1
|
Zhu B, Chen ZC, Du W, Chen YC. Facile construction of benzofulvene frameworks via a palladium-catalysed three-component reaction. Org Biomol Chem 2024; 22:8397-8400. [PMID: 39329403 DOI: 10.1039/d4ob01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here we report a three-component reaction of 2-formylarylboronic acids, N-sulfonyl amines and 1,3-enynes, proceeding through a cascade imine formation/Pd0-catalysed vinylogous addition/intramolecular Suzuki coupling/isomerization process. This protocol exhibited broad substrate scope and good functionality tolerance, and a spectrum of multifunctionalised benzofulvene derivatives were furnished in moderate to good yields and E/Z-selectivity.
Collapse
Affiliation(s)
- Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
2
|
Chen ZC, Ouyang Q, Du W, Chen YC. Palladium(0) π-Lewis Base Catalysis: Concept and Development. J Am Chem Soc 2024; 146:6422-6437. [PMID: 38426858 DOI: 10.1021/jacs.3c14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The development of a new catalytic strategy plays a vital role in modern organic chemistry since it permits bond formation in an unprecedented and more efficient manner. Although the application of preformed metal complexes as π-base-activated reagents have enabled diverse transformations elegantly, the concept and strategy by directly utilizing transition metals as efficient π-Lewis base catalysts remain underdeveloped, especially in the field of asymmetric catalysis. Here, we outline our perspective on the discovery of palladium(0) as an efficient π-Lewis base catalyst, which is capable of increasing the highest occupied molecular orbital (HOMO) energy of both electron-neutral and electron-deficient 1,3-dienes and 1,3-enynes upon flexible η2-complexes formed in situ and resultant π-backdonation. Thus, fruitful carbon-carbon-forming reactions with diverse electrophiles can be achieved enantioselectively in a vinylogous addition pattern, which is conceptually different from the classical oxidative cyclization mechanism. Emphasis will be given to the concept and mechanism elucidation, catalytic features, and reaction design together with perspective on the further development of this emerging field.
Collapse
Affiliation(s)
- Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Xu MM, Xie PP, He JX, Zhang YZ, Zheng C, Cai Q. Enantioselective Cross-[4 + 2]-Cycloaddition/Decarboxylation of 2-Pyrones by Cooperative Catalysis of the Pd(0)/NHC Complex and Chiral Phosphoric Acid. J Am Chem Soc 2024; 146:6936-6946. [PMID: 38414423 DOI: 10.1021/jacs.3c14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Here, we describe a cooperative Pd(0)/chiral phosphoric acid catalytic system that allows us to realize the first chemo-, regio-, and enantioselective sequential cross-[4 + 2]-cycloaddition/decarboxylation reaction between 2-pyrones and unactivated acyclic 1,3-dienes. The key to the success of this transformation is the utilization of an achiral N-heterocyclic carbene (NHC) as the ligand and a newly developed chiral phosphoric acid as the cocatalyst. Experimental investigations and computational studies support the idea that the Pd(0)/NHC complex acts as a π-Lewis base to increase the nucleophilicity of 1,3-dienes via η2 coordination, while the chiral phosphoric acid simultaneously increases the electrophilicity of 2-pyrones by hydrogen bonding. By this synergistic catalysis, the sequential cross-[4 + 2]-cycloaddition and decarboxylation reaction proceeds efficiently, enabling the preparation of a wide range of chiral vinyl-substituted 1,3-cyclohexadienes in good yields and enantioselectivities. The synthetic utility of this reaction is demonstrated by synthetic transformations of the product to various valuable chiral six-membered carbocycles.
