1
|
Wang Y, Zhu X, Han J, Liang T, Wu N, Xiang J, Ouyang G, Liu M. Light-Up Fluorescence and Circularly Polarized Luminescence in Achiral Interlocked Framework via Adaptive Lone Pair-π Interaction Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406890. [PMID: 39225582 PMCID: PMC11516062 DOI: 10.1002/advs.202406890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Interactions between lone pairs and aromatic π systems are significant across biology and self-assembled materials. Herein, employing an achiral confinement metal-organic framework (MOF) encapsulates guest molecules, it is successfully realized that lone pair (lp)-π interaction induces fluorescence "turn-on" and circularly polarized luminescence for the first time. The MOFs synthesized based on naphthalenediimide show nearly non-emissive, which can be light-up by introducing acetone or ester guests containing lone pairs-π interaction. Furthermore, the introduction of a series of lp-rich chiral esters induces supramolecular chirality as well as circularly polarized luminescence in achiral MOFs, while also observing chiral adaptability. This work first demonstrates the luminescence and chiral induction via lone pair electrons-π interactions, presenting a fresh paradigm for the advancement of chiroptical materials.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Xuefeng Zhu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Jianlei Han
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Tongling Liang
- Beijing National Laboratory for Molecular Science (BNLMS)Center for Physicochemical Analysis and MeasurementInstitute of ChemistryCASZhongGuanCun North First Street 2Beijing100190China
| | - Ningning Wu
- Beijing National Laboratory for Molecular Science (BNLMS)Center for Physicochemical Analysis and MeasurementInstitute of ChemistryCASZhongGuanCun North First Street 2Beijing100190China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Science (BNLMS)Center for Physicochemical Analysis and MeasurementInstitute of ChemistryCASZhongGuanCun North First Street 2Beijing100190China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of ColloidInterface and ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun North First Street 2Beijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Bussi G, Bonomi M, Gkeka P, Sattler M, Al-Hashimi HM, Auffinger P, Duca M, Foricher Y, Incarnato D, Jones AN, Kirmizialtin S, Krepl M, Orozco M, Palermo G, Pasquali S, Salmon L, Schwalbe H, Westhof E, Zacharias M. RNA dynamics from experimental and computational approaches. Structure 2024; 32:1281-1287. [PMID: 39241758 DOI: 10.1016/j.str.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Conformational dynamics is crucial for the biological function of RNA molecules and for their potential as therapeutic targets. This meeting report outlines key "take-home" messages that emerged from the presentations and discussions during the CECAM workshop "RNA dynamics from experimental and computational approaches" in Paris, June 26-28, 2023.
Collapse
Affiliation(s)
- Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France.
| | - Paraskevi Gkeka
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France.
| | - Michael Sattler
- Technical University of Munich, Munich, Germany; Helmholtz Munich, Munich, Germany.
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Pascal Auffinger
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Yann Foricher
- Integrated Drug Discovery, Small Molecules Medicinal Chemistry, Sanofi, Vitry-sur-Seine, France
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Alisha N Jones
- Department of Chemistry, New York University, New York, NY, USA
| | - Serdal Kirmizialtin
- Department of Chemistry, New York University, New York, NY, USA; Chemistry Program, Science Division, New York University, Abu Dhabi, United Arab Emirates
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, and Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, The University of California, Riverside, Riverside, CA, USA
| | - Samuela Pasquali
- Laboratoire Biologie Fonctionnelle et Adaptative, CNRS UMR 8251 INSERM ERL 1133, Université Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, UMR 5082 (CNRS, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), University of Lyon, 69100 Villeurbanne, France
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 67084 Strasbourg, France
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Gutiérrez-Peña CL, Gutiérrez-Blanco A, Gusev DG, Poyatos M, Peris E. Lone-Pair-π Bond Strength Unveiled by a Combined Experimental and Computational Study. Angew Chem Int Ed Engl 2024; 63:e202407817. [PMID: 38748473 DOI: 10.1002/anie.202407817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 07/02/2024]
Abstract
A series of naphthalene-diimide (NDI) and perylene-diimide (PDI) connected bis-N-heterocyclic carbene complexes of iridium(III) have been prepared and fully characterized. The analysis of their NMR spectroscopic features, together with their molecular structures show that these species display lone-pair-π interactions between the chloride ligands of the Ir(III) complex and the heterocycles of the NDI/PDI moieties. The detection of this type of interaction in solution is due to the formation of two atropisomers, which are formed as a result of the restricted rotation about the Ir-Ccarbene bond imposed by the (Cl)lp⋅⋅⋅π interaction. Variable-temperature 1H NMR analysis allowed the determination of the strength of this non-covalent interaction, which lies between ΔH=6.6 and 10 kcal/mol. The computational studies performed fully support the experimental findings.
