1
|
Li MH, Zhang X, Pan BB, Su XC. Excellent Fe(II) Binding Tag in Protein Paramagnetic NMR Spectroscopy. Inorg Chem 2025. [PMID: 40229220 DOI: 10.1021/acs.inorgchem.4c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Most first series of transition metal ions have one or more unpaired electrons and show great variations in the paramagnetic property. The magnetic anisotropy of some transition metal ions, including Co(II), as well as lanthanide ions [Ln(III)], has been well examined in proteins by NMR. In contrast, few examples of Fe(II) complexes reporting the magnetic anisotropy were analyzed in proteins, except for the ones containing a heme motif or iron-sulfur clusters. Here, we showed that [2,2':6',2″-terpyridine]-6,6″-dicarboxylic acid (TDA) is an excellent iron-binding ligand. It forms a stable iron complex in aqueous solution and demonstrates distinct iron-binding properties. TDA forms a 1:1 stable complex with both Fe(II) and Fe(III), but Fe(II) presents a high-spin state in the complex. The TDA moiety can be site-specifically attached to a protein, and its protein conjugate generates sizable pseudocontact shifts (PCSs) in complex with Fe(II), which are larger than those of commonly used metal binding tags. In contrast, the protein-TDA-Fe(III) complex produces negligible paramagnetic relaxation enhancement (PRE) effects in the protein signals, indicating a low-spin state of Fe(III) in the protein-TDA complex. The high stability of the protein-TDA-Fe(II) complex allows one to measure accurate PCSs in cell lysate even in the presence of other transition metal ions and an excess of GSH.
Collapse
Affiliation(s)
- Mo-Han Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Gao F, Wang B, Liu Y, Wang T, Wang L, Zou LF, Xue S, Guo Y. Aggregation-Induced Spin-Crossover Switching in a Spin-Labile Iron(II) Complex. Inorg Chem 2025; 64:5904-5912. [PMID: 40100030 DOI: 10.1021/acs.inorgchem.4c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In this study, an aggregate-responsive spin crossover (SCO) system was presented based on the spin-labile iron(II) complex Fe(HL)2(NCS)2·2DMF (1) (HL = methyl 2-(2-pyridinyl)-1H-benzimidazole-6-carboxylate). Complex 1 exhibits the switchable SCO behavior between the solution and crystalline state through the solvent-driven aggregation control. The addition of the poor solvent dioxane to the methanol solution of the title complex not only generates nanoparticles with increasingly larger sizes in accompaniment with the absence of SCO but also changes the orientation of the isothiocyanate from cis in the methanol solution to the trans isomer in the aggregate or solid via an aggregation process.
Collapse
Affiliation(s)
- Fangqing Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binbin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yan Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tengli Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li-Fei Zou
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Life Science, Chifeng University, Chifeng 024000, China
| | - Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Wheaton AM, Chipman JA, Walde RK, Hofstetter H, Berry JF. Chemically Separable Co(II) Spin-State Isomers. J Am Chem Soc 2024; 146:26926-26935. [PMID: 39297881 DOI: 10.1021/jacs.4c08097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The phenomenon of spin crossover involves coordination complexes with switchable spin states. This spin state change is accompanied by significant geometric changes such that low and high spin forms of a complex are distinct isomers that exist in equilibrium with one another. Typically, spin-state isomers interconvert rapidly and are similar enough in polarity to prevent their independent separation and isolation. We report here the first example, to our knowledge, of cobalt(II) spin-state isomers that can be physically separated. The reaction of Mo2(dpa)4 (dpa = 2,2'-dipyridylamide) with CoBr2 produces a mixture of two heterometallic compounds with a linear, metal-metal-bonded Mo[Formula: see text]Mo-Co chain. The complexes, SC-[BrMo2(dpa)4Co]Br (SC-2) and HS-[BrMo2(dpa)4CoBr] (HS-2), have identical compositions (Mo2Co(dpa)4Br2) but different ground spin states and coordination geometries of the Co(II) ion. In the solid state, SC-2 undergoes incomplete spin crossover from an S = 1/2 state to an S = 3/2 state, and HS-2 has a high spin, S = 3/2, ground state, as confirmed by SQUID magnetometry and EPR spectroscopy. Crystallographic analyses of SC-2 and HS-2 show that SC-2 has an elongated Co-Br distance relative to HS-2 and is best described as the salt [BrMo2(dpa)4Co]Br. This limits SC-2's solubility in nonpolar solvents and allows for the physical separation of the two isomers. Solution studies of SC-2 and HS-2 indicate that SC-2 and HS-2 interconvert slowly relative to the NMR time scale. Additional solution-state EPR and UV-vis absorption measurements demonstrate that the choice of solvent polarity determines the predominant isomer present in solution.
