1
|
Zhao D, Yan X. Ring-Toughened Polymer Networks: The Mighty Impact of Specially Designed Rings on Mechanical Properties. Chemistry 2025; 31:e202404780. [PMID: 39988556 DOI: 10.1002/chem.202404780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Polymer network materials are gaining significance in daily life and industrial applications. Improving polymer network materials' mechanical properties has long been a focus for chemists and materials scientists. Generally, rings in networks are viewed as adverse elements leading to reduced mechanical performance. In this conceptual article, recent advancements and related strategies in utilizing specially designed rings to enhance the mechanical properties of polymer networks are summarized and discussed. The article concludes by discussing current challenges and future prospects in this field. We aim for this article to offer readers an overview of ring-toughened polymer networks and to catalyze swift progress in this burgeoning area.
Collapse
Affiliation(s)
- Dong Zhao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Park S, Gerber A, Santa C, Aktug G, Hengerer B, Clark HA, Jonas U, Dostalek J, Sergelen K. Molecularly Responsive Aptamer-Functionalized Hydrogel for Continuous Plasmonic Biomonitoring. J Am Chem Soc 2025; 147:11485-11500. [PMID: 40113339 PMCID: PMC11969548 DOI: 10.1021/jacs.5c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Continuous in vivo monitoring of small molecule biomarkers requires biosensors with reversibility, sensitivity in physiologically relevant ranges, and biological stability. Leveraging the real-time, label-free detection capability of surface plasmon resonance (SPR) technology, a molecularly responsive hydrogel film is introduced to enhance small molecule sensitivity. This advanced biosensing platform utilizes split-aptamer-cross-linked hydrogels (aptagels) engineered using 8-arm poly(ethylene glycol) macromers, capable of directly and reversibly detecting vancomycin. Investigation through SPR and optical waveguide mode, along with quartz crystal microbalance with dissipation (QCM-D) monitoring, reveals that the reversible formation of analyte-induced ternary molecular complexes leads to aptagel contraction and significant refractive index changes. Optimization of aptamer cross-link distribution and complementarity of split-aptamer pairs maximizes conformational changes of the aptagel, demonstrating a detection limit of 160-250 nM for vancomycin (6-9 fold improvement over monolayer counterpart) with a broad linear sensing range up to 1 mM. The aptagel maintains stability over 24 h in blood serum and 5 weeks in diluted blood plasma (mimicking interstitial fluid). This structurally responsive aptagel platform with superior stability and sensitivity offers promising avenues for continuous in vivo monitoring of small molecules.
Collapse
Affiliation(s)
| | - Alice Gerber
- BioMed
X Institute, Heidelberg 69120, Germany
- Faculty
of Biotechnology, Mannheim University of
Applied Sciences, Mannheim 68163, Germany
| | - Cátia Santa
- BioMed
X Institute, Heidelberg 69120, Germany
| | - Gizem Aktug
- FZU-Institute
of Physics, Czech Academy of Sciences, Prague 180 00, Czech Republic
- Department
of Biophysics, Chemical and Macromolecular Physics, Faculty of Mathematics
and Physics, Charles University, Prague 150 06, Czech Republic
| | - Bastian Hengerer
- Central
Nervous System Diseases Research, Boehringer
Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88400, Germany
| | - Heather A. Clark
- School of
Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Ulrich Jonas
- Macromolecular
Chemistry, Department of Chemistry and Biology, University of Siegen, Siegen 57076, Germany
| | - Jakub Dostalek
- FZU-Institute
of Physics, Czech Academy of Sciences, Prague 180 00, Czech Republic
- LiST-Life
Sciences Technology, Danube Private University, Wiener, Neustadt 2700, Austria
| | | |
Collapse
|
3
|
Qiao Z, Chen Y, Pan H, Li J, Meng Q, Wang J, Cao Y, Wang W, Yang Y. Environment-tolerant, inherently conductive and self-adhesive gelatin-based supramolecular eutectogel for flexible sensor. Int J Biol Macromol 2024; 282:137219. [PMID: 39491696 DOI: 10.1016/j.ijbiomac.2024.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Although hydrogels have attracted increasing attention in the stretchable devices, the low adhesion properties and poor environmental adaptation still seriously restrict their development and application. Herein, we focused on the interaction between polymer networks with disperse media and their resultant influence on gel performance, and constructed self-adhesive and environment-tolerant gelatin/polyacrylamide supramolecular-polymer double-network (gelatin/PAM SP-DN) eutectogels using multiple supramolecular interactions between natural macromolecule and well-designed deep eutectic solvent (DES). The dual networks of gelatin/PAM SP-DN eutectogels produced significant supramolecular forces with DES, including hydrogen bonding and electrostatic interaction, contributing to enhance the energy dissipation capacity. Additionally, the Gelatin-PAM SP-DN eutectogels were more prone to generate strong bonding force to various substrates, showcasing both in-situ and ex-situ adhesion performance, and even being used for wet and underwater adhesion. The eutectogels revealed excellent environmental tolerance to maintain excellent mechanical flexibility, conductivity and adhesion at high and low temperatures, ensuring the constructed sensor to sensitively and reliably perceive strain, pressure and human motions over a wide temperature range. Also, the eutectogel demonstrated great potential as a temperature sensor. This work opens up a new horizon in the design of multifunctional and environment-tolerant natural macromolecule-based gel materials for flexible electronics, human-machine interaction and health diagnosis.