Collapse
Affiliation(s)
- Cristian L Gutiérrez-Peña
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| | - Ana Gutiérrez-Blanco
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| | - Dmitry G Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2 L3 C5, Canada
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| |
Collapse
|
4
|
Nichols PJ, Welty R, Krall JB, Henen MA, Vicens Q, Vögeli B. Zα Domain of ADAR1 Binds to an A-Form-like Nucleic Acid Duplex with Low Micromolar Affinity. Biochemistry 2024; 63:777-787. [PMID: 38437710 PMCID: PMC11168418 DOI: 10.1021/acs.biochem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG)n repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption. Here, we studied the binding of Zα fromHomo sapiens ADAR1 to a locked "A-type" version of the (CpG)3 construct (LNA (CpG)3) where the sugar pucker is locked into the C3'-endo/C2'-exo conformation, which prevents the duplex from adopting the alternating C2'/C3'-endo sugar puckers found in the Z-conformation. Using NMR and other biophysical techniques, we find that ZαADAR1 binds to the LNA (CpG)3 using a similar interface as for Z-form binding, with a dissociation constant (KD) of ∼4 μM. In contrast to Z-DNA/Z-RNA, where two ZαADAR1 bind to every 6 bp stretch, our data suggests that ZαADAR1 binds to multiple LNA molecules, indicating a completely different binding mode. Because ZαADAR1 binds relatively tightly to a non-Z-form model, its binding to B/A-form helices may need to be considered when experiments are carried out which attempt to identify the Z-form targets of Zα domains. The use of LNA constructs may be beneficial in experiments where negative controls for Z-form adoption are needed.
Collapse
Affiliation(s)
- Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
- Present address: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| |
Collapse
|
5
|
Nichols PJ, Krall JB, Henen MA, Welty R, MacFadden A, Vicens Q, Vögeli B. Z-Form Adoption of Nucleic Acid is a Multi-Step Process Which Proceeds through a Melted Intermediate. J Am Chem Soc 2024; 146:677-694. [PMID: 38131335 PMCID: PMC11155437 DOI: 10.1021/jacs.3c10406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood. Through a combination of nuclear magnetic resonance (NMR) and other biophysical measurements, we have determined that in the absence of Zα, under low salt conditions at room temperature, d(CpG) and r(CpG) constructs show no observable evidence of transient Z-conformations greater than 0.5% on either the intermediate or slow NMR time scales. At higher temperatures, we observed a transient unfolded intermediate. The ease of melting a nucleic acid duplex correlates with Z-form adoption rates in the presence of Zα. The largest contributing factor to the activation energies of Z-form adoption as calculated by Arrhenius plots is the ease of flipping the sugar pucker, as required for Z-DNA and Z-RNA. Together, these data validate the previously proposed "zipper model" for Z-form adoption in the presence of Zα. Overall, Z-conformations are more likely to be adopted by double-stranded DNA and RNA regions flanked by less stable regions and by RNAs experiencing torsional/mechanical stress.
