1
|
Wang Q, Fang P, Zhao J, Huang X, Shen X, Wang F, Liu ZQ. Metal-Free Electrochemical C─H Chlorination of Terminal Alkanes. Angew Chem Int Ed Engl 2025; 64:e202504478. [PMID: 40074705 DOI: 10.1002/anie.202504478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Although research on the activation of C─H bonds in alkanes has been ongoing for decades, there are still few strategies that are both highly selective and suitable for industrial production. Herein, we report a highly selective method for the chlorination of terminal C─H bonds in alkanes by combining electrochemistry and organocatalysis. The specific cavity size of organic molecular catalysts ensures high regioselectivity, while the use of inexpensive and readily reusable graphite felt electrodes, a simple electrochemical device, and mild conditions enables the reaction to maintain good efficiency even when applied to kilogram-scale production.
Collapse
Affiliation(s)
- Qingxu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Pengkai Fang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xianting Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xiaoqian Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
2
|
Jeong HC, Lee HJ, Maruoka K. Chemoselective Approach to Versatile Acyl Fluorides by Photoinduced Activation of p-Methoxybenzyl Esters. Org Lett 2024; 26:7956-7960. [PMID: 39259958 DOI: 10.1021/acs.orglett.4c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A new strategy for the metal-free photoinduced activation of p-methoxybenzyl esters is developed using Selectfluor and benzil for the generation of acyl fluoride intermediates that enable various transformations. The highlight of this activation method is its high chemoselectivity in the presence of other functionalities, such as esters, amides, and ketones. A synthetic application for the preparation of peptide mimetics that possess two different amide units is also described.
Collapse
Affiliation(s)
- Hee-Chan Jeong
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Hyo-Jun Lee
- School of Advanced Science and Technology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
3
|
Zade VM, Gangnale LD, Athawale PR, Reddy DS. Direct Deoxygenation of α-Hydroxy and α,β-Dihydroxy Ketones Using a Silyl Lithium Reagent. J Org Chem 2023; 88:14227-14235. [PMID: 37728533 DOI: 10.1021/acs.joc.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A reliable method for the one-step direct deoxygenation of α-hydroxy ketones has been developed using a silyl lithium reagent and acetic anhydride. The method is metal-catalyst-free and does not require prefunctionalization of the hydroxy group prior to its removal. Deoxygenation of different primary, secondary, and tertiary alcohols was carried out with up to 98% isolated yield. Additionally, double deoxygenation was achieved when the present method was applied to α,β-dihydroxy ketones to access the corresponding enones in a single step.
Collapse
Affiliation(s)
- Vishal M Zade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Laxmikant D Gangnale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500007, India
| | - Paresh R Athawale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500007, India
| |
Collapse
|
4
|
Bevernaege K, Tzouras NV, Poater A, Cavallo L, Nolan SP, Nahra F, Winne JM. Site selective gold(i)-catalysed benzylic C-H amination via an intermolecular hydride transfer to triazolinediones. Chem Sci 2023; 14:9787-9794. [PMID: 37736629 PMCID: PMC10510626 DOI: 10.1039/d3sc03683a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Triazolinediones are known as highly reactive dienophiles that can also act as electrophilic amination reagents towards enolisable C-H bonds (ionic pathway) or weak C-H bonds (free radical pathway). Here, we report that this C-H amination reactivity can be significantly extended and enhanced via gold(i)-catalysis. Under mild conditions, several alkyl-substituted aryls successfully undergo benzylic C-H aminations at room temperature. The remarkable site selectivity that is observed points towards strong electronic activation and deactivation effects, that go beyond a simple weakening of the C-H bond. The observed catalytic C-H aminations do not follow the expected trends for a free radical-type C-H amination and show complementarity to existing methods. Density functional theory (DFT) calculations and distinct experimental trends provide a clear mechanistic rationale for observed selectivity patterns, postulating a novel pathway for triazolinedione-induced aminations via a carbon-to-nitrogen hydride transfer.
Collapse
Affiliation(s)
- Kevin Bevernaege
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 B-9000 Ghent Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Luigi Cavallo
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Steven P Nolan
- Separation and Conversion Technology, VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Fady Nahra
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
- Separation and Conversion Technology, VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 B-9000 Ghent Belgium
| |
Collapse
|
5
|
Yang C, Arora S, Maldonado S, Pratt DA, Stephenson CRJ. The design of PINO-like hydrogen-atom-transfer catalysts. Nat Rev Chem 2023; 7:653-666. [PMID: 37464019 DOI: 10.1038/s41570-023-00511-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/20/2023]
Abstract
Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure-activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.
Collapse
Affiliation(s)
- Cheng Yang
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sahil Arora
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
7
|
Wu ZX, Hu GW, Luan YX. Development of N-Hydroxy Catalysts for C–H Functionalization via Hydrogen Atom Transfer: Challenges and Opportunities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhi-Xian Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Guan-Wen Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Ritter-type amination of C(sp 3)-H bonds enabled by electrochemistry with SO 42. Nat Commun 2022; 13:4138. [PMID: 35842447 PMCID: PMC9288499 DOI: 10.1038/s41467-022-31813-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
By merging electricity with sulfate, the Ritter-type amination of C(sp3)-H bonds is developed in an undivided cell under room temperature. This method features broad substrate generality (71 examples, up to 93% yields), high functional-group compatibility, facile scalability, excellent site-selectivity and mild conditions. Common alkanes and electron-deficient alkylbenzenes are viable substrates. It also provides a straightforward protocol for incorporating C-deuterated acetylamino group into C(sp3)-H sites. Application in the synthesis or modification of pharmaceuticals or their derivatives and gram-scale synthesis demonstrate the practicability of this method. Mechanistic experiments show that sulfate radical anion, formed by electrolysis of sulfate, served as hydrogen atom transfer agent to provide alkyl radical intermediate. This method paves a convenient and flexible pathway for realizing various synthetically useful transformations of C(sp3)-H bonds mediated by sulfate radical anion generated via electrochemistry. The amination of C(sp3)–H bonds is an appealing and challenging task in organic synthesis. Here, by using an electrogenerated sulfate radical an HAT agent, the authors report a practical Ritter-type amination of C(sp3)–H bonds.