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongyu Pan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jichang Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qingkai Meng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanxia Cao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Yao X, Vishnu JA, Lupfer C, Hoenders D, Skarsetz O, Chen W, Dattler D, Perrot A, Wang WZ, Gao C, Giuseppone N, Schmid F, Walther A. Scalable Approach to Molecular Motor-Polymer Conjugates for Light-Driven Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403514. [PMID: 38613525 DOI: 10.1002/adma.202403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
The integration of molecular machines and motors into materials represents a promising avenue for creating dynamic and functional molecular systems, with potential applications in soft robotics or reconfigurable biomaterials. However, the development of truly scalable and controllable approaches for incorporating molecular motors into polymeric matrices has remained a challenge. Here, it is shown that light-driven molecular motors with sensitive photo-isomerizable double bonds can be converted into initiators for Cu-mediated controlled/living radical polymerization enabling the synthesis of star-shaped motor-polymer conjugates. This approach enables scalability, precise control over the molecular structure, block copolymer structures, and high-end group fidelity. Moreover, it is demonstrated that these materials can be crosslinked to form gels with quasi-ideal network topology, exhibiting light-triggered contraction. The influence of arm length and polymer structure is investigated, and the first molecular dynamics simulation framework to gain deeper insights into the contraction processes is developed. Leveraging this scalable methodology, the creation of bilayer soft robotic devices and cargo-lifting artificial muscles is showcased, highlighting the versatility and potential applications of this advanced polymer chemistry approach. It is anticipated that the integrated experimental and simulation framework will accelerate scalable approaches for active polymer materials based on molecular machines, opening up new horizons in materials science and bioscience.
Collapse
Affiliation(s)
- Xuyang Yao
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| | - Jude Ann Vishnu
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Claudius Lupfer
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Hoenders
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Weixiang Chen
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Damien Dattler
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Alexis Perrot
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Chuan Gao
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, Institut Charles Sadron - CNRS, 23 rue du Loess, BP 84047, 67034, Strasbourg, Cedex 2, France
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| | - Friederike Schmid
- KOMET 1, Institute of Physics, Johannes Gutenberg University of Mainz, D 55099, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Freiburg Institute for Advanced Studies, Freiburg, Germany
- Strasbourg Institute for Advanced Studies, Strasbourg, France
| |
Collapse
|
5
|
Kong V, Staunton TA, Laaser JE. Effect of Cross-Link Homogeneity on the High-Strain Behavior of Elastic Polymer Networks. Macromolecules 2024; 57:4670-4679. [PMID: 38827963 PMCID: PMC11140753 DOI: 10.1021/acs.macromol.3c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Cross-link heterogeneity and topological defects have been shown to affect the moduli of polymer networks in the low-strain regime. Probing their role in the high-strain regime, however, has been difficult because of premature network fracture. Here, we address this problem by using a double-network approach to investigate the high-strain behavior of both randomly and regularly cross-linked networks with the same backbone chemistry. Randomly cross-linked poly(n-butyl acrylate) networks with target molecular weights between cross-links of 5-30 kg/mol were synthesized via free-radical polymerization, while regularly cross-linked poly(n-butyl acrylate) networks with molecular weights between cross-links of 7-38 kg/mol were synthesized via cross-linking of tetrafunctional star polymers. Both types of networks were then swollen in a monomer/cross-linker mixture, polymerized to form double networks, and characterized via uniaxial tensile testing. The onset of strain stiffening was found to occur later in regular networks than in random networks with the same modulus but was well-predicted by the target molecular weight between cross-links of each sample. These results indicate that the low- and high-strain behavior of polymer networks result from different molecular-scale features of the material and suggest that controlling network architecture offers new opportunities to both further fundamental understanding of architecture-property relationships and design materials with independently controlled moduli and strain stiffening responses.