Collapse
Affiliation(s)
- Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrea MacFadden
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
- Present address: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cellular Signaling, University of Houston, Houston, Texas 77204, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
6
|
Nichols PJ, Krall JB, Henen MA, Vögeli B, Vicens Q. Z-RNA biology: a central role in the innate immune response? RNA (NEW YORK, N.Y.) 2023; 29:273-281. [PMID: 36596670 PMCID: PMC9945438 DOI: 10.1261/rna.079429.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Z-RNA is a higher-energy, left-handed conformation of RNA, whose function has remained elusive. A growing body of work alludes to regulatory roles for Z-RNA in the immune response. Here, we review how Z-RNA features present in cellular RNAs-especially containing retroelements-could be recognized by a family of winged helix proteins, with an impact on host defense. We also discuss how mutations to specific Z-contacting amino acids disrupt their ability to stabilize Z-RNA, resulting in functional losses. We end by highlighting knowledge gaps in the field, which, if addressed, would significantly advance this active area of research.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
7
|
Krall JB, Nichols PJ, Henen MA, Vicens Q, Vögeli B. Structure and Formation of Z-DNA and Z-RNA. Molecules 2023; 28:843. [PMID: 36677900 PMCID: PMC9867160 DOI: 10.3390/molecules28020843] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.
Collapse
Affiliation(s)
- Jeffrey B. Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Mráziková K, Kruse H, Mlýnský V, Auffinger P, Šponer J. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions. J Chem Inf Model 2022; 62:6182-6200. [PMID: 36454943 DOI: 10.1021/acs.jcim.2c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phosphate···π, also called anion···π, contacts occur between nucleobases and anionic phosphate oxygens (OP2) in r(GNRA) and r(UNNN) U-turn motifs (N = A,G,C,U; R = A,G). These contacts were investigated using state-of-the-art quantum-chemical methods (QM) to characterize their physicochemical properties and to serve as a reference to evaluate AMBER force field (AFF) performance. We found that phosphate···π interaction energies calculated with the AFF for dimethyl phosphate···nucleobase model systems are less stabilizing in comparison with double-hybrid DFT and that minimum contact distances are larger for all nucleobases. These distance stretches are also observed in large-scale AFF vs QM/MM computations and classical molecular dynamics (MD) simulations on several r(gcGNRAgc) tetraloop hairpins when compared to experimental data extracted from X-ray/cryo-EM structures (res. ≤ 2.5 Å) using the WebFR3D bioinformatic tool. MD simulations further revealed shifted OP2/nucleobase positions. We propose that discrepancies between the QM and AFF result from a combination of missing polarization in the AFF combined with too large AFF Lennard-Jones (LJ) radii of nucleobase carbon atoms in addition to an exaggerated short-range repulsion of the r-12 LJ repulsive term. We compared these results with earlier data gathered on lone pair···π contacts in CpG Z-steps occurring in r(UNCG) tetraloops. In both instances, charge transfer calculations do not support any significant n → π* donation effects. We also investigated thiophosphate···π contacts that showed reduced stabilizing interaction energies when compared to phosphate···π contacts. Thus, we challenge suggestions that the experimentally observed enhanced thermodynamic stability of phosphorothioated r(GNRA) tetraloops can be explained by larger London dispersion.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg67084, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| |
Collapse
|
9
|
Chawla M, Kalra K, Cao Z, Cavallo L, Oliva R. Occurrence and stability of anion-π interactions between phosphate and nucleobases in functional RNA molecules. Nucleic Acids Res 2022; 50:11455-11469. [PMID: 36416268 PMCID: PMC9723503 DOI: 10.1093/nar/gkac1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
We present a systematic structural and energetic characterization of phosphate(OP)-nucleobase anion…π stacking interactions in RNAs. We observed OP-nucleobase stacking contacts in a variety of structural motifs other than regular helices and spanning broadly diverse sequence distances. Apart from the stacking between a phosphate and a guanine or a uracil two-residue upstream in specific U-turns, such interactions in RNA have been scarcely characterized to date. Our QM calculations showed an energy minimum at a distance between the OP atom and the nucleobase plane centroid slightly below 3 Å for all the nucleobases. By sliding the OP atom over the nucleobase plane we localized the optimal mutual positioning of the stacked moieties, corresponding to an energy minimum below -6 kcal•mol-1, for all the nucleobases, consistently with the projections of the OP atoms over the different π-rings we observed in experimental occurrences. We also found that the strength of the interaction clearly correlates with its electrostatic component, pointing to it as the most relevant contribution. Finally, as OP-uracil and OP-guanine interactions represent together 86% of the instances we detected, we also proved their stability under dynamic conditions in model systems simulated by state-of-the art DFT-MD calculations.