Collapse
Affiliation(s)
- Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jill A Chipman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Rebecca K Walde
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Sarkar S, Wu CQ, Manna S, Samanta D, Chen PPY, Rath SP. Probing substrate binding inside a paramagnetic cavity: a NMR spectroscopy toolbox for combined experimental and theoretical investigation. Chem Sci 2024:d4sc05432f. [PMID: 39364070 PMCID: PMC11446338 DOI: 10.1039/d4sc05432f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Protein cavities often rely on the paramagnetic metal present in their active site in order to catalyse various chemical transformations in biology. The selective detection and identification of the substrate is of fundamental importance in environmental monitoring and biological studies. Herein, a covalently linked Fe(iii)porphyrin dimer-based paramagnetic sensory cavity has been devised for the accurate detection and simultaneous identification of phenol (substrate) binding within the cavity that provides a unique spectroscopic signature with valuable structural and environmental information. These substrates within the paramagnetic cavity leave the fingerprints of the specific binding modes (exo vs. endo) which are well distinguished with the help of various spectroscopic studies viz. UV-vis, 1H, and 19F NMR and in their respective crystal structures also. The theoretical 19F NMR analysis plays a pivotal role in replicating the observed NMR trends with large chemical shifts of the phenolato species which in turn helps in deciphering the selective binding modes of the phenols and thereby recognizing the chemical environment within the cavity. These findings will help develop an excellent diagnostic tool for in situ monitoring of subtle conformational changes and transient interactions.
Collapse
Affiliation(s)
- Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Chang-Quan Wu
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd. South Dist. Taichung City 402 Taiwan
| | - Santanu Manna
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University 145 Xingda Rd. South Dist. Taichung City 402 Taiwan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| |
Collapse
|
6
|
Tkachenko N, Golovanov V, Penni A, Vesamäki S, Ajayakumar MR, Muranaka A, Kobayashi N, Efimov A. The windmill, the dragon, and the frog: geometry control over the spectral, magnetic, and electrochemical properties of cobalt phthalocyanine regioisomers. Phys Chem Chem Phys 2024; 26:18113-18128. [PMID: 38895861 DOI: 10.1039/d4cp01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For the first time, we have prepared non-aggregating phthalocyanine cobalt complexes as a set of resolved positional isomers. These compounds comprise a unique test bed for the structure-properties studies, as their optical and electrochemical properties are influenced by the planarity of the phthalocyanine macrocycle, which can be controlled by the positional isomerism of the bulky aromatic substituents at the α-phthalo sites. We support our conclusions with molecular modelling studies, which show a perfect match between the calculated and experimentally determined spectral/electrochemical values. We challenge a common perception that the NMR spectra of cobalt phthalocyanines cannot be measured due to the paramagnetic nature of Co(II). We suggest instead that the key factors affecting the NMR spectral resolution are molecular aggregation and π-π stacking. These interactions are suppressed by the bulky peripheral substituents on the cobalt phthalocyanines prepared, making these isomeric compounds an excellent tool for paramagnetic NMR studies.
Collapse
Affiliation(s)
| | - Viacheslav Golovanov
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
- South-Ukrainian National University, Staroportofrankovskaya str. 26, 65020, Odessa, Ukraine
| | - Aleksandr Penni
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - Sami Vesamäki
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - M R Ajayakumar
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Alexander Efimov
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| |
Collapse
|
7
|
Ehlbeck JT, Grimard DM, Hacker RM, Garcia JA, Wall BJ, Bothwell PJ, Jones MA, Webb MI. Finding the best location: Improving the anti-amyloid ability of ruthenium(III) complexes with pyridine ligands. J Inorg Biochem 2024; 250:112424. [PMID: 37952508 DOI: 10.1016/j.jinorgbio.2023.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder where one of the primary pathological hallmarks are aggregate deposits of the peptide amyloid-beta (Aβ). Although the Food and Drug Administration (FDA) has recently approved therapeutics that specifically target Aβ, resulting in the removal of these deposits, the associated costs of such treatments create a need for effective, yet cheaper, alternatives. Metal-based compounds are propitious therapeutic candidates as they exploit the metal-binding properties of Aβ, forming stable interactions with the peptide, thereby limiting its aggregation and toxicity. Previously, ruthenium-based complexes have shown a strong ability to modulate the aggregation and cytotoxicity of Aβ, where the incorporation of a primary amine on the coordinated heterocyclic ligand gave the greatest activity. To determine the importance of the location of the primary amine on the pyridine ligand, thereby establishing structure-activity relationships (SAR), four complexes (RuP1-4) were prepared and evaluated for their ability to coordinate and subsequently modulate the aggregation and cytotoxicity of Aβ. Coordination to Aβ was determined using three complementary spectroscopic methods: UV-Vis, 1H NMR, and circular dichroism (CD). Similarly, the impact of the complexes on Aβ aggregation was evaluated using three sequential methods of turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the location of the primary amine on the pyridine ligand did affect the resultant anti-Aβ performance, with the 2-aminopyridine complex (RuP2) being the most active. This SAR will provide another guiding principle in the design of future metal-based anti-Aβ complexes.