Collapse
Affiliation(s)
- Victoria
A. Kong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thomas A. Staunton
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Li Y, Zhao W, Cheng Z, Sun ZY, Liu H. Structural heterogeneity in tetra-armed gels revealed by computer simulation: Evidence from a graph theory assisted characterization. J Chem Phys 2024; 160:144902. [PMID: 38591682 DOI: 10.1063/5.0198388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Designing homogeneous networks is considered one typical strategy for solving the problem of strength and toughness conflict of polymer network materials. Experimentalists have proposed the hypothesis of obtaining a structurally homogeneous hydrogel by crosslinking tetra-armed polymers, whose homogeneity was claimed to be verified by scattering characterization and other methods. Nevertheless, it is highly desirable to further evaluate this issue from other perspectives. In this study, a coarse-grained molecular dynamics simulation coupled with a stochastic reaction model is applied to reveal the topological structure of a polymer network synthesized by tetra-armed monomers as precursors. Two different scenarios, distinguished by whether internal cross-linking is allowed, are considered. We introduce the Dijkstra algorithm from graph theory to precisely characterize the network structure. The microscopic features of the network structure, e.g., loop size, dispersity, and size distribution, are obtained via the Dijkstra algorithm. By comparing the two reaction scenarios, Scenario II exhibits an overall more idealized structure. Our results demonstrate the feasibility of the Dijkstra algorithm for precisely characterizing the polymer network structure. We expect this work will provide a new insight for the evaluation and description of gel networks and further help to reveal the dynamic process of network formation.
Collapse
Affiliation(s)
- Yingxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wenbo Zhao
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhiyuan Cheng
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
7
|
Zhang Y, Pan Y, Chang R, Chen K, Wang K, Tan H, Yin M, Liu C, Qu X. Advancing homogeneous networking principles for the development of fatigue-resistant, low-swelling and sprayable hydrogels for sealing wet, dynamic and concealed wounds in vivo. Bioact Mater 2024; 34:150-163. [PMID: 38225944 PMCID: PMC10788230 DOI: 10.1016/j.bioactmat.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kangli Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haoqi Tan
- Suzhou Innovation Center of Shanghai University, Shanghai University, Suzhou 215000, Jiangsu, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism Shanghai, 200237, China
| |
Collapse
|
8
|
Ma J, Zhong J, Sun F, Liu B, Peng Z, Lian J, Wu X, Li L, Hao M, Zhang T. Hydrogel sensors for biomedical electronics. CHEMICAL ENGINEERING JOURNAL 2024; 481:148317. [DOI: 10.1016/j.cej.2023.148317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Koo MB, Lee JH, Kim GW, Jang H, Kim SY, Kim KT. Structural Homogeneity of Macromolecular Networks by End-to-End Click Chemistry between Discrete Tetrahedral Star Macromolecules. ACS Macro Lett 2024; 13:75-81. [PMID: 38170942 DOI: 10.1021/acsmacrolett.3c00619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cross-linking via the end-to-end click chemistry of multiarm star polymers creates polymer networks with minimal inhomogeneities. Although it has been suggested that the mechanical and swelling properties of such networks depend on the absence of defects, the structural details of homogeneous networks created by this method have not yet been studied at the molecular level. Here, we report the synthesis of discrete tetrahedral star macromolecules (dTSMs) composed of polylactide (PLA) arms with discrete molecular weight and sequence. Polymer networks prepared by 4 × 4 cross-linking by Cu-free strain-promoted cyclooctyne-azide click chemistry (SPAAC) reaction exhibited a high degree of swelling (>40 fold by weight) in solvents without sacrificing mechanical robustness (elastic modulus >4 kPa). The structural details of the networks were investigated by network disassembly spectrometry (NDS) using MALDI-TOF mass spectrometry. By implementing a cleavable repeating unit in the discrete PLA arms of dTSM in a sequence-specific manner, the networks could be disassembled into fragments having discrete molecular weights precisely representing their connectivity in the network. This NDS analysis confirmed that end-to-end click reactions of dTSM networks resulted in the formation of a homogeneous network above the critical concentration (∼10 w/v%) of building blocks in the solution.