Collapse
Affiliation(s)
- Mohit Chawla
- Correspondence may also be addressed to Mohit Chawla. ;
| | - Kanav Kalra
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Correspondence may also be addressed to Luigi Cavallo. Tel: +966 02 8027566; Fax: +966 02 8021347;
| | - Romina Oliva
- To whom correspondence should be addressed. Tel: +39 081 5476541; Fax: +39 081 5476514;
| |
Collapse
|
10
|
Zirbel CL, Auffinger P. Lone Pair…π Contacts and Structure Signatures of r(UNCG) Tetraloops, Z-Turns, and Z-Steps: A WebFR3D Survey. Molecules 2022; 27:molecules27144365. [PMID: 35889236 PMCID: PMC9323530 DOI: 10.3390/molecules27144365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Z-DNA and Z-RNA have long appeared as oddities to nucleic acid scientists. However, their Z-step constituents are recurrently observed in all types of nucleic acid systems including ribosomes. Z-steps are NpN steps that are isostructural to Z-DNA CpG steps. Among their structural features, Z-steps are characterized by the presence of a lone pair…π contact that involves the stacking of the ribose O4′ atom of the first nucleotide with the 3′-face of the second nucleotide. Recently, it has been documented that the CpG step of the ubiquitous r(UNCG) tetraloops is a Z-step. Accordingly, such r(UNCG) conformations were called Z-turns. It has also been recognized that an r(GAAA) tetraloop in appropriate conditions can shapeshift to an unusual Z-turn conformation embedding an ApA Z-step. In this report, we explore the multiplicity of RNA motifs based on Z-steps by using the WebFR3D tool to which we added functionalities to be able to retrieve motifs containing lone pair…π contacts. Many examples that underscore the diversity and universality of these motifs are provided as well as tutorial guidance on using WebFR3D. In addition, this study provides an extensive survey of crystallographic, cryo-EM, NMR, and molecular dynamics studies on r(UNCG) tetraloops with a critical view on how to conduct database searches and exploit their results.
Collapse
Affiliation(s)
- Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Pascal Auffinger
- Architecture et Réactivité de l’ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 67084 Strasbourg, France
- Correspondence: ; Tel.: +33-3-8841-7049; Fax: +33-3-8860-2218
| |
Collapse
|
11
|
Mlýnský V, Janeček M, Kührová P, Fröhlking T, Otyepka M, Bussi G, Banáš P, Šponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J Chem Theory Comput 2022; 18:2642-2656. [PMID: 35363478 DOI: 10.1021/acs.jctc.1c01222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic molecular dynamics simulations represent an established technique for investigation of RNA structural dynamics. Despite continuous development, contemporary RNA simulations still suffer from suboptimal accuracy of empirical potentials (force fields, ffs) and sampling limitations. Development of efficient enhanced sampling techniques is important for two reasons. First, they allow us to overcome the sampling limitations, and second, they can be used to quantify ff imbalances provided they reach a sufficient convergence. Here, we study two RNA tetraloops (TLs), namely the GAGA and UUCG motifs. We perform extensive folding simulations and calculate folding free energies (ΔGfold°) with the aim to compare different enhanced sampling techniques and to test several modifications of the nonbonded terms extending the AMBER OL3 RNA ff. We demonstrate that replica-exchange solute tempering (REST2) simulations with 12-16 replicas do not show any sign of convergence even when extended to a timescale of 120 μs per replica. However, the combination of REST2 with well-tempered metadynamics (ST-MetaD) achieves good convergence on a timescale of 5-10 μs per replica, improving the sampling efficiency by at least 2 orders of magnitude. Effects of ff modifications on ΔGfold° energies were initially explored by the reweighting approach and then validated by new simulations. We tested several manually prepared variants of the gHBfix potential which improve stability of the native state of both TLs by ∼2 kcal/mol. This is sufficient to conveniently stabilize the folded GAGA TL while the UUCG TL still remains under-stabilized. Appropriate adjustment of van der Waals parameters for C-H···O5' base-phosphate interaction may further stabilize the native states of both TLs by ∼0.6 kcal/mol.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Janeček
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Thorben Fröhlking
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.,IT4Innovations, VSB─Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
12
|