Collapse
Affiliation(s)
- Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun-Xiong He
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yu-Zhen Zhang
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Eaton M, Zhang Y, Liu SY. Borataalkenes, boraalkenes, and the η 2-B,C coordination mode in coordination chemistry and catalysis. Chem Soc Rev 2024; 53:1915-1935. [PMID: 38190152 PMCID: PMC10922737 DOI: 10.1039/d3cs00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Borataalkenes and boraalkenes are the boron-containing isoelectronic analogues of alkenes and vinyl cations respectively. Compared with alkenes, the borataalkene and boraalkene ligand motifs in transition metal coordination chemistry are relatively underexplored. In this review, the synthesis of borataalkene and boraalkene complexes and other transition metal complexes featuring the η2-B,C coordination mode is described. The diversity of coordination modes and geometry in these complexes, and the spectroscopic and structural evidence supporting their assignments is disclosed as well as computational analysis of bonding. The applications of the borataalkene ligand motif in synthetic organic homogeneous catalysis, especially those involving geminal bis(pinacolatoboronates) and 1,4-azaborines, are discussed.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau cedex 09, France
| |
Collapse
|
5
|
Zou S, Zhao Z, Huang H. Palladium-Catalyzed Aminoalkylative Cyclization Enables Modular Synthesis of Exocyclic 1,3-Dienes. Angew Chem Int Ed Engl 2023; 62:e202311603. [PMID: 37815155 DOI: 10.1002/anie.202311603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
A novel and efficient palladium-catalyzed regioselective and stereodivergent ring-closing reaction of aminoenynes with aldehydes and boronic acids or hydrosilane is developed. This three-component reaction allows for the modular synthesis of a series of exocyclic 1,3-dienes bearing 5- to 8-membered saturated N-heterocycles. The reactions utilize a simple Pd-catalyst and work with broad range of aminoenynes, aldehydes and organometallic reagents under mild reaction conditions. The products represent useful intermediates for chemical synthesis due to the versatility of the conjugated diene. Preliminary mechanistic details of the method are also revealed.
Collapse
Affiliation(s)
- Suchen Zou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
6
|
Jiang B, Gui WT, Wang HT, Xie K, Chen ZC, Zhu L, Ouyang Q, Du W, Chen YC. Asymmetric Friedel-Crafts reaction of unsaturated carbonyl-tethered heteroarenes via vinylogous activation of Pd 0-π-Lewis base catalysis. Chem Sci 2023; 14:10867-10874. [PMID: 37829026 PMCID: PMC10566502 DOI: 10.1039/d3sc03996j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The alkyne group can undergo facile transformations under palladium catalysis, such as hydropalladation, Wacker reaction, etc. Here we demonstrate that a chiral Pd0 complex can chemoselectively dihapto-coordinate to the alkyne moiety of 2-indolyl propiolates, and raise the Highest Occupied Molecular Orbital (HOMO)-energy ofthe deactivated heteroarenes via π-Lewis base catalysis. As a result, asymmetric C3-selective Friedel-Crafts addition to activated alkenes occurs, finally affording [3 + 2] or [3 + 4] annulation products with high enantioselectivity and exclusive E-selectivity. Moreover, this π-Lewis base vinylogous HOMO-activation strategy can be extended to remote Friedel-Crafts reaction of diverse five-membered heteroarenes tethered to a 2-enone or 2-acrylate motif with imines or 1-azadienes, and excellent enantiocontrol is generally achieved for the multifunctional adducts, which can be effectively converted to diverse frameworks with higher molecular complexity. In addition, NMR and density functional theory calculation studies are conducted to elucidate the catalytic mechanism.
