1
|
Lautner-Csorba O, Gorur R, Major T, Wu J, Sheet P, Hill J, Yu M, Xi C, Bartlett RH, Schwendeman SP, Lautner G, Meyerhoff ME. Antithrombotic and Antimicrobial Potential of S -Nitroso-1-Adamantanethiol-Impregnated Extracorporeal Circuit. ASAIO J 2025; 71:177-185. [PMID: 39037705 PMCID: PMC11751132 DOI: 10.1097/mat.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
This study presents the utilization of a novel, highly lipophilic nitric oxide (NO) donor molecule, S -nitroso-1-adamantanethiol (SNAT), for developing an NO-emitting polymer surface aimed at preventing thrombus formation and bacterial infection in extracorporeal circuits (ECCs). S -nitroso-1-adamantanethiol, a tertiary nitrosothiol-bearing adamantane species, was synthesized, characterized, and used to impregnate polyvinyl chloride (PVC) tubing for subsequent in vivo evaluation. The impregnation process with SNAT preserved the original mechanical strength of the PVC. In vitro assessments revealed sustained NO release from the SNAT-impregnated PVC tubing (iSNAT), surpassing or matching endothelial NO release levels for up to 42 days. The initial NO release remained stable even after 1 year of storage at -20°C. The compatibility of iSNAT with various sterilization techniques (OPA Plus, hydrogen peroxide, EtO) was tested. Acute in vivo experiments in a rabbit model demonstrated significantly reduced thrombus formation in iSNAT ECCs compared with controls, indicating the feasibility of iSNAT to mitigate coagulation system activation and potentially eliminate the need for systemic anticoagulation. Moreover, iSNAT showed substantial inhibition of microbial biofilm formation, highlighting its dual functionality. These findings underscore the promising utility of iSNAT for long-term ECC applications, offering a multifaceted approach to enhancing biocompatibility and minimizing complications.
Collapse
Affiliation(s)
| | - Roopa Gorur
- University of Michigan, Department of Chemistry, Ann Arbor, MI, USA
| | - Terry Major
- University of Michigan, Department of Surgery, Ann Arbor, MI, USA
| | - Jianfeng Wu
- University of Michigan, Department of Environmental Health Sciences, Ann Arbor, MI, USA
| | - Partha Sheet
- University of Michigan, Department of Pharmaceutical Sciences, Ann Arbor, MI, USA
| | - Joseph Hill
- University of Michigan, Department of Surgery, Ann Arbor, MI, USA
| | - Minzhi Yu
- University of Michigan, Department of Pharmaceutical Sciences, Ann Arbor, MI, USA
| | - Chuanwu Xi
- University of Michigan, Department of Environmental Health Sciences, Ann Arbor, MI, USA
| | | | - Steven P. Schwendeman
- University of Michigan, Department of Pharmaceutical Sciences, Ann Arbor, MI, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
| | - Gergely Lautner
- University of Michigan, Department of Pharmaceutical Sciences, Ann Arbor, MI, USA
| | | |
Collapse
|
2
|
Davis AG, Pluth MD. Experimental Insights into the Formation, Reactivity, and Crosstalk of Thionitrite (SNO -) and Perthionitrite (SSNO -). Angew Chem Int Ed Engl 2025; 64:e202413092. [PMID: 39352837 DOI: 10.1002/anie.202413092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous biological signaling molecules that are involved in complex cellular pathways. A number of physiological processes require both H2S and NO, which has led to the proposal that different H2S/NO⋅ crosstalk species, including thionitrite (SNO-) and perthionitrite (SSNO-), are responsible for this observed codependence. Despite the importance of these S/N hybrid species, the reported properties and characterization, as well as the fundamental pathways of formation and subsequent reactivity, remain poorly understood. Herein we report new experimental insights into the fundamental reaction chemistry of pathways to form SNO- and SSNO-, including mechanisms for proton-mediated interconversion. In addition, we demonstrate new modes of reactivity with other sulfur-containing potential crosstalk species, including carbonyl sulfide (COS).
