Unnatural Base Pair Incorporation Improves Riboswitch-Based Biosensor Response Time. ACS Sens 2023; 8:4468-4472. [PMID: 37878677 PMCID: PMC10749561 DOI: 10.1021/acssensors.3c01266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Engineered RNAs have applications in diverse fields from biomedical to environmental. In many cases, the folding of the RNA is critical to its function. Here we describe a strategy to improve the response time of a riboswitch-based fluorescent biosensor. Systematic mutagenesis was performed to either make transpose or transition base pair mutants or introduce orthogonal base pairs. Both natural and unnatural base pair mutants were found to improve the biosensor response time without compromising fold turn-on or ligand affinity. These strategies can be transferred to improve the performance of other RNA-based tools.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Michiko Kimoto
- Institute
of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis
Way, The Nanos #07-01, 138669, Singapore
- Xenolis
Pte. Ltd., 85 Science
Park Drive, #02-05B, The Cavendish, 118259, Singapore
| | - Johnny Truong
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Praneeth Bommisetti
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ava Peitz
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Ichiro Hirao
- Institute
of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis
Way, The Nanos #07-01, 138669, Singapore
- Xenolis
Pte. Ltd., 85 Science
Park Drive, #02-05B, The Cavendish, 118259, Singapore
| | - Ming C. Hammond
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
6
|
Igbaria-Jaber Y, Hofmann L, Gevorkyan-Airapetov L, Shenberger Y, Ruthstein S. Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy. ACS OMEGA 2023; 8:39886-39895. [PMID: 37901548 PMCID: PMC10601412 DOI: 10.1021/acsomega.3c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
In pathogens, a unique class of metalloregulator proteins, called gene regulatory proteins, sense specific metal ions that initiate gene transcription of proteins that export metal ions from the cell, thereby preventing toxicity and cell death. CsoR is a metalloregulator protein found in various bacterial systems that "sense" Cu(I) ions with high affinity. Upon copper binding, CsoR dissociates from the DNA promoter region, resulting in initiation of gene transcription. Crystal structures of CsoR in the presence and absence of Cu(I) from various bacterial systems have been reported, suggesting either a dimeric or tetrameric structure of these helical proteins. However, structural information about the CsoR-DNA complex is missing. Here, we applied electron paramagnetic resonance (EPR) spectroscopy to follow the conformational and dynamical changes that Mycobacterium tuberculosis CsoR undergoes upon DNA binding in solution. We showed that the quaternary structure is predominantly dimeric in solution, and only minor conformational and dynamical changes occur in the DNA bound state. Also, labeling of the unresolved C- terminus revealed no significant change in dynamics upon DNA binding. These observations are unique, since for other bacterial copper metalloregulators, such as the MerR and CopY families, major conformational changes were observed upon DNA binding, indicating a different mode of action for this protein family.
Collapse
Affiliation(s)
- Yasmin Igbaria-Jaber
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute
of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
7
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
8
|
Huang K, Fang X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int J Biol Macromol 2023; 239:124244. [PMID: 37001783 DOI: 10.1016/j.ijbiomac.2023.124244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.
Collapse
|
9
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
10
|
Kaiser F, Endeward B, Collauto A, Scheffer U, Prisner TF, Göbel MW. Spin-Labeled Riboswitch Synthesized from a Protected TPA Phosphoramidite Building Block. Chemistry 2022; 28:e202201822. [PMID: 35903916 PMCID: PMC9804336 DOI: 10.1002/chem.202201822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
The nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached. The light sensitive 2-nitrobenzyloxymethyl group can be removed in high yield by short irradiation at 365 nm. Based on this approach, a doubly spin-labeled 27mer neomycin sensing riboswitch was synthesized and studied by PELDOR. The overall thermal stability of the fold is not much reduced by TPA. In-line probing nevertheless detected changes in local mobility.