Collapse
Affiliation(s)
- Bo Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wu-Tao Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Hao-Tian Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
7
|
Eaton M, Dai Y, Wang Z, Li B, Lamine W, Miqueu K, Liu SY. Synthesis of Allenes by Hydroalkylation of 1,3-Enynes with Ketones Enabled by Cooperative Catalysis. J Am Chem Soc 2023; 145:21638-21645. [PMID: 37738372 PMCID: PMC10783955 DOI: 10.1021/jacs.3c08151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A method for the synthesis of allenes by the addition of ketones to 1,3-enynes by cooperative Pd(0)Senphos/B(C6F5)3/NR3 catalysis is described. A wide range of aryl- and aliphatic ketones undergo addition to various 1,3-enynes in high yields at room temperature. Mechanistic investigations revealed a rate-determining outer-sphere proton transfer mechanism, which was corroborated by DFT calculations.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Yuping Dai
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Walid Lamine
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Karinne Miqueu
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254, Université de Pau et des Pays de l'Adour, Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
8
|
Szyling J, Szymańska A, Walkowiak J. Selective synthesis of boron-substituted enynes via a one-pot diboration/protodeboration sequence. Chem Commun (Camb) 2023; 59:9541-9544. [PMID: 37458472 DOI: 10.1039/d3cc02695g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An efficient and facile one-pot protocol to access enynylboronates via a Pt-catalyzed diboration/protodeboration strategy has been developed. The reaction is suitable for various silylsubstituted symmetrical and unsymmetrical 1,3-diynes, leading to π-conjugated organoboron compounds with excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jakub Szyling
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| | - Aleksandra Szymańska
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| |
Collapse
|
9
|
Wang Z, Zhang C, Wu J, Li B, Chrostowska A, Karamanis P, Liu SY. trans-Hydroalkynylation of Internal 1,3-Enynes Enabled by Cooperative Catalysis. J Am Chem Soc 2023; 145:5624-5630. [PMID: 36862947 PMCID: PMC10162690 DOI: 10.1021/jacs.3c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cooperative catalyst system involving a Pd(0)/Senphos complex, tris(pentafluorophenyl)borane, copper bromide, and an amine base, is demonstrated to catalyze trans-hydroalkynylation of internal 1,3-enynes. For the first time, a Lewis acid catalyst is shown to promote the reaction involving the emerging outer-sphere oxidative reaction step. The resulting cross-conjugated dieneynes are versatile synthons for organic synthesis, and their characterization reveals distinct photophysical properties depending on the positioning of the donor/acceptor substituents along the conjugation path.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Chen Zhang
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Panaghiotis Karamanis
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
10
|
Fürstner A. How to Break the Law:
trans
‐Hydroboration and
gem
‐Hydroboration of Alkynes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
11
|
Wang Z, Lamine W, Miqueu K, Liu SY. A syn outer-sphere oxidative addition: the reaction mechanism in Pd/Senphos-catalyzed carboboration of 1,3-enynes. Chem Sci 2023; 14:2082-2090. [PMID: 36845936 PMCID: PMC9945512 DOI: 10.1039/d2sc05828f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
We report a combined experimental and computational study of Pd/Senphos-catalyzed carboboration of 1,3-enynes utilizing DFT calculations, 31P NMR study, kinetic study, Hammett analysis and Arrhenius/Eyring analysis. Our mechanistic study provides evidence against the conventional inner-sphere β-migratory insertion mechanism. Instead, a syn outer-sphere oxidative addition mechanism featuring a Pd-π-allyl intermediate followed by coordination-assisted rearrangements is consistent with all the experimental observations.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| |
Collapse
|
12
|
Zhang Y, Wang Z, Lamine W, Xu S, Li B, Chrostowska A, Miqueu K, Liu SY. Mechanism of Pd/Senphos-Catalyzed trans-Hydroboration of 1,3-Enynes: Experimental and Computational Evidence in Support of the Unusual Outer-Sphere Oxidative Addition Pathway. J Org Chem 2023; 88:2415-2424. [PMID: 36752741 PMCID: PMC10162691 DOI: 10.1021/acs.joc.2c02841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The reaction mechanism of the Pd/Senphos-catalyzed trans-hydroboration reaction of 1,3-enynes was investigated using various experimental techniques, including deuterium and double crossover labeling experiments, X-ray crystallographic characterization of model reaction intermediates, and reaction progress kinetic analysis. Our experimental data are in support of an unusual outer-sphere oxidative addition mechanism where the catecholborane serves as a suitable electrophile to activate the Pd0-bound 1,3-enyne substrate to form a Pd-η3-π-allyl species, which has been determined to be the likely resting state of the catalytic cycle. Double crossover labeling of the catecholborane points toward a second role played by the borane as a hydride delivery shuttle. Density functional theory calculations reveal that the rate-limiting transition state of the reaction is the hydride abstraction by the catecholborane shuttle, which is consistent with the experimentally determined rate law: rate = k[enyne]0[borane]1[catalyst]1. The computed activation free energy ΔG‡ = 17.7 kcal/mol and KIE (kH/kD = 1.3) are also in line with experimental observations. Overall, this work experimentally establishes Lewis acids such as catecholborane as viable electrophilic activators to engage in an outer-sphere oxidative addition reaction and points toward this underutilized mechanism as a general approach to activate unsaturated substrates.