Mráziková K, Šponer J, Mlýnský V, Auffinger P, Kruse H. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids. J Chem Inf Model 2021; 61:5644-5657. [PMID: 34738826 DOI: 10.1021/acs.jcim.1c01047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lone-pair···π (lp···π) (deoxy)ribose···nucleobase stacking is a recurring interaction in Z-DNA and RNAs that is characterized by sub-van der Waals lp···π contacts (<3.0 Å). It is a part of the structural signature of CpG Z-step motifs in Z-DNA and r(UNCG) tetraloops that are known to behave poorly in molecular dynamics (MD) simulations. Although the exact origin of the MD simulation issues remains unclear, a significant part of the problem might be due to an imbalanced description of nonbonded interactions, including the characteristic lp···π stacking. To gain insights into the links between lp···π stacking and MD, we present an in-depth comparison between accurate large-basis-set double-hybrid Kohn-Sham density functional theory calculations DSD-BLYP-D3/ma-def2-QZVPP (DHDF-D3) and data obtained with the nonbonded potential of the AMBER force field (AFF) for NpN Z-steps (N = G, A, C, and U). Among other differences, we found that the AFF overestimates the DHDF-D3 lp···π distances by ∼0.1-0.2 Å, while the deviation between the DHDF-D3 and AFF descriptions sharply increases in the short-range region of the interaction. Based on atom-in-molecule polarizabilities and symmetry-adapted perturbation theory analysis, we inferred that the DHDF-D3 versus AFF differences partly originate in identical nucleobase carbon atom Lennard-Jones (LJ) parameters despite the presence/absence of connected electron-withdrawing groups that lead to different effective volumes or vdW radii. Thus, to precisely model the very short CpG lp···π contact distances, we recommend revision of the nucleobase atom LJ parameters. Additionally, we suggest that the large discrepancy between DHDF-D3 and AFF short-range repulsive part of the interaction energy potential may significantly contribute to the poor performances of MD simulations of nucleic acid systems containing Z-steps. Understanding where, and if possible why, the point-charge-type effective potentials reach their limits is vital for developing next-generation FFs and for addressing specific issues in contemporary MD simulations.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27, 783 71 Olomouc-Holice, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27, 783 71 Olomouc-Holice, Czech Republic
| | - Pascal Auffinger
- Architecture and Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS, 67084 Strasbourg, France
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
13
|
Nichols PJ, Henen MA, Vicens Q, Vögeli B. Solution NMR backbone assignments of the N-terminal Zα-linker-Zβ segment from Homo sapiens ADAR1p150. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:273-279. [PMID: 33742389 PMCID: PMC9199369 DOI: 10.1007/s12104-021-10017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Adenosine-to-inosine (A-to-I) editing of a subset of RNAs in a eukaryotic cell is required in order to avoid triggering the innate immune system. Editing is carried out by ADAR1, which exists as short (p110) and long (p150) isoforms. ADAR1p150 is mostly cytoplasmic, possesses a Z-RNA binding domain (Zα), and is only expressed during the innate immune response. A structurally homologous domain to Zα, the Zβ domain, is separated by a long linker from Zα on the N-terminus of ADAR1 but its function remains unknown. Zβ does not bind to RNA in isolation, yet the binding kinetics of the segment encompassing Zα, Zβ and the 95-residue linker between the two domains (Zα-Zβ) are markedly different compared to Zα alone. Here we present the solution NMR backbone assignment of Zα-Zβ from H. Sapiens ADAR1. The predicted secondary structure of Zα-Zβ based on chemical shifts is in agreement with previously determined structures of Zα and Zβ in isolation, and indicates that the linker is intrinsically disordered. Comparison of the chemical shifts between the individual Zα and Zβ domains to the full Zα-Zβ construct suggests that Zβ may interact with the linker, the function of which is currently unknown.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Morkos A Henen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Quentin Vicens
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
| | - Beat Vögeli