Collapse
Affiliation(s)
- Amanda G Davis
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, 1253 University of Oregon, Eugene, Oregon, 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, 1253 University of Oregon, Eugene, Oregon, 97403, United States
| |
Collapse
|
3
|
Kolliyedath G, Sahana T, Johnson SM, Kundu S. Synergistic Activation of Nitrite and Thiocarbonyl Compounds Affords NO and Sulfane Sulfur via (Per)thionitrite (SNO - /SSNO - ). Angew Chem Int Ed Engl 2023; 62:e202313187. [PMID: 37856704 DOI: 10.1002/anie.202313187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
(Per)thionitrite (SNO- /SSNO- ) intermediates play vital roles in modulating nitric oxide (NO) and hydrogen sulfide (H2 S) dependent bio-signalling processes. Whilst the previous preparations of such intermediates involved reactive H2 S/HS- or sulfane sulfur (S0 ) species, the present report reveals that relatively stable thiocarbonyl compounds (such as carbon disulfide (CS2 ), thiocarbamate, thioacetic acid, and thioacetate) react with nitrite anion to yield SNO- /SSNO- . For instance, the reaction of CS2 and nitrite anion (NO2 - ) under ambient condition affords CO2 and SNO- /SSNO- . A detailed investigation involving UV/Vis, FTIR, HRMS, and multinuclear NMR studies confirm the formation of SNO- /SSNO- , which are proposed to form through an initial nucleophilic attack by nitrite anion followed by a transnitrosation step. Notably, reactions of CS2 and nitrite in the presence of thiol RSH show the formation of organic polysulfides R-Sn -R, thereby illustrating that the thiocarbonyls are capable of influencing the pool of bioavailable sulfane sulfurs. Furthermore, the availability of both NO2 - and thiocarbonyl motifs in the biological context hints at their synergistic metal-free activations leading to the generation of NO gas and various reactive sulfur species via SNO- /SSNO- .
Collapse
Affiliation(s)
- Gayathri Kolliyedath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| | - Tuhin Sahana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| | - Silpa Mary Johnson
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-Tvm) Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
4
|
Sahana T, Valappil AK, Amma ASPR, Kundu S. NO Generation from Nitrite at Zinc(II): Role of Thiol Persulfidation in the Presence of Sulfane Sulfur. ACS ORGANIC & INORGANIC AU 2023; 3:246-253. [PMID: 37810413 PMCID: PMC10557059 DOI: 10.1021/acsorginorgau.3c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/10/2023]
Abstract
Nitrite-to-NO transformation is of prime importance due to its relevance in mammalian physiology. Although such a one-electron reductive transformation at various redox-active metal sites (e.g., Cu and Fe) has been illustrated previously, the reaction at the [ZnII] site in the presence of a sacrificial reductant like thiol has been reported to be sluggish and poorly understood. Reactivity of [(Bn3Tren)ZnII-ONO](ClO4) (1), a nitrite-bound model of the tripodal active site of carbonic anhydrase (CA), toward various organic probes, such as 4-tert-butylbenzylthiol (tBuBnSH), 2,4-di-tert-butylphenol (2,4-DTBP), and 1-fluoro-2,4-dinitrobenzene (F-DNB), reveals that the ONO-moiety in the [ZnII]-nitrite coordination motif of complex 1 acts as a mild electrophile. tBuBnSH reacts mildly with nitrite at a [ZnII] site to provide S-nitrosothiol tBuBnSNO prior to the release of NO in 10% yield, whereas the phenolic substrate 2,4-DTBP does not yield the analogous O-nitrite compound (ArONO). The presence of sulfane sulfur (S0) species such as elemental sulfur (S8) and organic polysulfides (tBuBnSnBntBu) during the reaction of tBuBnSH and [ZnII]-nitrite (1) assists the nitrite-to-NO conversion to provide NO yields of 65% (for S8) and 76% (for tBuBnSnBntBu). High-resolution mass spectrometry (HRMS) analyses on the reaction of [ZnII]-nitrite (1), tBuBnSH, and S8 depict the formation of zinc(II)-persulfide species [(Bn3Tren)ZnII-Sn-BntBu]+ (where n = 2, 3, 4, 5, and 6). Trapping of the persulfide species (tBuBnSS-) with 1-fluoro-2,4-dinitrobenzene (F-DNB) confirms its intermediacy. The significantly higher nucleophilicity of persulfide species (relative to thiol/thiolate) is proposed to facilitate the reaction with the mildly electrophilic [ZnII]-nitrite (1) complex. Complementary analyses, including multinuclear NMR, electrospray ionization-MS, UV-vis, and trapping of reactive S-species, provide mechanistic insights into the sulfane sulfur-assisted reactions between thiol and nitrite at the tripodal [ZnII]-site. These findings suggest the critical influential roles of various reactive sulfur species, such as sulfane sulfur and persulfides, in the nitrite-to-NO conversion.