Collapse
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Walid Lamine
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Senmiao Xu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Karinne Miqueu
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- E2S UPPA/CNRS, Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
13
|
Zhang XL, Gu J, Cui WH, Ye Z, Yi W, Zhang Q, He Y. Stepwise Asymmetric Allylic Substitution-Isomerization Enabled Mimetic Synthesis of Axially Chiral B,N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202210456. [PMID: 36281992 DOI: 10.1002/anie.202210456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/07/2022]
Abstract
Axially chiral molecules bearing multiple stereogenic axes are of great importance in the field of organic chemistry. However, the efficient construction of atropisomers featuring two different types of stereogenic axes has rarely been explored. Herein, we report the novel atroposelective synthesis of configurationally stable axially chiral B,N-heterocycles. By using stepwise asymmetric allylic substitution-isomerization (AASI) strategy, diaxially chiral B,N-heterocycles bearing B-C and C-N axes that are related to the moieties of axially chiral enamines and arylborons were also obtained. In this case, all four stereoisomers of diaxially chiral B,N-heterocycles were stereodivergently afforded in high enantioselectivities. Density functional theory (DFT) studies demonstrated that the NH⋅⋅⋅π interactions played a unique role in the promotion of stereospecific isomerization, thereby leading to the highly efficient central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
14
|
Pujol M, Maza RJ, Salvado O, Carbó JJ, Fernández E. Site-Selective (Z)-α-Borylalkenyl Copper Systems for Nucleophilic Stereodefined Allylic Coupling. Angew Chem Int Ed Engl 2022; 61:e202208495. [PMID: 35857816 PMCID: PMC9540588 DOI: 10.1002/anie.202208495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/09/2022]
Abstract
1,1-Diborylalkenes can be transformed into (Z)-skipped dienes through CuI -phosphine catalyzed allylic coupling reactions. The energetically preferred formation of (Z)-α-borylalkenyl copper (I) species and the subsequent nucleophilic attack, explains the stereoselective nucleophilic substitution with allyl bromides. The eventual treatment of (Z)-skipped dienes with NaOt Bu promotes cyclization/aromatization patterns via enyne intermediates.
Collapse
Affiliation(s)
- Mireia Pujol
- Department Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Ricardo J. Maza
- Department Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Oriol Salvado
- Department Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Jorge J. Carbó
- Department Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| | - Elena Fernández
- Department Química Física i InorgànicaUniversitat Rovira i Virgili43007TarragonaSpain
| |
Collapse
|
15
|
He ZL, Zhang Y, Chen ZC, Du W, Chen YC. Cascade Multicomponent Assemblies Involving 1,3-Enynes via Auto-Tandem Palladium Catalysis. Org Lett 2022; 24:6326-6330. [PMID: 35997593 DOI: 10.1021/acs.orglett.2c02544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a three-component auto-tandem reaction of 1,3-enyne-tethered carbonyls, organoboronic reagents, and suitable nucleophiles catalyzed by palladium, proceeding through consecutive intramolecular vinylogous addition, Suzuki coupling, and allylic alkylation. This process exhibited high chemo- and regioselectivity with 1,3,4-trifunctionalization of the 1,3-enyne motif, and a wide range of 2H-chromenes, 1,2-dihydroquinolines, benzo[b]oxepines, 1,7-annulated indoles, and other frameworks were efficiently constructed in fair to good yields and E/Z selectivity.