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Wang H, Chen J, Duan C, Xu X, Zheng Y, Grabow JU, Gou Q, Caminati W. Switching Aromatic Character by Complexation: π to π* Change Seen in Molecular Rotation Spectra. J Phys Chem Lett 2021; 12:5150-5155. [PMID: 34032447 DOI: 10.1021/acs.jpclett.1c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A dominating F···π*aromatic interaction is found to govern the benzaldehyde···tetrafluoromethane complex, as revealed by this rotational spectroscopic investigation. Secondary F···π*-C=O- and C σ*CF4···πaromatic interactions also contribute to the stability of the observed isomer. Narrow splittings have been observed in the rotational spectrum originating from a 3-fold internal rotation of CF4 above the aromatic moiety, and a corresponding V3 barrier was determined to be 1.572(14) kJ mol-1. This is the first rotational spectroscopic evidence in the literature implying that the aromatic π* antibonding orbital can be activated not only by electron-withdrawing substituents but also by complexation partners containing atoms with high electronegativity, like CF4. The results emphasize the partner molecules' role to modulate the π electron structure and show a change in the orbital character (π or π*) when participating in the formation of noncovalent interactions.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Junhua Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Chunguo Duan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie Leibniz, Universität Hannover, 30167 Hannover, Germany
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 401331, China
| | - Walther Caminati
- Dipartimento di Chimica "G. Ciamician", Università; di Bologna, I-40126 Bologna, Italy
| |
Collapse
|
15
|
Hao H, Qi X, Tang W, Liu P. Energy Decomposition Analysis Reveals the Nature of Lone Pair−π Interactions with Cationic π Systems in Catalytic Acyl Transfer Reactions. Org Lett 2021; 23:4411-4414. [DOI: 10.1021/acs.orglett.1c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Weiping Tang
- School of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
16
|
Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions. Nat Commun 2021; 12:793. [PMID: 33542240 PMCID: PMC7862695 DOI: 10.1038/s41467-021-21039-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted — and in some cases even shown — to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1. ADAR1 is an interferon-induced enzyme that catalyzes editing of adenine to inosine across the transcriptome as part of the immune response. Here the authors establish how ADAR1 recognizes non-CpG RNA sequences to facilitate the formation of A-Z junctions.
Collapse
|
17
|
Vennelakanti V, Qi HW, Mehmood R, Kulik HJ. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci 2021; 12:1147-1162. [PMID: 35382134 PMCID: PMC8908278 DOI: 10.1039/d0sc05084a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrogen bonds (HBs) play an essential role in the structure and catalytic action of enzymes, but a complete understanding of HBs in proteins challenges the resolution of modern structural (i.e., X-ray diffraction) techniques and mandates computationally demanding electronic structure methods from correlated wavefunction theory for predictive accuracy. Numerous amino acid sidechains contain functional groups (e.g., hydroxyls in Ser/Thr or Tyr and amides in Asn/Gln) that can act as either HB acceptors or donors (HBA/HBD) and even form simultaneous, ambifunctional HB interactions. To understand the relative energetic benefit of each interaction, we characterize the potential energy surfaces of representative model systems with accurate coupled cluster theory calculations. To reveal the relationship of these energetics to the balance of these interactions in proteins, we curate a set of 4000 HBs, of which >500 are ambifunctional HBs, in high-resolution protein structures. We show that our model systems accurately predict the favored HB structural properties. Differences are apparent in HBA/HBD preference for aromatic Tyr versus aliphatic Ser/Thr hydroxyls because Tyr forms significantly stronger O–H⋯O HBs than N–H⋯O HBs in contrast to comparable strengths of the two for Ser/Thr. Despite this residue-specific distinction, all models of residue pairs indicate an energetic benefit for simultaneous HBA and HBD interactions in an ambifunctional HB. Although the stabilization is less than the additive maximum due both to geometric constraints and many-body electronic effects, a wide range of ambifunctional HB geometries are more favorable than any single HB interaction. Correlated wavefunction theory predicts and high-resolution crystal structure analysis confirms the important, stabilizing effect of simultaneous hydrogen bond donor and acceptor interactions in proteins.![]()
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Helena W. Qi
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Rimsha Mehmood
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
18
|
Mráziková K, Mlýnský V, Kührová P, Pokorná P, Kruse H, Krepl M, Otyepka M, Banáš P, Šponer J. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J Chem Theory Comput 2020; 16:7601-7617. [PMID: 33215915 DOI: 10.1021/acs.jctc.0c00801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ff's) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD simulations, depicting the sequence of events leading to the loss of the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid ff's.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|