Collapse
Affiliation(s)
- Johanna T Ehlbeck
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Daniela M Grimard
- Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America
| | - Ryan M Hacker
- Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America
| | - Jimmy A Garcia
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Brendan J Wall
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Paige J Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, United States of America
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America
| | - Michael I Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790, United States of America; Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454, United States of America.
| |
Collapse
|
8
|
Nakamura M, Urakawa D, He Z, Akagi I, Hou DX, Sakao K. Apoptosis Induction in HepG2 and HCT116 Cells by a Novel Quercetin-Zinc (II) Complex: Enhanced Absorption of Quercetin and Zinc (II). Int J Mol Sci 2023; 24:17457. [PMID: 38139286 PMCID: PMC10743889 DOI: 10.3390/ijms242417457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Quercetin forms complexes with various metals due to its structural attributes. It predominantly exhibits chelating activity at the 3-hydroxy/4-carbonyl group. Previously, coordination in synthetically obtained quercetin-zinc (II) complexes has been limited to this group. However, the expanded coordination observed in quercetin-iron complexes has opened avenues for diverse applications. Thus, synthesizing novel quercetin-zinc complexes with different coordination positions is a significant advance. In our study, we not only synthesized and comprehensively characterized a new quercetin-zinc (II) complex, Zn-Q, but also evaluated the structure and bioactivity of chelate complexes (Q+Zn) derived from co-treatment in cell culture mediums. The structure of the new compound Zn-Q was comprehensively characterized using 1D 1H and 2D correlation spectroscopy (COSY), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), electrospray ionization mass spectrometer (ESI-MS), and X-ray diffraction analysis (XRD) analysis. Subcellular localization and absorption of these zinc (II) complexes were determined using the ZnAF-2 DA zinc ion fluorescence probe. Throughout the experiments, both Zn-Q and Q+Zn exhibited significant antioxidant, cell growth inhibitory, and anticancer effects in HepG2 and HCT116 cells, with Zn-Q showing the highest potential for inducing apoptosis via the caspase pathway. Tracking intracellular zinc complex absorption using zinc fluorescent probes revealed zinc (II) localization around the cell nucleus. Interestingly, there was a proportional increase in intracellular quercetin absorption in conjunction with zinc (II) uptake. Our research highlights the advantages of quercetin complexation with zinc (II): enhanced anticancer efficacy compared to the parent compound and improved bioavailability of both quercetin and zinc (II). Notably, our findings, which include enhanced intracellular uptake of both quercetin and zinc (II) upon complex formation and its implications in apoptosis, contribute significantly to the understanding of metal-polyphenol complexes. Moving forward, comprehensive functional assessments and insights into its mechanism of action, supported by animal studies, are anticipated.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
| | - Daigo Urakawa
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Isao Akagi
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - De-Xing Hou
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Kozue Sakao
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|
9
|
Paschelke T, Trumpf E, Grantz D, Pankau M, Grocholski N, Näther C, Sönnichsen FD, McConnell AJ. Tuning the spin-crossover properties of FeII4L 6 cages via the interplay of coordination motif and linker modifications. Dalton Trans 2023; 52:12789-12795. [PMID: 37615965 DOI: 10.1039/d3dt01569f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Despite the increasing number of spin-crossover FeII-based cages, the interplay between ligand modifications (e.g. coordination motif substituents and linker) is not well-understood in these multinuclear systems, limiting rational design. Here, we report a family of FeII4L6 spin-crossover cages based on 2,2'-pyridylbenzimidazoles where subtle ligand modifications lowered the spin crossover temperature in CD3CN by up to 186 K. Comparing pairs of cages, CH3 substituents on either the coordination motif or phenylene linker lowered the spin-crossover temperature by 48 K, 91 K or 186 K, attributed to electronic effects, steric effects and a combination of both, respectively. The understanding of the interplay between ligand modifications gained from this study could be harnessed on the path towards the improved rational design of spin-crossover cages.