Collapse
Affiliation(s)
- Ze-Liang He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
16
|
Pujol M, Maza RJ, Salvado O, Carbó JJ, Fernandez E. Site‐Selective (Z)‐α‐Borylalkenyl Copper Systems for Nucleophilic Stereodefined Allylic Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mireia Pujol
- Universitat Rovira i Virgili Química Física i Inorganica SPAIN
| | - Ricardo J. Maza
- Universitat Rovira i Virgili Química Física i Inorganica SPAIN
| | - Oriol Salvado
- Universitat Rovira i Virgili Química Física i Inorganica SPAIN
| | - Jorge J. Carbó
- Universitat Rovira i Virgili Química Física i Inorganica SPAIN
| | - Elena Fernandez
- University Rovira i Virgili Química Física i Inorgànica C/Marcelli Dominso s/n 43007 Tarragona SPAIN
| |
Collapse
|
17
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
18
|
Chen C, Du C, Wang X. The Rise of 1,4-BN-Heteroarenes: Synthesis, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200707. [PMID: 35419988 PMCID: PMC9259729 DOI: 10.1002/advs.202200707] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/25/2022] [Indexed: 05/09/2023]
Abstract
BN-heteroarenes, which employ both boron and nitrogen in aromatic hydrocarbons, have gained great attention in the fields of organic chemistry and materials science. Nevertheless, the extensive studies on BN-heteroarenes are largely limited to 1,2-azaborine-based compounds with B-N covalent bonds, whereas 1,3- and 1,4-BN-heteroarenes are relatively rare due to their greater challenge in the synthesis. Recently, significant progresses have been achieved in the synthesis and applications of BN-heteroarenes featuring 1,4-azaborines, especially driven by their significant potential as multiresonant thermally activated delayed fluorescence (MR-TADF) materials. Therefore, it is timely to review these advances from the chemistry perspective. This review summarizes the synthetic methods and recent achievements of 1,4-azaborine-based BN-heteroarenes and discusses their unique properties and potential applications of this emerging class of materials, highlighting the value of 1,4-BN-heteroarenes beyond MR-TADF materials. It is hoped that this review would stimulate the conversation and cooperation between chemists who are interested in azaborine chemistry and materials scientists working in the fields of organic optoelectronics, metal catalysis, and carbon-based nanoscience etc.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Cheng‐Zhuo Du
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
19
|
Bowen J, Slebodnick C, Santos WL. Phosphine-catalyzed hydroboration of propiolonitriles: access to ( E)-1,2-vinylcyanotrifluoroborate derivatives. Chem Commun (Camb) 2022; 58:5984-5987. [PMID: 35481802 DOI: 10.1039/d2cc00603k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an organocatalytic trans hydroboration of 3-substituted-propiolonitriles. In the presence of catalytic amounts of tributylphosphine and pinacolborane, regioselective hydroboration of the internal triple bond proceeded in a stereoselective fashion under mild conditions to afford the corresponding (E)-1,2-vinylcyanoborane derivatives. The mechanism is proposed to occur through a 1,2-phosphine addition instead of a canonical 1,4-conjugate addition pathway.
Collapse
Affiliation(s)
- Johnathan Bowen
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
20
|
Anoyama K, Onodera G, Fukuda T, Kimura M. C–H Silylation of 2‐Arylpyridine Derivatives by Using Iridium Catalyst and Phosphine‐Borane Ligand. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Morita T, Murakami H, Asawa Y, Nakamura H. Enantioselective Synthesis of Oxazaborolidines by Palladium‐Catalyzed N−H/B−H Double Activation of 1,2‐Azaborines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hiroki Murakami
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Yasunobu Asawa
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
22
|
Zhou F, Shi W, Liao X, Yang Y, Yu ZX, You J. Palladium-Catalyzed [3 + 2] Annulation of Alkynes with Concomitant Aromatic Ring Expansion: A Concise Approach to (Pseudo)azulenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fulin Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Weiming Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Xingrong Liao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People’s Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
23
|
Morita T, Murakami H, Asawa Y, Nakamura H. Enantioselective Synthesis of Oxazaborolidines by Palladium-Catalyzed N-H/B-H Double Activation of 1,2-Azaborines. Angew Chem Int Ed Engl 2021; 61:e202113558. [PMID: 34913232 DOI: 10.1002/anie.202113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/14/2023]
Abstract
A palladium-catalyzed N-H/B-H double activation of 1,2-dihydro-1,2-benzazaborines proceeded via cycloaddition with vinyl ethylene carbonate to produce polycyclic oxazaborolidines in 31-96 % yield. The key step in this process is the release of molecular hydrogen from a borate intermediate. Using a SPINOL-derived phosphoramidite as a chiral ligand, chiral oxazaborolidines were synthesized in good to high yields with excellent enantioselectivity (up to 95 % ee). The vinyl group of the resulting oxazaborolidine underwent metathesis, Heck reaction, and Wacker oxidation without affecting the oxazaborolidine framework.