Collapse
Affiliation(s)
- Tuhin Sahana
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| | - Adwaith K. Valappil
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| | - Anaswar S. P. R. Amma
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| | - Subrata Kundu
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| |
Collapse
|
5
|
Wade Wolfe MM, Pluth MD. Understanding Reactive Sulfur Species through P/S Synergy. Inorg Chem 2023; 62:10.1021/acs.inorgchem.3c01976. [PMID: 37615644 PMCID: PMC11131337 DOI: 10.1021/acs.inorgchem.3c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We investigated the differential oxidative and nucleophilic chemistry of reactive sulfur and oxygen anions (SSNO-, SNO-, NO2-, S42-, and HS-) using the simple reducing electrophile PPh2Cl. In the case of SSNO- reacting with PPh2Cl, a complex mixture of mono and diphosphorus products is formed exclusively in the P(V) oxidation state. We found that the phosphine stoichiometry dictates selectivity for oxidation to P=S/P=O products or transformation to P2 species. Interestingly, only chalcogen atoms are incorporated into the phosphorus products and, instead, nitrogen is released in the form of NO gas. Finally, we demonstrate that more reducing anions (S42- and HS-) also react with PPh2Cl with P=S bond formation as a key reaction driving force.
Collapse
Affiliation(s)
- Michael M Wade Wolfe
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impart, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impart, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
6
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Hosseininasab V, DiMucci IM, Ghosh P, Bertke JA, Chandrasekharan S, Titus CJ, Nordlund D, Freed JH, Lancaster KM, Warren TH. Lewis acid-assisted reduction of nitrite to nitric and nitrous oxides via the elusive nitrite radical dianion. Nat Chem 2022; 14:1265-1269. [PMID: 36064970 PMCID: PMC9633411 DOI: 10.1038/s41557-022-01025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
Reduction of nitrite anions (NO2-) to nitric oxide (NO), nitrous oxide (N2O) and ultimately dinitrogen (N2) takes place in a variety of environments, including in the soil as part of the biogeochemical nitrogen cycle and in acidified nuclear waste. Nitrite reduction typically takes place within the coordination sphere of a redox-active transition metal. Here we show that Lewis acid coordination can substantially modify the reduction potential of this polyoxoanion to allow for its reduction under non-aqueous conditions (-0.74 V versus NHE). Detailed characterization confirms the formation of the borane-capped radical nitrite dianion (NO22-), which features a N(II) oxidation state. Protonation of the nitrite dianion results in the facile loss of nitric oxide (NO), whereas its reaction with NO results in disproportionation to nitrous oxide (N2O) and nitrite (NO2-). This system connects three redox levels in the global nitrogen cycle and provides fundamental insights into the conversion of NO2- to NO.