Collapse
Affiliation(s)
- Mo Beom Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Hak Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Geon Woong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Heejeong Jang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Chen Y, Hu Z, Wang D, Xue X, Pu H. Reversible Change in Performances of Polymer Networks via Invertible Architecture-Transformation of Cross-Links. ACS Macro Lett 2023; 12:1311-1316. [PMID: 37708566 DOI: 10.1021/acsmacrolett.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
A polymer nanoparticle network using single-chain nanoparticles (SCNPs) as cross-links is designed. The experimental and theoretical study shows that incorporating SCNPs in polymer networks leads to smaller mesh size, faster terminal relaxation time, and reduced fluctuation among cross-links, resulting in a significant increase in shear storage modulus, and enhancement in tensile stress. Notably, the reversible single-chain collapse of SCNPs under thermal stimulation enables the polymer network to undergo coherent changes between two topological states, thereby exhibiting reversible transformations between soft and stiff states. This approach and finding can effectively tailor the mechanical properties of polymer networks, potentially leading to the development of intelligent, responsive materials.
Collapse
Affiliation(s)
- Yangjing Chen
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education, Shanghai, 201804, China
| | - Zhiyu Hu
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Deping Wang
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaoqiang Xue
- Industrial College of Carbon Fiber and New Materials, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, China
| | - Hongting Pu
- School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education, Shanghai, 201804, China
| |
Collapse
|
11
|
Wang Z, Zhang W, Bai G, Lu Q, Li X, Zhou Y, Yang C, Xiao Y, Lang M. Highly resilient and fatigue-resistant poly(4-methyl- ε-caprolactone) porous scaffold fabricated via thiol-yne photo-crosslinking/salt-templating for soft tissue regeneration. Bioact Mater 2023; 28:311-325. [PMID: 37334070 PMCID: PMC10275743 DOI: 10.1016/j.bioactmat.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Elastomeric scaffolds, individually customized to mimic the structural and mechanical properties of natural tissues have been used for tissue regeneration. In this regard, polyester elastic scaffolds with tunable mechanical properties and exceptional biological properties have been reported to provide mechanical support and structural integrity for tissue repair. Herein, poly(4-methyl-ε-caprolactone) (PMCL) was first double-terminated by alkynylation (PMCL-DY) as a liquid precursor at room temperature. Subsequently, three-dimensional porous scaffolds with custom shapes were fabricated from PMCL-DY via thiol-yne photocrosslinking using a practical salt template method. By manipulating the Mn of the precursor, the modulus of compression of the scaffold was easily adjusted. As evidenced by the complete recovery from 90% compression, the rapid recovery rate of >500 mm min-1, the extremely low energy loss coefficient of <0.1, and the superior fatigue resistance, the PMCL20-DY porous scaffold was confirmed to harbor excellent elastic properties. In addition, the high resilience of the scaffold was confirmed to endow it with a minimally invasive application potential. In vitro testing revealed that the 3D porous scaffold was biocompatible with rat bone marrow stromal cells (BMSCs), inducing BMSCs to differentiate into chondrogenic cells. In addition, the elastic porous scaffold demonstrated good regenerative efficiency in a 12-week rabbit cartilage defect model. Thus, the novel polyester scaffold with adaptable mechanical properties may have extensive applications in soft tissue regeneration.