Collapse
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
24
|
Segura L, Massad I, Ogasawara M, Marek I. Stereodivergent Access to Trisubstituted Alkenylboronate Esters through Alkene Isomerization. Org Lett 2021; 23:9194-9198. [PMID: 34766777 PMCID: PMC8650100 DOI: 10.1021/acs.orglett.1c03513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
We report an efficient
method for the preparation of synthetically
valuable trisubstituted alkenylboronate esters through alkene
isomerization of their readily available 1,1-disubstituted regioisomeric
counterparts. Either stereoisomer of the target alkenylboronate
motif can be obtained at will from the same starting material by employing
different isomerization catalysts.
Collapse
Affiliation(s)
- Lucas Segura
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200009, Israel
| | - Itai Massad
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200009, Israel
| | - Masamichi Ogasawara
- Department of Natural Science, Graduate School of Science and Technology, Tokushima University, Tokushima 770-8506, Japan
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
25
|
He Q, Zhu L, Yang ZH, Zhu B, Ouyang Q, Du W, Chen YC. Palladium-Catalyzed Modular and Enantioselective cis-Difunctionalization of 1,3-Enynes with Imines and Boronic Reagents. J Am Chem Soc 2021; 143:17989-17994. [PMID: 34669411 DOI: 10.1021/jacs.1c09877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we report that a palladium(0) complex can mediate the unprecedented intermolecular coupling reaction of 1,3-enynes and N-sulfonylimines regio- and stereoselectively, and the resultant palladium(II) species undergo a cascade Suzuki reaction with organoboronic reagents. The substrate scope is substantial for the asymmetric three-component process, and the enantioenriched all-carbon tetra-substituted alkene derivatives are efficiently constructed in a modular and cis-difunctionalized manner. Control experiments and density functional theory (DFT) calculations support the idea that the palladium(0) acts as a π-Lewis base catalyst by chemoselectively forming η2-complexes with the alkene moiety of 1,3-enynes, thus increasing the nucleophilicity of the alkyne group based on the principle of vinylogy, to attack imines enantioselectively. The preferable formation of aza-palladacyclopentene intermediates, via a 90° single bond rotation from the resultant π-allyl complex, guarantees the formal cis-carbopalladation of alkyne group. In addition, a palladium(0)-catalyzed enantioselective reductive coupling of 1,3-enyne and imine is realized by using formic acid as hydrogen transfer reagent.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Zhen-Hong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
26
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos JM, Chrostowska A, Miqueu K, Liu SY. C-Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:21231-21236. [PMID: 34245074 DOI: 10.1002/anie.202108534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/17/2022]
Abstract
A new family of carbon-bound boron enolates, generated by a kinetically controlled halogen exchange between chlorocatecholborane and silylketene acetals, is described. These C-boron enolates are demonstrated to activate 1,3-enyne substrates in the presence of a Pd0 /Senphos ligand complex, resulting in the first examples of a carboboration reaction of an alkyne with enolate-equivalent nucleophiles. Highly substituted dienyl boron building blocks are produced in excellent site-, regio-, and diastereoselectivity by the described catalytic cis-carboboration reaction.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jean-Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA.,Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| |
Collapse
|
27
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos J, Chrostowska A, Miqueu K, Liu S. C−Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3‐Enynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyong Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jason Wu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jean‐Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| |
Collapse
|
28
|
Chen X, Li M, Liu Z, Yang C, Xie H, Hu X, Su SJ, Jiang H, Zeng W. Bimetal Cooperatively Catalyzed Arylalkynylation of Alkynylsilanes. Org Lett 2021; 23:6724-6728. [PMID: 34397220 DOI: 10.1021/acs.orglett.1c02283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An unprecedented Pd/Rh cooperatively catalyzed arylalkynylation of alkynylsilanes was developed to merge an alkynylidene moiety with benzosilacycle. These silaarenes possess a particular aggregation-induced emission behavior. Mechanistic investigations demonstrate that the relay trimetallic transmetalation plays a pivotal role in governing this transformation.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Zhipeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
29
|
Guo Y, Zhang L, Li C, Jin M, Zhang Y, Ye J, Chen Y, Wu X, Liu X. BN/BO-Ullazines and Bis-BO-Ullazines: Effect of BO Doping on Aromaticity and Optoelectronic Properties. J Org Chem 2021; 86:12507-12516. [PMID: 34337940 DOI: 10.1021/acs.joc.1c00777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have achieved substitutional doping of ullazine with either two BO units or with one BO unit and one BN unit. The synthesis of these B-doped ullazines is straightforward, using demethylation and borylative cyclization as the key steps. Ullazine cores of both BN/BO-ullazines (2) and bis-BO-ullazines (3) are very close to being planar. Their electronic and photophysical properties were investigated by ultraviolet-visible, fluorescence spectroscopy, cyclic voltammetry, and density functional theory calculations.