Collapse
Affiliation(s)
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Pokhraj Ghosh
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | | | - Charles J Titus
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - Timothy H Warren
- Department of Chemistry, Georgetown University, Washington, DC, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202203947. [PMID: 35438836 PMCID: PMC9325378 DOI: 10.1002/anie.202203947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Anionic hypercoordinated silicates with weak donors were proposed as key intermediates in numerous silicon-based reactions. However, their short-lived nature rendered even spectroscopic observations highly challenging. Here, we characterize hypercoordinated silicon anions, including the first bromido-, iodido-, formato-, acetato-, triflato- and sulfato-silicates. This is enabled by a new, donor-free polymeric form of Lewis superacidic bis(perchlorocatecholato)silane 1. Spectroscopic, structural, and computational insights allow a reassessment of Gutmann's empirical rules for the role of silicon hypercoordination in synthesis and catalysis. The electronic perturbations of 1 exerted on the bound anions indicate pronounced substrate activation.
Collapse
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Deborah Hartmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sonja Sailer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rezisha Maskey
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marcel Schorpp
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
9
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Deborah Hartmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sonja Sailer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rezisha Maskey
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marcel Schorpp
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
10
|
Wu WY, Tsai ML, Lai YA, Hsieh CH, Liaw WF. NO Reduction to N 2O Triggered by a Dinuclear Dinitrosyl Iron Complex via the Associated Pathways of Hyponitrite Formation and NO Disproportionation. Inorg Chem 2021; 60:15874-15889. [PMID: 34015211 DOI: 10.1021/acs.inorgchem.1c00541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In spite of the comprehensive study of the metal-mediated conversion of NO to N2O disclosing the conceivable processes/mechanism in biological and biomimetic studies, in this study, the synthesis cycles and mechanism of NO reduction to N2O triggered by the electronically localized dinuclear {Fe(NO)2}10-{Fe(NO)2}9 dinitrosyl iron complex (DNIC) [Fe(NO)2(μ-bdmap)Fe(NO)2(THF)] (1) (bdmap = 1,3- bis(dimethylamino)-2-propanolate) were investigated in detail. Reductive conversion of NO to N2O triggered by complex 1 in the presence of exogenous ·NO occurs via the simultaneous formation of hyponitrite-bound {[Fe2(NO)4(μ-bdmap)]2(κ4-N2O2)} (2) and [NO2]--bridged [Fe2(NO)4(μ-bdmap)(μ-NO2)] (3) (NO disproportionation yielding N2O and complex 3). EPR/IR spectra, single-crystal X-ray diffraction, and the electrochemical study uncover the reversible redox transformation of {Fe(NO)2}9-{Fe(NO)2}9 [Fe2(NO)4(μ-bdmap)(μ-OC4H8)]+ (7) ↔ {Fe(NO)2}10-{Fe(NO)2}9 1 ↔ {Fe(NO)2}10-{Fe(NO)2}10 [Fe(NO)2(μ-bdmap)Fe(NO)2]- (6) and characterize the formation of complex 1. Also, the synthesis study and DFT computation feature the detailed mechanism of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 DNIC 1 reducing NO to N2O via the associated hyponitrite-formation and NO-disproportionation pathways. Presumably, the THF-bound {Fe(NO)2}9 unit of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 complex 1 served as an electron buffering reservoir for accommodating electron redistribution, and the {Fe(NO)2}10 unit of complex 1 acted as an electron-transfer channel to drive exogeneous ·NO coordination to yield proposed relay intermediate κ2-N,O-[NO]--bridged [Fe2(NO)4(μ-bdmap)(μ-NO)] (A) for NO reduction to N2O.
Collapse
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-An Lai
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Hsin Hsieh
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry and Frontier Research Center of Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Kiernicki JJ, Norwine EE, Zeller M, Szymczak NK. Substrate Specific Metal-Ligand Cooperative Binding: Considerations for Weak Intramolecular Lewis Acid/Base Pairs. Inorg Chem 2021; 60:13806-13810. [PMID: 34242009 DOI: 10.1021/acs.inorgchem.1c01382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-ligand cooperative binding modes were interrogated in a series of zinc bis(thiophenoxide) complexes. A weak B-S binding interaction is observed in solution between the weakly Lewis basic thiophenoxide ligands and an appended trialkylborane. The energy of this binding event is dependent upon the strength of the Lewis acid and its proximity to the zinc thiophenoxide.