Collapse
Affiliation(s)
- Frank Kaiser
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Burkhard Endeward
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Alberto Collauto
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Thomas F. Prisner
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Michael W. Göbel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
11
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
13
|
Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 2022; 13:4753-4761. [PMID: 35655897 PMCID: PMC9067582 DOI: 10.1039/d2sc00670g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The preparation of highly modified mRNAs and visualization of their cellular distribution are challenging. We report in-cell application of in vitro transcribed mRNA containing natural base modifications and site-specifically introduced artificial nucleotides. Click chemistry on mRNA allows visualization in cells with excellent signal intensities. While non-specific introduction of reporter groups often leads to loss in mRNA functionality, we combined the benefits from site-specificity in the 3′-UTR incorporated unnatural nucleotides with the improved translation efficiency of the natural base modifications Ψ and 5mC. A series of experiments is described to observe, quantify and verify mRNA functionality. This approach represents a new way to visualize mRNA delivery into cells and monitor its spread on a cellular level and translation efficiency. We observed increased protein expression from this twofold chemically modified, artificial mRNA counterbalancing a reduced transfection rate. This synergetic effect can be exploited as a powerful tool for future research on mRNA therapeutics. Introducing unnatural base modifications site-specifically into the 3′-UTR of an mRNA bearing natural base modifications allows efficient visualization in cells by click chemistry. An enhanced protein expression in cells is observed from this twofold modified mRNA.![]()
Collapse
Affiliation(s)
- Lisa Bornewasser
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Christof Domnick
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
14
|
Bertran A, Barbon A, Bowen AM, Di Valentin M. Light-induced pulsed dipolar EPR spectroscopy for distance and orientation analysis. Methods Enzymol 2022; 666:171-231. [PMID: 35465920 DOI: 10.1016/bs.mie.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Measuring distances in biology at the molecular level is of great importance for understanding the structure and function of proteins, nucleic acids and other biological molecules and their complexes. Pulsed Dipolar Spectroscopy (PDS) offers advantages with respect to other methods as it is uniquely sensitive and specific to electronic spin centers and allows measurements in near-native conditions, comprising the in-cell environment. PDS methods measure the electron spin-spin dipolar interaction, therefore they require the presence of at least two paramagnetic centers, which are often stable radicals. Recent developments have introduced transient triplet states, photo-activated by a laser pulse, as spin labels and probes, thereby establishing a new family of techniques-Light-induced PDS (LiPDS). In this chapter, an overview of these methods is provided, looking at the chromophores that can be used for LiPDS and some of the technical aspects of the experiments. A guide to the choice of technique that can yield the best results, depending on the type of system studied and the information required, is provided. Examples of previous LiPDS studies of model systems and proteins are given. Characterization data for the chromophores used in these studies is tabulated to help selection of appropriate triplet state probes in future studies.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alice M Bowen
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
15
|
Wang S, Chen D, Gao L, Liu Y. Short Oligonucleotides Facilitate Co-transcriptional Labeling of RNA at Specific Positions. J Am Chem Soc 2022; 144:5494-5502. [PMID: 35293210 DOI: 10.1021/jacs.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Labeling RNA molecules at specific positions is critical for RNA research and applications. Such methods are in high demand but still a challenge, especially those that enable native co-synthesis rather than post-synthesis labeling of long RNAs. The method we developed in this work meets these requirements, in which a leader RNA is extended on the hybrid solid-liquid phase by an engineered transcriptional complex following the pause-restart mode. A custom-designed short oligonucleotide is used to functionalize the engineered complex. This remarkable co-transcriptional labeling method incorporates labels into RNAs in high yields with great flexibility. We demonstrate the method by successfully introducing natural modifications, a fluorescent nucleotide analogue and a donor-acceptor fluorophore pair to specific sites located at an internal loop, a pseudoknot, a junction, a helix, and the middle of consecutive identical nucleotides of various RNAs. This newly developed method overcomes efficiency and position-choosing constraints that have hampered routine strategies to label RNAs beyond 200 nucleotides (nt).
Collapse
Affiliation(s)
- Siyu Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingzhi Gao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
16
|
Endeward B, Hu Y, Bai G, Liu G, Prisner TF, Fang X. Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy. Biophys J 2022; 121:37-43. [PMID: 34896070 PMCID: PMC8758415 DOI: 10.1016/j.bpj.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy is powerful in structure and dynamics study of biological macromolecules by providing distance distribution information ranging from 1.8 to 6 nm, providing that the biomolecules are site-specifically labeled with paramagnetic tags. However, long distances up to 16 nm have been measured on perdeuterated and spin-labeled proteins in deuterated solvent by PELDOR. Here we demonstrate long-range distance measurement on a large RNA, the 97-nucleotide 3'SL RNA element of the Dengue virus 2 genome, by combining a posttranscriptional site-directed spin labeling method using an unnatural basepair system with RNA perdeuteration by enzymatic synthesis using deuterated nucleotides. The perdeuteration removes the coupling of the electron spins of the nitroxide spin labels from the proton nuclear spin system of the RNA and does extend the observation time windows of PELDOR up to 50 μs. This enables one to determine long distances up to 14 nm for large RNAs and their conformational flexibility.