Collapse
|
9
|
Kato T, Maruoka K. Selective functionalization of benzylic C-H bonds of two different benzylic ethers by bowl-shaped N-hydroxyimide derivatives as efficient organoradical catalysts. Chem Commun (Camb) 2021; 58:1021-1024. [PMID: 34951412 DOI: 10.1039/d1cc06425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, site-selective benzylic C-H bond amination of two different benzylic ether substrates was described by using bowl-shaped N-hydroxyimide organoradical catalysts with diethyl azodicarboxylate. The synthetic utility of this approach is demonstrated by the subsequent transformation of the amination products into the corresponding aldehydes and alkylhydrazines.
Collapse
Affiliation(s)
- Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Matsumoto A, Wang Z, Maruoka K. Radical-Mediated Activation of Esters with a Copper/Selectfluor System: Synthesis of Bulky Amides and Peptides. J Org Chem 2021; 86:5401-5411. [PMID: 33720721 DOI: 10.1021/acs.joc.1c00188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a new approach for the activation of esters via a radical-mediated process enabled by a copper/Selectfluor system. A variety of para-methoxybenzyl esters derived from bulky carboxylic acids and amino acids can be easily converted into the corresponding acyl fluorides, directly used in the one-pot synthesis of amides and peptides. As a proof of concept, this method was applied to the iterative formation of sterically hindered amide bonds.
Collapse
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Zhe Wang
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Kushch OV, Hordieieva IO, Kompanets MO, Zosenko OO, Opeida IA, Shendrik AN. Hydrogen Atom Transfer from Benzyl Alcohols to N-Oxyl Radicals. Reactivity Parameters. J Org Chem 2021; 86:3792-3799. [PMID: 33573371 DOI: 10.1021/acs.joc.0c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A model for predicting the rate constants of hydrogen atom transfer (HAT) from the α-C-H bond of p-substituted benzyl alcohols to N-oxyl radicals was proposed. To quantify the factors governing the reactivity of both N-oxyl radicals and benzyl alcohols, multivariate regression analysis was performed using various combinations of reactivity parameters. The analysis was based on a 2D array of 35 HAT reactions, the rate constants of which span 4 orders of magnitude. The proposed polyparameter equation approximates the experimental rate constants of reactions with high accuracy using three independent parameters: Brown and Okamoto's substituent constants σ+ in alcohol molecules and the spin population on O and N atoms in the N-O• fragment of N-oxyl radicals [calculated by DFT/B3LYP/6-31G(d,p)]. The rate constants of HAT reactions from p-substituted benzyl alcohols to a series of aryl-substituted phthalimide-N-oxyl radicals containing either electron-withdrawing or electron-donating substituents (4-Cl, 4-HOOC, 4-CH3O), quinolinimide-N-oxyl, benzotriazole-N-oxyl, and violuric acid radicals were experimentally determined at 30 °C in acetonitrile.
Collapse
Affiliation(s)
- Olga V Kushch
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine.,Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Iryna O Hordieieva
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Mykhailo O Kompanets
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv 03056, Ukraine
| | - Olha O Zosenko
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Iosip A Opeida
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, Lviv 79053, Ukraine
| | - Alexander N Shendrik
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| |
Collapse
|
12
|
Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. Manganese-Catalyzed Oxidative Azidation of C(sp 3)-H Bonds under Electrophotocatalytic Conditions. J Am Chem Soc 2020; 142:17693-17702. [PMID: 32941025 DOI: 10.1021/jacs.0c08437] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The selective installation of azide groups into C(sp3)-H bonds is a priority research topic in organic synthesis, particularly in pharmaceutical discovery and late-stage diversification. Herein, we demonstrate a generalized manganese-catalyzed oxidative azidation methodology of C(sp3)-H bonds using nucleophilic NaN3 as an azide source under electrophotocatalytic conditions. This approach allows us to perform the reaction without the necessity of adding an excess of the substrate and successfully avoiding the use of stoichiometric chemical oxidants such as iodine(III) reagent or NFSI. A series of tertiary and secondary benzylic C(sp3)-H, aliphatic C(sp3)-H, and drug-molecule-based C(sp3)-H bonds in substrates are well tolerated under our protocol. The simultaneous gram-scale synthesis and the ease of transformation of azide to amine collectively advocate for the potential application in the preparative synthesis. Good reactivity of the tertiary benzylic C(sp3)-H bond and selectivity of the tertiary aliphatic C(sp3)-H bond in substrates to incorporate nitrogen-based functionality at the tertiary alkyl group also provide opportunities to manipulate numerous potential medicinal candidates. We anticipate our synthetic protocol, consisting of metal catalysis, electrochemistry, and photochemistry, would provide a new sustainable option to execute challenging organic synthetic transformations.
Collapse
Affiliation(s)
- Linbin Niu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Chongyu Jiang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuwei Liang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Dingdong Liu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Renyi Shi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong Chen
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|