Collapse
Affiliation(s)
- Tobias Paschelke
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| | - Eicke Trumpf
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| | - David Grantz
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| | - Malte Pankau
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| | - Niclas Grocholski
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| | - Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, Kiel 24098, Germany
| |
Collapse
|
10
|
Yang SL, Zhang X, Wang Q, Wu C, Liu H, Jiang D, Lavendomme R, Zhang D, Gao EQ. Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages. JACS AU 2023; 3:2183-2191. [PMID: 37654592 PMCID: PMC10466325 DOI: 10.1021/jacsau.3c00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal-organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host-guest interactions. In particular, the confined in situ self-assembly of an anionic FeII4L6 nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host-guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin FeII, FeII4L6@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host-guest structures.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Xiang Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Qing Wang
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Chao Wu
- Department
of EEE, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Haiming Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Dongmei Jiang
- Engineering
Research Center for Nanophotonics and Advanced Instrument, School
of Physics and Electronic Science, East
China Normal University, Shanghai 200241, P. R. China
| | - Roy Lavendomme
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| | - En-Qing Gao
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| |
Collapse
|
11
|
Dief EM, Low PJ, Díez-Pérez I, Darwish N. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat Chem 2023; 15:600-614. [PMID: 37106094 DOI: 10.1038/s41557-023-01178-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/02/2023] [Indexed: 04/29/2023]
Abstract
The development of miniaturized electronics has led to the design and construction of powerful experimental platforms capable of measuring electronic properties to the level of single molecules, along with new theoretical concepts to aid in the interpretation of the data. A new area of activity is now emerging concerned with repurposing the tools of molecular electronics for applications in chemical and biological analysis. Single-molecule junction techniques, such as the scanning tunnelling microscope break junction and related single-molecule circuit approaches have a remarkable capacity to transduce chemical information from individual molecules, sampled in real time, to electrical signals. In this Review, we discuss single-molecule junction approaches as emerging analytical tools for the chemical and biological sciences. We demonstrate how these analytical techniques are being extended to systems capable of probing chemical reaction mechanisms. We also examine how molecular junctions enable the detection of RNA, DNA, and traces of proteins in solution with limits of detection at the zeptomole level.
Collapse
Affiliation(s)
- Essam M Dief
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London, UK
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| |
Collapse
|
12
|
Su P, Wei B, Guo C, Hu Y, Tang R, Zhang S, He C, Lin J, Yu X, Chen Z, Li H, Wang H, Li X. Metallo-Supramolecular Hexagonal Wreath with Four Switchable States Based on a pH-Responsive Tridentate Ligand. J Am Chem Soc 2023; 145:3131-3145. [PMID: 36696285 DOI: 10.1021/jacs.2c12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In biological systems, many biomacromolecules (e.g., heme proteins) are capable of switching their states reversibly in response to external stimuli, endowing these natural architectures with a high level of diversity and functionality. Although tremendous efforts have been made to advance the complexity of artificial supramolecules, it remains a challenge to construct metallo-supramolecular systems that can carry out reversible interconversion among multiple states. Here, a pH-responsive tridentate ligand, 2,6-di(1H-imidazole-2-yl)pyridine (H2DAP), is incorporated into the multitopic building block for precise construction of giant metallo-supramolecular hexagonal wreaths with three metal ions, i.e., Fe(II), Co(II), and Ni(II), through coordination-driven self-assembly. In particular, a Co-linked wreath enables in situ reversible interconversion among four states in response to pH and oxidant/reductant with highly efficient conversion without losing structural integrity. During the state interconversion cycles, the physical properties of the assembled constructs are finely tuned, including the charge states of the backbone, valency of metal ions, and paramagnetic/diamagnetic features of complexes. Such discrete wreath structures with a charge-switchable backbone further facilitate layer-by-layer assembly of metallo-supramolecules on the substrate.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Biaowen Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Jing Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, Guangdong, China
| |
Collapse
|
13
|
Hugenbusch D, Lehr M, von Glasenapp JS, McConnell AJ, Herges R. Light-Controlled Destruction and Assembly: Switching between Two Differently Composed Cage-Type Complexes. Angew Chem Int Ed Engl 2023; 62:e202212571. [PMID: 36215411 PMCID: PMC10099457 DOI: 10.1002/anie.202212571] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 12/30/2022]
Abstract
We report on two regioisomeric, diazocine ligands 1 and 2 that can both be photoswitched between the E- and Z-configurations with violet and green light. The self-assembly of the four species (1-Z, 1-E, 2-Z, 2-E) with CoII ions was investigated upon changing the coordination vectors as a function of the ligand configuration (E vs Z) and regioisomer (1 vs 2). With 1-Z, Co2 (1-Z)3 was self-assembled, while a mixture of ill-defined species (oligomers) was observed with 2-Z. Upon photoswitching with 385 nm to the E configurations, the opposite was observed with 1-E forming oligomers and 2-E forming Co2 (2-E)3 . Light-controlled dis/assembly was demonstrated in a ligand competition experiment with sub-stoichiometric amounts of CoII ions; alternating irradiation with violet and green light resulted in the reversible transformation between Co2 (1-Z)3 and Co2 (2-E)3 over multiple cycles without significant fatigue by photoswitching.