Collapse
Affiliation(s)
- John J Kiernicki
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Emily E Norwine
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Holtrop F, Jupp AR, Kooij BJ, van Leest NP, de Bruin B, Slootweg JC. Single-Electron Transfer in Frustrated Lewis Pair Chemistry. Angew Chem Int Ed Engl 2020; 59:22210-22216. [PMID: 32840947 PMCID: PMC7756365 DOI: 10.1002/anie.202009717] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/05/2023]
Abstract
Frustrated Lewis pairs (FLPs) are well known for their ability to activate small molecules. Recent reports of radical formation within such systems indicate single-electron transfer (SET) could play an important role in their chemistry. Herein, we investigate radical formation upon reacting FLP systems with dihydrogen, triphenyltin hydride, or tetrachloro-1,4-benzoquinone (TCQ) both experimentally and computationally to determine the nature of the single-electron transfer (SET) events; that is, being direct SET to B(C6 F5 )3 or not. The reactions of H2 and Ph3 SnH with archetypal P/B FLP systems do not proceed via a radical mechanism. In contrast, reaction with TCQ proceeds via SET, which is only feasible by Lewis acid coordination to the substrate. Furthermore, SET from the Lewis base to the Lewis acid-substrate adduct may be prevalent in other reported examples of radical FLP chemistry, which provides important design principles for radical main-group chemistry.
Collapse
Affiliation(s)
- Flip Holtrop
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Andrew R. Jupp
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Bastiaan J. Kooij
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Nicolaas P. van Leest
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - J. Chris Slootweg
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| |
Collapse
|
13
|
Holtrop F, Jupp AR, Kooij BJ, Leest NP, Bruin B, Slootweg JC. Single‐Electron Transfer in Frustrated Lewis Pair Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Flip Holtrop
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Andrew R. Jupp
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Bastiaan J. Kooij
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Nicolaas P. Leest
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Bas Bruin
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - J. Chris Slootweg
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
14
|
Affiliation(s)
- James P. Shanahan
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Hendinejad N, Timerghazin QK. Biological control of S-nitrosothiol reactivity: potential role of sigma-hole interactions. Phys Chem Chem Phys 2020; 22:6595-6605. [PMID: 32159182 DOI: 10.1039/c9cp06377c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S-Nitrosothiols (RSNOs) are ubiquitous biomolecules whose chemistry is tightly controlled in vivo, although the specific molecular mechanisms behind this biological control remain unknown. In this work, we demonstrate, using high-level ab initio and DFT calculations, the ability of RSNOs to participate in intermolecular interactions with electron pair donors/Lewis bases (LBs) via a σ-hole, a region of positive electrostatic potential on the molecular surface at the extension of the N-S bond. Importantly, σ-hole binding is able to modulate the properties of RSNOs by changing the balance between two chemically opposite (antagonistic) resonance components, R-S+[double bond, length as m-dash]N-O- (D) and R-S-/NO+ (I), which are, in addition to the main resonance structure R-S-N[double bond, length as m-dash]O, necessary to describe the unusual electronic structure of RSNOs. σ-Hole binding at the sulfur atom of RSNO promotes the resonance structure D and reduces the resonance structure I, thereby stabilizing the weak N-S bond and making the sulfur atom more electrophilic. On the other hand, increasing the D-character of RSNO by other means (e.g. via N- or O-coordination of a Lewis acid) in turn enhances the σ-hole bonding. Our calculations suggest that in the protein environment a combination of σ-hole bonding of a negatively charged amino acid sidechain at the sulfur atom and N- or O-coordination of a positively charged amino acid sidechain is expected to have a profound effect on the RSNO electronic structure and reactivity.
Collapse
Affiliation(s)
- Niloufar Hendinejad
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA.
| | | |
Collapse
|