Collapse
Affiliation(s)
- Zhaochuang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wenhao Zhang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guo Bai
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyu Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chi Yang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral Surgery of Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
12
|
Chi D, Gu H, Wang J, Wu C, Wang R, Cheng Z, Zhang D, Xie Z, Liu Y. Narrow response temperature range with excellent reversible shape memory effect for semi-crystalline networks as soft actuators. MATERIALS HORIZONS 2023. [PMID: 37039134 DOI: 10.1039/d3mh00270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Complex and controlled reversible actuation inevitably relies on changing thermal fields (direct or indirect) for semi-crystalline reversible shape memory networks. Unfortunately, the non-tunability of thermal signals often brings potential limitations to actuators' applications. In practice, a wide response temperature range (T-range) formed by Thigh and Tlow in the remarkable reversible actuation is an obvious fact. Herein, we demonstrate the tunability of the transition temperatures while stably maintaining excellent actuation abilities. We further verified that the narrow T-range (24 °C) that had not been reported could present more than 17% reversible strain. Special parameter optimization provides opportunities for potential non-implantable biomedical applications. Therefore, based on target 2W-SMP, a vehicle concept with the drug release and vehicle recovery ability was proposed, proving our approach's feasibility.
Collapse
Affiliation(s)
- Dequan Chi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Haoyu Gu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jingfeng Wang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Chao Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Ruijie Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
13
|
Ohira M, Nakagawa S, Sampei R, Noritomi T, Sakai T, Shibayama M, Li X. Effects of network junctions and defects on the crystallization of model poly(ethylene glycol) networks. SOFT MATTER 2023; 19:1653-1663. [PMID: 36756772 DOI: 10.1039/d2sm01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer crystallization drastically changes the physical properties of polymeric materials. However, the crystallization in polymer networks has been little explored. This study investigated the crystallization behavior of a series of poly(ethylene glycol) (PEG) networks consisting of well-defined branched precursors. The PEG networks were prepared by drying gels synthesized at various conditions. The PEG networks showed slower crystallization with lower final crystallinity than uncrosslinked PEGs with amine end groups. Surprisingly, the effect of network formation was not as significant as that of the relatively bulky end-groups introduced in the uncrosslinked polymer. The molecular weight of the precursor PEG, or equivalently the chain length between neighboring junctions, was the primary parameter that affected the crystallization of the PEG networks. Shorter network chains led to lower crystallization rates and final crystallinity. This effect became less significant as the network chain length increased. On the other hand, the spatial and topological defects formed in the gel synthesis process did not affect the crystallization in the polymer networks at all. The crystallization in the polymer networks seems insensitive to these mesoscopic defects and can be solely controlled by the chain length between junctions.
Collapse
Affiliation(s)
- Masashi Ohira
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryotaro Sampei
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takako Noritomi
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Mitsuhiro Shibayama
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
14
|
Meng H, Ye W, Wang C, Gao Z, Hu B, Wang C. Crystalline micro-nanoparticles enhance cross-linked hydrogels via a confined assembly of chitosan and γ-cyclodextrin. Carbohydr Polym 2022; 298:120145. [DOI: 10.1016/j.carbpol.2022.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
15
|
Wang W, Chan YH, Kwon S, Tandukar J, Gao R. Nanoscale fluorescence imaging of biological ultrastructure via molecular anchoring and physical expansion. NANO CONVERGENCE 2022; 9:30. [PMID: 35810234 PMCID: PMC9271151 DOI: 10.1186/s40580-022-00318-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 05/25/2023]
Abstract
Nanoscale imaging of biological samples can provide rich morphological and mechanistic information about biological functions and dysfunctions at the subcellular and molecular level. Expansion microscopy (ExM) is a recently developed nanoscale fluorescence imaging method that takes advantage of physical enlargement of biological samples. In ExM, preserved cells and tissues are embedded in a swellable hydrogel, to which the molecules and fluorescent tags in the samples are anchored. When the hydrogel swells several-fold, the effective resolution of the sample images can be improved accordingly via physical separation of the retained molecules and fluorescent tags. In this review, we focus on the early conception and development of ExM from a biochemical and materials perspective. We first examine the general workflow as well as the numerous variations of ExM developed to retain and visualize a broad range of biomolecules, such as proteins, nucleic acids, and membranous structures. We then describe a number of inherent challenges facing ExM, including those associated with expansion isotropy and labeling density, as well as the ongoing effort to address these limitations. Finally, we discuss the prospect and possibility of pushing the resolution and accuracy of ExM to the single-molecule scale and beyond.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yat Ho Chan