Collapse
Affiliation(s)
- Daniel Hugenbusch
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Marc Lehr
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Anna J McConnell
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
14
|
Nikovskiy I, Aleshin DY, Novikov VV, Polezhaev AV, Khakina EA, Melnikova EK, Nelyubina YV. Selective Pathway toward Heteroleptic Spin-Crossover Iron(II) Complexes with Pyridine-Based N-Donor Ligands. Inorg Chem 2022; 61:20866-20877. [PMID: 36511893 DOI: 10.1021/acs.inorgchem.2c03270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new synthetic pathway is devised to selectively produce previously elusive heteroleptic iron(II) complexes of terpyridine and N,N'-disubstituted bis(pyrazol-3-yl)pyridines that stabilize the opposite spin states of the metal ion. Such a combination of the ligands in a series of the heteroleptic complexes induces the spin-crossover (SCO) not experienced by the homoleptic complexes of these ligands or shifts it to lower/higher temperatures respective to the SCO-active homoleptic complex. The midpoint temperatures of the resulting SCO span from ca. 200 K to the ambient temperature and beyond the highest temperature accessible by NMR spectroscopy and SQUID magnetometry. The proposed "one-pot" approach is applicable to other N-donor ligands to selectively produce heteroleptic complexes─including those inaccessible by alternative synthetic pathways─with highly tunable SCO behaviors for practical applications in sensing, switching, and multifunctional devices.
Collapse
Affiliation(s)
- Igor Nikovskiy
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| | - Dmitry Yu Aleshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia
| | - Valentin V Novikov
- Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia.,Moscow Institute of Physics and Technology, Institutskiy per., 9, 141700Dolgoprudny, Russia
| | - Alexander V Polezhaev
- Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| | - Ekaterina A Khakina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,HSE University, Miasnitskaya Str., 20, 101000Moscow, Russia
| | - Elizaveta K Melnikova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991Moscow, Russia.,Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005Moscow, Russia
| |
Collapse
|
15
|
Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Int J Mol Sci 2022; 23:ijms232415957. [PMID: 36555599 PMCID: PMC9782655 DOI: 10.3390/ijms232415957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Collapse
|
16
|
Li X, Jiang F, Liu M, Qu Y, Lan Z, Dai X, Huang C, Yue X, Zhao S, Pan X, Zhang C. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6922-6942. [PMID: 35639848 DOI: 10.1021/acs.jafc.2c01349] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural polysaccharides are critical to a wide range of fields (e.g., medicine, food production, and cosmetics) for their various remarkable physical properties and biological activities. However, the bioactivities of naturally acquired polysaccharides may be unsatisfactory and limit their further applications. It is generally known that the chemical structure exhibited by polysaccharides lays the material basis for their biological activities. Accordingly, possible structural modifications should be conducted on polysaccharides for their enhancement. Recently, polysaccharides complexed with metal ions (e.g., Fe, Zn, Mg, Cr, and Pt) have been reported to be possibly used to improve their bioactivities. Moreover, since the properties exhibited by metal ions are normally conserved, polysaccharides may be endowed with new applications. In this review, the synthesis methods, characterization methods, and bioactivities of polysaccharide metal complexes are summarized specifically. Then, the application prospects and limitations of these complexes are analyzed and discussed.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Meiyan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Zhiqiong Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| |
Collapse
|
17
|
Lehr M, Neumann T, Näther C, McConnell AJ. M-CPOnes: transition metal complexes with cyclopropenone-based ligands for light-triggered carbon monoxide release. Dalton Trans 2022; 51:6936-6943. [PMID: 35448899 DOI: 10.1039/d2dt00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of CO-releasing molecules, M-CPOnes, was prepared combining cyclopropenone-based ligands for CO release with the modular scaffold of transition metal complexes. In proof-of-concept studies, M-CPOnes based on ZnII, FeII and CoII are stable in the dark but undergo light-triggered CO release with the cyclopropenone substituents and metal ions enabling tuning of the photophysical properties. Furthermore, the choice of metal allows the use of different spectroscopic methods to monitor photodecarbonylation from fluorescence spectroscopy to UV/vis spectroscopy and paramagnetic NMR spectroscopy. The modularity of M-CPOnes from the metal ion to the cyclopropenone substitution and potential for further functionalisation of the ligand make M-CPOnes appealing for tailored functionality in applications.