Collapse
Affiliation(s)
- Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Chenglong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mengjia Jin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yanli Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Jincheng Ye
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
30
|
Buttard F, Sharma J, Champagne PA. Recent advances in the stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Chem Commun (Camb) 2021; 57:4071-4088. [PMID: 33908457 DOI: 10.1039/d1cc00596k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkenes bearing four carbon-based groups are ubiquitous motifs in chemical sciences due to their various applications from medicinal to materials chemistry, and as chemical platforms for the synthesis of complex, chiral molecules. As such, tremendous research efforts are currently ongoing in order to develop general procedures for the challenging stereoselective synthesis of all-carbon tetrasubstituted alkenes, especially for acyclic structures. Since classical approaches to carbon-carbon double bonds are not suitable for the high steric demand around tetrasubstituted alkenes, a variety of unique approaches to access these privileged functional groups have been developed in recent years. This review article highlights the most significant developments in the field from 2007 to 2020, with an emphasis on the mechanisms and remaining limitations of these contemporary methods. Specifically, recent advances in internal alkyne carbofunctionalizations, in multicomponent couplings or other cross-couplings from nucleophilic or electrophilic alkenyl partners, and in the development of miscellaneous methods, are discussed.
Collapse
Affiliation(s)
- Floris Buttard
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark (NJ), USA.
| | - Jyoti Sharma
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark (NJ), USA.
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark (NJ), USA.
| |
Collapse
|
31
|
Bhattacharjee A, Davies GHM, Saeednia B, Wisniewski SR, Molander GA. Selectivity in the Elaboration of Bicyclic Borazarenes. Adv Synth Catal 2021; 363:2256-2273. [PMID: 34335130 PMCID: PMC8323665 DOI: 10.1002/adsc.202001384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Among aromatic compounds, borazarenes represent a significant class of isosteres in which carbon-carbon bonds have been replaced by B-N bonds. Described herein is a summary of the selective reactions that have been developed for known systems, as well as a summary of computationally-based predictions of selectivities that might be anticipated in reactions of yet unrealized substructures.
Collapse
Affiliation(s)
- Ayan Bhattacharjee
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Geraint H M Davies
- Small Molecule Drug Development, Bristol Myers Squibb Company, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Borna Saeednia
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
32
|
Boudjelel M, Sadek O, Mallet-Ladeira S, García-Rodeja Y, Sosa Carrizo ED, Miqueu K, Bouhadir G, Bourissou D. Phosphine–Borane Ligands Induce Chemoselective Activation and Catalytic Coupling of Acyl Chlorides at Palladium. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maxime Boudjelel
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Omar Sadek
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse, FR 2599, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Yago García-Rodeja
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRS/Université de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue du Président Angot, Pau 64053 Cedex 09, France
| | - E. Daiann Sosa Carrizo
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRS/Université de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue du Président Angot, Pau 64053 Cedex 09, France
| | - Karinne Miqueu
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRS/Université de Pau et des Pays de l’Adour, E2S UPPA, Hélioparc, 2 Avenue du Président Angot, Pau 64053 Cedex 09, France
| | - Ghenwa Bouhadir
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hetérochimie Fondamentale et Appliquée,
UMR 5069, CNRS/Université Paul Sabatier, 118 Route de Narbonne, Toulouse 31062 Cedex 09, France
| |
Collapse
|