Collapse
Affiliation(s)
- Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 10086, China
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 10019, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 10019, China
| | - Thomas F. Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt, Germany,Corresponding author
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 10086, China,Corresponding author
| |
Collapse
|
17
|
Blümler A, Schwalbe H, Heckel A. Solid‐Phase‐Supported Chemoenzymatic Synthesis of a Light‐Activatable tRNA Derivative. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anja Blümler
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance BMRZ Goethe University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt/Main Germany
| |
Collapse
|
18
|
Blümler A, Schwalbe H, Heckel A. Solid-Phase-Supported Chemoenzymatic Synthesis of a Light-Activatable tRNA Derivative. Angew Chem Int Ed Engl 2022; 61:e202111613. [PMID: 34738704 PMCID: PMC9299214 DOI: 10.1002/anie.202111613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Herein, we present a multi-cycle chemoenzymatic synthesis of modified RNA with simplified solid-phase handling to overcome size limitations of RNA synthesis. It combines the advantages of classical chemical solid-phase synthesis and enzymatic synthesis using magnetic streptavidin beads and biotinylated RNA. Successful introduction of light-controllable RNA nucleotides into the tRNAMet sequence was confirmed by gel electrophoresis and mass spectrometry. The methods tolerate modifications in the RNA phosphodiester backbone and allow introductions of photocaged and photoswitchable nucleotides as well as photocleavable strand breaks and fluorophores.
Collapse
Affiliation(s)
- Anja Blümler
- Institute for Organic Chemistry and Chemical BiologyGoethe University Frankfurt am MainMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyGoethe University Frankfurt am MainMax-von-Laue-Strasse 760438Frankfurt/MainGermany
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance BMRZGoethe University Frankfurt am MainMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical BiologyGoethe University Frankfurt am MainMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| |
Collapse
|
19
|
Vicino MF, Wuebben C, Kerzhner M, Famulok M, Schiemann O. Spin Labeling of Long RNAs Via Click Reaction and Enzymatic Ligation. Methods Mol Biol 2022; 2439:205-221. [PMID: 35226324 DOI: 10.1007/978-1-0716-2047-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron paramagnetic resonance (EPR) is a spectroscopic method for investigating structures, conformational changes, and dynamics of biomacromolecules, for example, oligonucleotides. In order to be applicable, the oligonucleotide has to be labeled site-specifically with paramagnetic tags, the so-called spin labels. Here, we provide a protocol for spin labeling of long oligonucleotides with nitroxides. In the first step, a short and commercially available RNA strand is labeled with a nitroxide via a copper-(I)-catalyzed azide-alkyne cycloaddition (CuAAC), also referred to as "click" reaction. In the second step, the labeled RNA strand is fused to another RNA sequence by means of enzymatic ligation to obtain the labeled full-length construct. The protocol is robust and has been shown experimentally to deliver high yields for RNA sequences up to 81 nucleotides, but longer strands are in principle also feasible. Moreover, it sets the path to label, for example, long riboswitches, ribozymes, and DNAzymes for coarse-grained structure determination and enables to investigate mechanistical features of these systems.
Collapse
Affiliation(s)
- Maria Francesca Vicino
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Mark Kerzhner
- Life & Medical Sciences Institute (LIMES), Chemische Biologie, c/o Kekulé-Institut für organische Chemie, Bonn, Germany
| | - Michael Famulok
- Life & Medical Sciences Institute (LIMES), Chemische Biologie, c/o Kekulé-Institut für organische Chemie, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University, Bonn, Germany.
| |
Collapse
|
20
|
Bornewasser L, Kath-Schorr S. Preparation of Site-Specifically Spin-Labeled RNA by in Vitro Transcription Using an Expanded Genetic Alphabet. Methods Mol Biol 2022; 2439:223-240. [PMID: 35226325 DOI: 10.1007/978-1-0716-2047-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in pulsed electron paramagnetic resonance (EPR) spectroscopy enable studying structure and folding of nucleic acids. An efficient introduction of spin labels at specific positions within the oligonucleotide sequence is a prerequisite. We here present a step-by-step guide to synthesize long RNA oligonucleotides bearing spin labels at specific positions within the sequence. RNA preparation is achieved enzymatically via in vitro transcription using an expanded genetic alphabet. Highly structured, several hundred nucleotides long RNAs with two nitroxide spin labels at specific positions can be prepared by this method.