Collapse
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Tjorge Neumann
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, Kiel 24098, Germany.
| |
Collapse
|
18
|
Swartjes A, White PB, Bruekers JPJ, Elemans JAAW, Nolte RJM. Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts. Nat Commun 2022; 13:1846. [PMID: 35388004 PMCID: PMC8986849 DOI: 10.1038/s41467-022-29406-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Paramagnetic metallohost systems can bind guest molecules and find application as biomimetic catalysts. Due to the presence of the paramagnetic metal center, rigorous characterization of these systems by NMR spectroscopy can be very difficult. We report here that metallohost-guest systems can be studied by using the paramagnetic relaxation enhancement (PRE) effect. Manganese(III) porphyrin cage compounds are shown through their PRE to thread and bind viologen guests, including a polymeric one. The binding constants and dethreading activation parameters are lower than those of the metal-free porphyrin cage compounds, which is proposed to be a result of charge repulsion of the trivalent metal center and dicationic viologen guest. The threading rate of the manganese(III) porphyrin cage onto the polymer is more than 10 times faster than that of the non-metallated one, which is ascribed to initial binding of the cage to the polymer chain prior to threading, and to an entron effect. Paramagnetic metallohost systems are difficult to characterize. Here the authors report that the paramagnetic relaxation enhancement effect can be used to prove by nuclear magnetic resonance experiments that Mn(III) porphyrin cage compounds can bind and thread low molecular weight and polymeric guests.
Collapse
Affiliation(s)
- Anne Swartjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Jeroen P J Bruekers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Johannes A A W Elemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
McConnell AJ. Metallosupramolecular cages: from design principles and characterisation techniques to applications. Chem Soc Rev 2022; 51:2957-2971. [PMID: 35356956 DOI: 10.1039/d1cs01143j] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although metallosupramolecular cages are self-assembled from seemingly simple building blocks, metal ions and organic ligands, architectures of increasingly large size and complexity are accessible and exploited in applications from catalysis to the stabilisation of reactive species. This Tutorial Review gives an introduction to the principles for designing metallosupramolecular cages and highlights advances in the design of large and lower symmetry cages. The characterisation and identification of cages relies on a number of complementary techniques with NMR spectroscopy, mass spectrometry, X-ray crystallography and computational methods being the focus of this review. Finally, examples of cages are discussed where these design principles and characterisation techniques are put into practice for an application or function of the cage.
Collapse
Affiliation(s)
- Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany.
| |
Collapse
|
20
|
Pavlov AA, Novikov VV, Nikovskiy IA, Melnikova EK, Nelyubina YV, Aleshin DY. Analysis of reduced paramagnetic shifts as an effective tool in NMR spectroscopy. Phys Chem Chem Phys 2022; 24:1167-1173. [PMID: 34931208 DOI: 10.1039/d1cp04648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recently introduced concept of reduced paramagnetic shifts (RPS) in NMR spectroscopy is applied here to a series of paramagnetic complexes with different metal ions, such as iron(II), iron(III) and cobalt(II), in different coordination environments of N-donor ligands, including a unique trigonal-prismatic geometry that is behind some record single-molecule magnet behaviours. A simple, almost visual analysis of the chemical shifts as a function of temperature, which is at the core of this approach, allows for a correct signal assignment and evaluation of the anisotropy of the magnetic susceptibility, the key indicator of a good single molecule magnet, that often cannot be done using traditional techniques rooted in quantum chemistry and NMR spectroscopy. The proposed approach thus emerged as a powerful alternative in deciphering the NMR spectra of paramagnetic compounds for applications in data processing and storage, magnetic resonance imaging and structural biology.
Collapse
Affiliation(s)
- Alexander A Pavlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991, Moscow, Russia. .,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin V Novikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991, Moscow, Russia. .,National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russia
| | - Igor A Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991, Moscow, Russia.
| | - Elizaveta K Melnikova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991, Moscow, Russia. .,Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991, Moscow, Russia. .,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitry Y Aleshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991, Moscow, Russia.