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - SoYoung Kwon
- Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jamuna Tandukar
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Nakagawa S, Yoshie N. Linking microscopic structural changes and macroscopic mechanical responses in a near-ideal bottlebrush elastomer under uniaxial deformation. SOFT MATTER 2022; 18:4527-4535. [PMID: 35670222 DOI: 10.1039/d2sm00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bottlebrush (BB) elastomers, in which load-bearing network strands are densely grafted with side chains, are gaining much attention due to their unique mechanical properties. Herein, we used in situ small-angle X-ray scattering coupled with tensile tests to investigate the microscopic structural changes induced in a model BB elastomer with a controlled network structure under uniaxial deformation. The model BB elastomer was synthesized by end-linking a monodisperse star-shaped BB polymer, which ensured a controlled network structure. The BB elastomer exhibited both significant strain stiffening and backbone chain alignment under uniaxial loading, and these properties were not observed in an analogous side chain-free elastomer and gel. It was also found that the side chains in the BB elastomer did not show any sign of chain orientation even when the attached backbone chain was aligned in the stretching direction. These observations highlighted the roles of side chains: they were structurally disordered at the segment level but their steric repulsion made the backbone chain aligned and overstretched.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, the University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| | - Naoko Yoshie
- Institute of Industrial Science, the University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
17
|
Katashima T, Kudo R, Naito M, Nagatoishi S, Miyata K, Chung UI, Tsumoto K, Sakai T. Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with Well-Controlled Structures. ACS Macro Lett 2022; 11:753-759. [PMID: 35594190 DOI: 10.1021/acsmacrolett.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We demonstrate an experimental comparison of the bond lifetime, estimated using surface plasmon resonance (SPR), and the viscoelastic relaxation time of transient networks with well-controlled structures (dynamically cross-linked Tetra-PEG gel). SPR and viscoelastic measurements revealed that the temperature dependences of the two characteristic times are in agreement, while the viscoelastic response is delayed with respect to the lifetime by a factor of 2-3, dependent on the network strand length. Polymers cross-linked by temporary interactions form transient networks, which show fascinating viscoelasticity with a single relaxation mode. However, the molecular understanding of such simple viscoelasticity has remained incomplete because of the difficulty of experimentally evaluating bond lifetimes and heterogeneous structures in conventional transient networks. Our results suggest that bond dissociation and recombination both contribute to the macromechanical response. This report on direct bond-lifetime-viscoelastic-relaxation time comparison provides important information for the molecular design of transient network materials.
Collapse
Affiliation(s)
- Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Kudo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
19
|
Ohira M, Katashima T, Naito M, Aoki D, Yoshikawa Y, Iwase H, Takata SI, Miyata K, Chung UI, Sakai T, Shibayama M, Li X. Star-Polymer-DNA Gels Showing Highly Predictable and Tunable Mechanical Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108818. [PMID: 35034389 DOI: 10.1002/adma.202108818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Dynamically crosslinked gels are appealing materials for applications that require time-dependent mechanical responses. DNA duplexes are ideal crosslinkers for building such gels because of their excellent sequence addressability and flexible tunability in bond energy. However, the mechanical responses of most DNA gels are complicated and unpredictable. Here, a DNA gel with a highly homogeneous gel network and well predictable mechanical behaviors is demonstrated by using a pair of star-polymer-DNA precursors with presimulated DNA sequences showing the two-state transition. The melting curve analysis of the DNA gels reveals the good correspondence between the thermodynamic potentials of the DNA crosslinkers and the presimulated values by DNA calculators. Stress-relaxation tests and dissociation kinetics measurements show that the macroscopic relaxation time of the DNA gels is approximately equal to the lifetime of the DNA crosslinkers over 4 orders of magnitude from 0.1-2000 s. Furthermore, a series of durability tests find the DNA gels are hysteresis-less and self-healable after the applications of repeated temperature and mechanical stimuli. These results demonstrate the great potential of star-polymer-DNA precursors for building gels with predictable and tunable viscoelastic properties, suitable for applications such as stress-response extracellular matrices, injectable solids, and soft robotics.