Collapse
|
21
|
Fang X, Gallego J, Wang YX. Deriving RNA topological structure from SAXS. Methods Enzymol 2022; 677:479-529. [DOI: 10.1016/bs.mie.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
23
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag-Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew Chem Int Ed Engl 2021; 60:4098-4103. [PMID: 33095964 PMCID: PMC7898847 DOI: 10.1002/anie.202013936] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 12/19/2022]
Abstract
The mRNA modification N6 -methyladenosine (m6 A) is associated with multiple roles in cell function and disease. The methyltransferases METTL3-METTL14 and METTL16 act as "writers" for different target transcripts and sequence motifs. The modification is perceived by dedicated "reader" and "eraser" proteins, but not by polymerases. We report that METTL3-14 shows remarkable cosubstrate promiscuity, enabling sequence-specific internal labeling of RNA without additional guide RNAs. The transfer of ortho-nitrobenzyl and 6-nitropiperonyl groups allowed enzymatic photocaging of RNA in the consensus motif, which impaired polymerase-catalyzed primer extension in a reversible manner. METTL16 was less promiscuous but suitable for chemo-enzymatic labeling using different types of click chemistry. Since both enzymes act on distinct sequence motifs, their combination allowed orthogonal chemo-enzymatic modification of different sites in a single RNA.
Collapse
Affiliation(s)
- Anna Ovcharenko
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Florian P. Weissenboeck
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Andrea Rentmeister
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| |
Collapse
|
25
|
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag‐Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Ovcharenko
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| | - Florian P. Weissenboeck
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| | - Andrea Rentmeister
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| |
Collapse
|
26
|
Kimoto M, Soh SHG, Tan HP, Okamoto I, Hirao I. Cognate base-pair selectivity of hydrophobic unnatural bases in DNA ligation by T4 DNA ligase. Biopolymers 2020; 112:e23407. [PMID: 33156531 PMCID: PMC7900958 DOI: 10.1002/bip.23407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022]
Abstract
We present cognate base pair selectivity in template-dependent ligation by T4 DNA ligase using a hydrophobic unnatural base pair (UBP), Ds-Pa. T4 DNA ligase efficiently recognizes the Ds-Pa pairing at the conjugation position, and Ds excludes the noncognate pairings with the natural bases. Our results indicate that the hydrophobic base pairing is allowed in enzymatic ligation with higher cognate base-pair selectivity, relative to the hydrogen-bond interactions between pairing bases. The efficient ligation using Ds-Pa can be employed in recombinant DNA technology using genetic alphabet expansion, toward the creation of semi-synthetic organisms containing UBPs.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| | - Si Hui Gabriella Soh
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore.,Raffles Institution, Singapore, Singapore
| | - Hui Pen Tan
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| | - Itaru Okamoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| |
Collapse
|
27
|
Wuebben C, Vicino MF, Mueller M, Schiemann O. Do the P1 and P2 hairpins of the Guanidine-II riboswitch interact? Nucleic Acids Res 2020; 48:10518-10526. [PMID: 32857846 PMCID: PMC7544219 DOI: 10.1093/nar/gkaa703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
Riboswitches regulate genes by adopting different structures in responds to metabolite binding. The guanidine-II riboswitch is the smallest representative of the ykkC class with the mechanism of its function being centred on the idea that its two stem loops P1 and P2 form a kissing hairpin interaction upon binding of guanidinium (Gdm+). This mechanism is based on in-line probing experiments with the full-length riboswitch and crystal structures of the truncated stem loops P1 and P2. However, the crystal structures reveal only the formation of the homodimers P1 | P1 and P2 | P2 but not of the proposed heterodimer P1 | P2. Here, site-directed spin labeling (SDSL) in combination with Pulsed Electron–Electron Double Resonance (PELDOR or DEER) is used to study their structures in solution and how they change upon binding of Gdm+. It is found that both hairpins adopt different structures in solution and that binding of Gdm+ does indeed lead to the formation of the heterodimer but alongside the homodimers in a statistical 1:2:1 fashion. These results do thus support the proposed switching mechanism.
