1
|
Peng HY, Xu MK, Li X, Cai T. Exploiting Photoinduced Atom Transfer Radical Polymerizations with Boron-Dopant and Nitrogen-Defect Synergy in Carbon Nitride Nanosheets. Macromol Rapid Commun 2025; 46:e2400365. [PMID: 38849126 DOI: 10.1002/marc.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Graphitic carbon nitrides (g-C3N4) possess various benefits as heterogeneous photocatalysts, including tunable bandgaps, scalability, and chemical robustness. However, their efficacy and ongoing advancement are hindered by challenges like limited charge-carrier separation rates, insufficient driving force for photocatalysis, small specific surface area, and inadequate absorption of visible light. In this study, boron dopants and nitrogen defects synergy are introduced into bulk g-C3N4 through the calcination of a blend of nitrogen-defective g-C3N4 and NaBH4 under inert conditions, resulting in the formation of BCN nanosheets characterized by abundant porosity and increased specific surface area. These BCN nanosheets promote intermolecular single electron transfer to the radical initiator, maintaining radical intermediates at a low concentration for better control of photoinduced atom transfer radical polymerization (photo-ATRP). Consequently, this method yields polymers with low dispersity and tailorable molecular weights under mild blue light illumination, outperforming previous reports on bulk g-C3N4. The heterogeneity of BCN enables easy separation and efficient reuse in subsequent polymerization processes. This study effectively showcases a simple method to alter the electronic and band structures of g-C3N4 with simultaneously introducing dopants and defects, leading to high-performance photo-ATRP and providing valuable insights for designing efficient photocatalytic systems for solar energy harvesting.
Collapse
Affiliation(s)
- He Yu Peng
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Meng Kai Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Xue Li
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
2
|
Huang Z, Dong J, Liu K, Pan X. Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis. Chem Commun (Camb) 2025; 61:2699-2722. [PMID: 39817502 DOI: 10.1039/d4cc05772d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization. Therefore, we have developed some oxygen-tolerant systems that directly utilize oxygen for initiating and regulating polymerization. We utilize oxygen/alkylborane as an effective radical initiator system in the polymerization, and also as a reductant for the removal of polymer chain ends. Moreover, we employ the gentler photoinduced CRP to circumvent side reactions caused by high temperatures and achieve temporal and spatial control over the polymerization. To enhance the penetration of the light source for polymerization, we have developed near-infrared light-induced atom transfer radical polymerization. Additionally, we have extended photochemistry to reversible addition-fragmentation chain transfer polymerization involving ion-pair inner-sphere electron transfer mechanism, metal-free radical hydrosilylation polymerization, as well as carbene-mediated polymer modification through C-H activation and insertion mechanisms. Furthermore, we propose a new method for polymerization initiation synergistically triggered by oxygen and mechanical energy. This review not only showcases the current advancements in CRP but also outlines future directions, such as the potential for 3D printing and surface coatings, and the exploration of new heteroatom radical polymerizations. By expanding the boundaries of polymer synthesis, these innovations could lead to the creation of new materials with enhanced functionality and applications.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kaiwen Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Wang P, Ge M, Luo X, Zhai Y, Meckbach N, Strehmel V, Li S, Chen Z, Strehmel B. Confinement of Sustainable Carbon Dots Results in Long Afterglow Emitters and Photocatalyst for Radical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202402915. [PMID: 38569128 DOI: 10.1002/anie.202402915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose carbon dots (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl α-bromophenylacetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and controlled radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca carbon dots confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.
Collapse
Affiliation(s)
- Ping Wang
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Min Ge
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Xiongfei Luo
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, 150040, Harbin, China
| | - Yingxiang Zhai
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Nicolai Meckbach
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Zhijun Chen
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Heilongjiang International Joint Lab of Advanced Biomass Materials, Northeast Forestry University, Hexing Road 26, 150040, Harbin, China
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| |
Collapse
|
4
|
Xiao Y, Xia Z, Hu W, Liu B, Lü C. Phenanthroline Derived N-Doped Carbon Dots as Robust Metal-Free Photocatalysts for PET-RAFT Polymerization and Polymerization-Induced Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309893. [PMID: 38516960 DOI: 10.1002/smll.202309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Metal-free organic photocatalysts for photo-mediated reversible deactivation radical polymerization (photo-RDRP) are witnessed to make increasing advancement in the precise synthesis of polymers. However, challenges still exist in the development of high-efficiency and environmentally sustainable carbon dots (CDs)-based organocatalysts. Herein, N-doped CDs derived from phenanthroline derivative (Aphen) are prepared as metal-free photocatalysts for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The introduction of phenanthroline structure enhances the excited state lifetime of CDs and expands the conjugated length of their internal structure to enable the light-absorption to reach green light region, thereby enhancing photocatalytic activity. The as-designed CDs exhibit unprecedented photocatalytic capacity in photopolymerization even in large-volume reaction (100 mL) with high monomer conversion and narrow polymer dispersity (Mw/Mn < 1.20) under green light. The photocatalytic system is compatible with PET-RAFT polymerization of numerous monomers and the production of high molecular weight polyacrylate (Mn >250 000) with exquisite spatiotemporal control. Above results confirm the potential of CDs as photocatalyst, which has not been achieved with other CDs catalysts used in photo-RDRP. In addition, the construction of fluorescent polymer nanoparticles using CDs as both photocatalyst and phosphor through photoinitiated polymerization-induced self-assembly (Photo-PISA) technology is successfully demonstrated for the first time.