| |
Collapse
|
21
|
Ott JC, Suturina EA, Kuprov I, Nehrkorn J, Schnegg A, Enders M, Gade LH. Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angew Chem Int Ed Engl 2021; 60:22856-22864. [PMID: 34351041 PMCID: PMC8518043 DOI: 10.1002/anie.202107944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/27/2022]
Abstract
We report an experimental observation of 31 P NMR resonances shifted by over 10 000 ppm (meaning percent range, and a new record for solutions), and similar 1 H chemical shifts, in an intermediate-spin square planar ferrous complex [tBu (PNP)Fe-H], where PNP is a carbazole-based pincer ligand. Using a combination of electronic structure theory, nuclear magnetic resonance, magnetometry, and terahertz electron paramagnetic resonance, the influence of magnetic anisotropy and zero-field splitting on the paramagnetic shift and relaxation enhancement is investigated. Detailed spin dynamics simulations indicate that, even with relatively slow electron spin relaxation (T1 ≈10-11 s), it remains possible to observe NMR signals of directly metal-bonded atoms because pronounced rhombicity in the electron zero-field splitting reduces nuclear paramagnetic relaxation enhancement.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | | | - Ilya Kuprov
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Joscha Nehrkorn
- EPR Research GroupMPI for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim RuhrGermany
| | - Alexander Schnegg
- EPR Research GroupMPI for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim RuhrGermany
| | - Markus Enders
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Lutz H. Gade
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| |
Collapse
|
22
|
Hardy M, Tessarolo J, Holstein JJ, Struch N, Wagner N, Weisbarth R, Engeser M, Beck J, Horiuchi S, Clever GH, Lützen A. A Family of Heterobimetallic Cubes Shows Spin-Crossover Behaviour Near Room Temperature. Angew Chem Int Ed Engl 2021; 60:22562-22569. [PMID: 34382295 PMCID: PMC8519129 DOI: 10.1002/anie.202108792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Indexed: 11/08/2022]
Abstract
Using 4-(4'-pyridyl)aniline as a simple organic building block in combination with three different aldehyde components together with metal(II) salts gave three different Fe8 Pt6 -cubes and their corresponding Zn8 Pt6 analogues by employing the subcomponent self-assembly approach. Whereas the use of zinc(II) salts gave rise to diamagnetic cages, iron(II) salts yielded metallosupramolecular cages that show spin-crossover behaviour in solution. The spin-transition temperature T1/2 depends on the incorporated aldehyde component, giving a construction kit for the deliberate synthesis of spin-crossover compounds with tailored transition properties. Incorporation of 4-thiazolecarbaldehyde or N-methyl-2-imidazole-carbaldehyde yielded cages that undergo spin-crossover around room temperature whereas the cage obtained using 1H-4-imidazolecarbaldehyde shows a spin-transition at low temperatures. Three new structures were characterized by synchrotron X-ray diffraction and all structures were characterized by mass spectrometry, NMR and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
- Current address: BASF SESpeyerer Str. 267117LimburgerhofGermany
| | - Jacopo Tessarolo
- Technische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
| | | | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
- Current address: Arlanxeo (Deutschland) GmbHAlte Heerstraße 241540DormagenGermany
| | - Norbert Wagner
- Rheinische Friedrich-Wilhelms-Universität BonnInstitut für Anorganische ChemieGerhard-Domagk-Str. 153121BonnGermany
| | - Ralf Weisbarth
- Rheinische Friedrich-Wilhelms-Universität BonnInstitut für Anorganische ChemieGerhard-Domagk-Str. 153121BonnGermany
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
| | - Johannes Beck
- Rheinische Friedrich-Wilhelms-Universität BonnInstitut für Anorganische ChemieGerhard-Domagk-Str. 153121BonnGermany
| | - Shinnosuke Horiuchi
- Technische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
- Division of Chemistry and Materials ScienceGraduate School of EngineeringNagasaki University, Bunkyo-machiNagasaki852-8521Japan
| | - Guido H. Clever
- Technische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität BonnKekulé-Institut für Organische Chemie und BiochemieGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
23
|
Hardy M, Tessarolo J, Holstein JJ, Struch N, Wagner N, Weisbarth R, Engeser M, Beck J, Horiuchi S, Clever GH, Lützen A. Eine Familie von Heterobimetallischen Würfeln zeigt Spin‐Crossover‐Verhalten nahe Raumtemperatur. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
- Derzeitige Adresse: BASF SE Speyerer Str. 2 67117 Limburgerhof Deutschland
| | - Jacopo Tessarolo
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
- Derzeitige Adresse: Arlanxeo (Deutschland) GmbH Alte Heerstraße 2 41540 Dormagen Deutschland
| | - Norbert Wagner
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Anorganische Chemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Ralf Weisbarth
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Anorganische Chemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Johannes Beck
- Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Anorganische Chemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| | - Shinnosuke Horiuchi
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
- Division of Chemistry and Materials Science Graduate School of Engineering Nagasaki University, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Guido H. Clever
- Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Deutschland
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Str. 1 53121 Bonn Deutschland
| |
Collapse
|
24
|
Yang S, Miyachi A, Matsuno T, Muto H, Sasakawa H, Ikemoto K, Isobe H. Metal-Templated Oligomeric Macrocyclization via Coupling for Metal-Doped π-Systems. J Am Chem Soc 2021; 143:15017-15021. [PMID: 34491044 DOI: 10.1021/jacs.1c08712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A method for the synthesis of metal-doped aromatic macrocycles has been developed. The method, i.e., metal-templated oligomeric macrocyclization via coupling, adopts Ni as the template and assembles five pyridine units via a Ni-mediated coupling reaction to form aryl-aryl linkages. A pentameric oligopyridyl macrocycle was selectively obtained in good yield, and the reaction was also applicable to a gram-scale synthesis. The pentameric oligopyridyl macrocycle captured d8-Ni(II) at the center to form a paramagnetic pentagonal-bipyramidal complex. The method was applied to the synthesis of a large π-molecule to afford a nanometer-sized, bowl-shaped molecule having a unique combination of 120π and 8d electrons.