Collapse
Affiliation(s)
- Christine Wuebben
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Maria F Vicino
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Marcel Mueller
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| |
Collapse
|
28
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
29
|
Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proc Natl Acad Sci U S A 2020; 117:22823-22832. [PMID: 32868439 DOI: 10.1073/pnas.2005217117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conjugation of RNAs with nanoparticles (NPs) is of significant importance because of numerous applications in biology and medicine, which, however, remains challenging especially for large ones. So far, the majority of RNA labeling relies on solid-phase chemical synthesis, which is generally limited to RNAs smaller than 100 nucleotides (nts). We, here, present an efficient and generally applicable labeling strategy for site-specific covalent conjugation of large RNAs with a gold nanoparticle (Nanogold) empowered by transcription of an expanded genetic alphabet containing the A-T/U and G-C natural base pairs (bps) and the TPT3-NaM unnatural base pair (UBP). We synthesize an amine-derivatized TPT3 (TPT3A), which is site specifically incorporated into a 97-nt 3'SL RNA and a 719-nt minigenomic RNA (DENV-mini) from Dengue virus serotype 2 (DENV2) by in vitro T7 transcription. The TPT3A-modified RNAs are covalently conjugated with mono-Sulfo-N-hydroxysuccinimidyl (NHS)-Nanogold NPs via an amine and NHS ester reaction and further purified under nondenaturing conditions. TPT3 modification and Nanogold labeling cause minimal structural perturbations to the RNAs by circular dichroism, small angle X-ray scattering (SAXS), and binding activity assay. We demonstrate the application of the Nanogold-RNA conjugates in large RNA structural biology by an emerging molecular ruler, X-ray scattering interferometry (XSI). The internanoparticle distance distributions in the 3'SL and DENV-mini RNAs derived from XSI measurements support the hypothetical model of flavivirus genome circularization, thus, validate the applicability of this labeling strategy. The presented strategy overcomes the size constraints in conventional RNA labeling strategies and is expected to have wide applications in large RNA structural biology and RNA nanotechnology.
Collapse
|
30
|
Wang Y, Kathiresan V, Chen Y, Hu Y, Jiang W, Bai G, Liu G, Qin PZ, Fang X. Posttranscriptional site-directed spin labeling of large RNAs with an unnatural base pair system under non-denaturing conditions. Chem Sci 2020; 11:9655-9664. [PMID: 33224460 PMCID: PMC7667596 DOI: 10.1039/d0sc01717e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date.
Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date. We here demonstrate an efficient and generally applicable posttranscriptional SDSL method for large RNAs using an expanded genetic alphabet containing the NaM-TPT3 unnatural base pair (UBP). An alkyne-modified TPT3 ribonucleotide triphosphate (rTPT3COTP) is synthesized and site-specifically incorporated into large RNAs by in vitro transcription, which allows attachment of the azide-containing nitroxide through click chemistry. We validate this strategy by SDSL of a 419-nucleotide ribonuclease P (RNase P) RNA from Bacillus stearothermophilus under non-denaturing conditions. The effects of site-directed UBP incorporation and subsequent spin labeling on the global structure and function of RNase P are marginal as evaluated by Circular Dichroism spectroscopy, Small Angle X-ray Scattering, Sedimentation Velocity Analytical Ultracentrifugation and enzymatic assay. Continuous-Wave EPR analyses reveal that the labeling reaction is efficient and specific, and Pulsed Electron–Electron Double Resonance measurements yield an inter-spin distance distribution that agrees with the crystal structure. The labeling strategy as presented overcomes the size constraint of RNA labeling, opening new avenues of spin labeling and EPR spectroscopy for investigating the structure and dynamics of large RNAs.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Venkatesan Kathiresan
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Yaoyi Chen
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Wei Jiang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Peter Z Qin
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
31
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020; 59:7891-7896. [PMID: 31981397 PMCID: PMC7318606 DOI: 10.1002/anie.201916447] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Indexed: 11/26/2022]
Abstract
We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Frank Eggert
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Christine Wuebben
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Lisa Bornewasser
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Olav Schiemann
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|