Collapse
Affiliation(s)
- Masashi Ohira
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yusuke Yoshikawa
- Neutron Science Laboratory, Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
| | - Shin-Ichi Takata
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8685, Japan
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
20
|
Wang Z, Cui H, Liu M, Grage SL, Hoffmann M, Sedghamiz E, Wenzel W, Levkin PA. Tough, Transparent, 3D-Printable, and Self-Healing Poly(ethylene glycol)-Gel (PEGgel). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107791. [PMID: 34854140 DOI: 10.1002/adma.202107791] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Polymer gels, such as hydrogels, have been widely used in biomedical applications, flexible electronics, and soft machines. Polymer network design and its contribution to the performance of gels has been extensively studied. In this study, the critical influence of the solvent nature on the mechanical properties and performance of soft polymer gels is demonstrated. A polymer gel platform based on poly(ethylene glycol) (PEG) as solvent is reported (PEGgel). Compared to the corresponding hydrogel or ethylene glycol gel, the PEGgel with physically cross-linked poly(hydroxyethyl methacrylate-co-acrylic acid) demonstrates high stretchability and toughness, rapid self-healing, and long-term stability. Depending on the molecular weight and fraction of PEG, the tensile strength of the PEGgels varies from 0.22 to 41.3 MPa, fracture strain from 12% to 4336%, modulus from 0.08 to 352 MPa, and toughness from 2.89 to 56.23 MJ m-3 . Finally, rapid self-healing of the PEGgel is demonstrated and a self-healing pneumatic actuator is fabricated by 3D-printing. The enhanced mechanical properties of the PEGgel system may be extended to other polymer networks (both chemically and physically cross-linked). Such a simple 3D-printable, self-healing, and tough soft material holds promise for broad applications in wearable electronics, soft actuators and robotics.
Collapse
Affiliation(s)
- Zhenwu Wang
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Haijun Cui
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Modan Liu
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stephan L Grage
- Karlsruhe Institute of Technology, Institute for Biological Interfaces IBG-2, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, Karlsruhe, 76131, Germany
| | - Elaheh Sedghamiz
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Kaiserstraße 12, Karlsruhe, 76131, Germany
| |
Collapse
|
21
|
Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with controlled structure. Polym Chem 2022. [DOI: 10.1039/d1py01547h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of precisely controlled polymer networks has been a long-cherished dream of polymer scientists. Traditional random cross-linking strategies often lead to uncontrolled networks with various kinds of defects. Recent...
Collapse
|
22
|
Hai Y, Ye H, Li Z, Zou H, Lu H, You L. Light-Induced Formation/Scission of C-N, C-O, and C-S Bonds Enables Switchable Stability/Degradability in Covalent Systems. J Am Chem Soc 2021; 143:20368-20376. [PMID: 34797658 DOI: 10.1021/jacs.1c09958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The manipulation of covalent bonds could be directed toward degradable, recyclable, and sustainable materials. However, there is an intrinsic conflict between properties of stability and degradability. Here we report light-controlled formation/scission of three types of covalent bonds (C-N, C-O, and C-S) through photoswitching between equilibrium and nonequilibrium states of dynamic covalent systems, achieving dual benefits of photoaddressable stability and cleavability. The photocyclization of dithienylethene fused aldehyde ring-chain tautomers turns on the reactivity, incorporating/releasing amines, alcohols, and thiols reversibly with high efficiency, respectively. Upon photocycloreversion the system is shifted to kinetically locked out-of-equilibrium form, enabling remarkable robustness of covalent assemblies. Reaction coupling allows remote and directional control of a diverse range of equilibria and further broadens the scope. Through locking and unlocking covalent linkages with light when needed, the utility is demonstrated with capture/release of bioactive molecules, modification of surfaces, and creation of polymers exhibiting tailored stability and degradability/recyclability. The versatile toolbox for photoswitchable dynamic covalent reactions to toggle matters on and off should be appealing to many endeavors.