Collapse
Affiliation(s)
- Seungmin Yang
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Miyachi
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitomi Muto
- JEOL Resonance Inc., Musashino 3-1-2, Akishima-shi, Tokyo 196-8558, Japan
| | - Hiroaki Sasakawa
- JEOL Resonance Inc., Musashino 3-1-2, Akishima-shi, Tokyo 196-8558, Japan
| | - Koki Ikemoto
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Ott JC, Suturina EA, Kuprov I, Nehrkorn J, Schnegg A, Enders M, Gade LH. Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | | | - Ilya Kuprov
- School of Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Joscha Nehrkorn
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Alexander Schnegg
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Markus Enders
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| |
Collapse
|
26
|
Crespi AF, Sánchez VM, Vega D, Pérez AL, Brondino CD, Linck YG, Hodgkinson P, Rodríguez-Castellón E, Lázaro-Martínez JM. Paramagnetic solid-state NMR assignment and novel chemical conversion of the aldehyde group to dihydrogen ortho ester and hemiacetal moieties in copper(ii)- and cobalt(ii)-pyridinecarboxaldehyde complexes. RSC Adv 2021; 11:20216-20231. [PMID: 35479880 PMCID: PMC9033980 DOI: 10.1039/d1ra02512k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
The complex chemical functionalization of aldehyde moieties in Cu(ii)- and Co(ii)-pyridinecarboxaldehyde complexes was studied. X-ray studies demonstrated that the aldehyde group (RCHO) of the four pyridine molecules is converted to dihydrogen ortho ester (RC(OCH3)(OH)2) and hemiacetal (RCH(OH)(OCH3)) moieties in both 4-pyridinecarboxaldehyde copper and cobalt complexes. In contrast, the aldehyde group is retained when the 3-pyridinecarboxaldehyde ligand is complexed with cobalt. In the different copper complexes, similar paramagnetic 1H resonance lines were obtained in the solid state; however, the connectivity with the carbon structure and the 1H vicinities were done with 2D 1H–13C HETCOR, 1H–1H SQ/DQ and proton spin diffusion (PSD) experiments. The strong paramagnetic effect exerted by the cobalt center prevented the observation of 13C NMR signals and chemical information could only be obtained from X-ray experiments. 2D PSD experiments in the solid state were useful for the proton assignments in both Cu(ii) complexes. The combination of X-ray crystallography experiments with DFT calculations together with the experimental results obtained from EPR and solid-state NMR allowed the assignment of NMR signals in pyridinecarboxaldehyde ligands coordinated with copper ions. In cases where the crystallographic information was not available, as in the case of the 3-pyridinecarboxaldehyde Cu(ii) complex, the combination of these techniques allowed not only the assignment of NMR signals but also the study of the functionalization of the substituent group. The complex chemical functionalization of the aldehyde group was elucidated in copper and cobalt complexes for 4- and 3-pyridinecarboxaldehyde ligands.![]()
Collapse
Affiliation(s)
- Ayelén F Crespi
- Universidad de Buenos Aires - CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Ciudad Autónoma de Buenos Aires Argentina
| | - Verónica M Sánchez
- Centro de Simulación Computacional para Aplicaciones Tecnológicas, CSC-CONICET Ciudad Autónoma de Buenos Aires Argentina.,Universidad Nacional de General San Martín San Martín Buenos Aires Argentina
| | - Daniel Vega
- Universidad Nacional de General San Martín San Martín Buenos Aires Argentina.,Comisión Nacional de Energía Atómica San Martín Buenos Aires Argentina
| | - Ana L Pérez
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - CONICET, Ciudad Universitaria Santa Fe Argentina
| | - Carlos D Brondino
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - CONICET, Ciudad Universitaria Santa Fe Argentina
| | | | | | | | - Juan M Lázaro-Martínez
- Universidad de Buenos Aires - CONICET, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
27
|
Lehr M, Paschelke T, Bendt V, Petersen A, Pietsch L, Harders P, McConnell AJ. Copper‐Free One‐Pot Sonogashira‐Type Coupling for the Efficient Preparation of Symmetric Diarylalkyne Ligands for Metal‐Organic Cages**. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marc Lehr
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| | - Tobias Paschelke
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| | - Victoria Bendt
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| | - André Petersen
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| | - Lorenz Pietsch
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| | - Patrick Harders
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| | - Anna J. McConnell
- Otto Diels Institute of Organic Chemistry Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 Kiel 24098 Germany
| |
Collapse
|