Collapse
Affiliation(s)
- Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ziyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
23
|
Baba Y, Gao G, Hara M, Seki T, Satoh K, Kamigaito M, Hoshino T, Urayama K, Takeoka Y. Mechanical Properties of Homogeneous Polymer Networks Prepared by Star Polymer Synthesis Methods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yusuke Baba
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Guohao Gao
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Hoshino
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-51982, Japan
| | - Kenji Urayama
- Department of Macromolecular Science & Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
24
|
A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 2021; 5:859-869. [PMID: 37117386 DOI: 10.1038/s41570-021-00328-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.
Collapse
|
25
|
Cuthbert J, Wanasinghe SV, Matyjaszewski K, Konkolewicz D. Are RAFT and ATRP Universally Interchangeable Polymerization Methods in Network Formation? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Julia Cuthbert
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Shiwanka V. Wanasinghe
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, Ohio 45056, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, Ohio 45056, United States
| |
Collapse
|
26
|
|
27
|
Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into the Role of Hydrogen Bonds on the Mechanical Properties of Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Huang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
30
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Nakagawa S, Yoshie N. Synthesis of a Bottlebrush Polymer Gel with a Uniform and Controlled Network Structure. ACS Macro Lett 2021; 10:186-191. [PMID: 35570783 DOI: 10.1021/acsmacrolett.0c00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A structurally controlled polymer gel was synthesized by end-linking a monodisperse star polymer in which each arm was a bottlebrush (BB) polymer densely grafted with side chains. The combination of atom transfer radical polymerization and postpolymerization modification yielded a four-arm star-shaped BB polymer with a controlled polymerization degree of the backbone and side chains. The reactive end groups introduced at the end of each arm reacted with small bifunctional linkers in solution, leading to the formation of a BB polymer gel. The elasticity study on the BB polymer gel suggested its uniform network structure. Our method enables precise and uniform tuning of essential structural parameters across the entire BB polymer network, which will be beneficial for developing soft materials with desired mechanical responses.
Collapse
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
32
|
Takashima R, Ohira M, Yokochi H, Aoki D, Li X, Otsuka H. Characterization of N-phenylmaleimide-terminated poly(ethylene glycol)s and their application to a tetra-arm poly(ethylene glycol) gel. SOFT MATTER 2020; 16:10869-10875. [PMID: 33210675 DOI: 10.1039/d0sm01658f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tetra-arm poly(ethylene glycol) (TetraPEG) gels are tough materials whose toughness originates from their uniform network structure. They can be formed by combining the termini of tetra-arm polymers via chemical reactions with high conversion efficiency, such as the Michael addition, condensations using an active ester group, and alkyne-azide cycloadditions. Herein, we report the synthesis of a tetra-PEG gel using a tetra-arm polymer with N-phenylmaleimide moieties at the polymer ends (tetra-N-aryl MA PEG) as a scaffold. Tetra-N-aryl MA PEG can be obtained via a simple maleimidation using the modification agent p-maleimidophenyl isocyanate (PMPI), which directly transforms the hydroxy groups at the polymer ends into reactive N-aryl maleimide groups in a one-pot reaction. The thus-obtained tetra-N-aryl MA PEG was fully characterized using high-performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization time of flight mass spectrometry, and proton nuclear magnetic resonance spectroscopy. HPLC analysis not only demonstrated the high purity of tetra-N-aryl MA PEG and the full conversion of the hydroxy groups, but also provided an effective characterization method for N-aryl maleimide-based PEG using a simple protocol, which enables us quantitative analysis of functionalized polymers with different N-aryl maleimide numbers. Furthermore, we fabricated a TetraPEG gel via Michael addition of the obtained tetra-N-aryl MA and thiol-terminated TetraPEGs. Thus, this report presents the application of tetra-N-aryl MA PEG as an effective precursor to obtain a uniform network structure and a method for its characterization; these results should provide support for the development of functional molecules, soft materials, and further functional materials based on the uniform-network-structure concept.
Collapse
Affiliation(s)
- Rikito Takashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | | | | | | | | | | |
Collapse
|