Collapse
Affiliation(s)
- Yang Xiao
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wanchao Hu
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bei Liu
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
5
|
Yang H, Wang J, Zhao R, Hou L. Precise Regulation in Chain-Edge Structural Microenvironments of 1D Covalent Organic Frameworks for Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400688. [PMID: 38659172 DOI: 10.1002/smll.202400688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Covalent organic frameworks (COFs) constitute a promising research topic for photocatalytic reactions, but the rules and conformational relationships of 1D COFs are poorly defined. Herein, the chain edge structure is designed by precise modulation at the atomic level, and the 1D COFs bonded by C, O, and S elements is directionally prepared for oxygen-tolerant photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) reactions. It is demonstrated that heteroatom-type chain edge structures (─O─, ─S─) lead to a decrease in intra-plane conjugation, which restricts the effective transport of photogenerated electrons along the direction of the 1D strip. In contrast, the all-carbon type chain edge structure (─C─) with higher intra-plane conjugation not only reduces the energy loss of photoexcited electrons but also enhances the carrier density, which exhibits the optimal photopolymerization performance. This work offers valuable guidance in the exploitation of 1D COFs for high photocatalytic performance. This work offers valuable guidance in the exploitation of 1D COFs for high photocatalytic performance.
Collapse
Affiliation(s)
- Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jinfeng Wang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- Department of Chemical Engineering, Zhicheng College of Fuzhou University, Fuzhou, 350116, P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
6
|
Jeong J, Hu X, Yin R, Fantin M, Das SR, Matyjaszewski K. Nucleic Acid-Binding Dyes as Versatile Photocatalysts for Atom-Transfer Radical Polymerization. J Am Chem Soc 2024; 146:13598-13606. [PMID: 38691811 PMCID: PMC11100002 DOI: 10.1021/jacs.4c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
8
|
Sahu B, Sinha P, Kumar D, Patel K, Banerjee S. Magnetically Recyclable Nanoscale Zero-Valent Iron-Mediated PhotoRDRP in Ionic Liquid toward Smart, Functional Polymers. Macromol Rapid Commun 2024; 45:e2300500. [PMID: 37870940 DOI: 10.1002/marc.202300500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Indexed: 10/25/2023]
Abstract
A facile method based on recyclable nanoscale zero-valent iron (nZVI)-mediated photoinduced reversible deactivation radical polymerization in ionic liquid (IL) leads to the synthesis of narrow disperse poly(tert-butyl methacrylate) (PTBMA), amphiphilic PTBMA-block-poly(poly(ethylene glycol)methacrylate) diblock copolymer and double hydrophilic poly(methacrylic acid)-block-poly(poly(ethylene glycol)methacrylate) (PMAA-b-PPEGMA) diblock copolymers thereof. Stimuli response of the synthesized PMAA-b-PPEGMA diblock copolymer against variation in pH and temperature is assessed. Recyclability of the nZVI (catalyst) and IL (solvent) is established. Polymerization may be switched ON or OFF, simply by turning the UVA light irradiation ON or OFF, offering temporal control. The diblock copolymer self-aggregates into spherical nanoaggregates which are employed for encapsulation of coumarin 102 (C102, a typical hydrophobic dye), describing their potential application in drug delivery applications. The facile synthesis strategy may open up new avenues for the preparation of intelligent functional polymers for engineering and biomedical applications.
Collapse
Affiliation(s)
- Bhanendra Sahu
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Priyank Sinha
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Kundan Patel
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India
| |
Collapse
|
9
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
10
|
Zhang F, Benli-Hoppe T, Guo W, Seidl J, Wang Y, Huang R, Wagner E. Receptor-Targeted Carbon Nanodot Delivery through Polymer Caging and Click Chemistry-Supported LRP1 Ligand Attachment. Polymers (Basel) 2023; 15:4039. [PMID: 37896282 PMCID: PMC10609667 DOI: 10.3390/polym15204039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Carbon nanodots present resistance to photobleaching, bright photoluminescence, and superior biocompatibility, making them highly promising for bioimaging applications. Herein, nanoprobes were caged with four-armed oligomers and subsequently modified with a novel DBCO-PEG-modified retro-enantio peptide ligand reL57, enhancing cellular uptake into U87MG glioma cells highly expressing low-density lipoprotein receptor-related protein 1 (LRP1). A key point in the development of the oligomers was the incorporation of ε-amino-linked lysines instead of standard α-amino-linked lysines, which considerably extended the contour length per monomer. The four-armed oligomer 1696 was identified as the best performer, spanning a contour length of ~8.42 nm for each arm, and was based on an altering motive of two cationic ε-amidated lysine tripeptides and two tyrosine tripeptides for electrostatic and aromatic stabilization of the resulting formulations, cysteines for disulfide-based caging, and N-terminal azidolysines for click-modification. This work highlights that well-designed four-armed oligomers can be used for noncovalent coating and covalent caging of nanoprobes, and click modification using a novel LRP1-directed peptide ligand facilitates delivery into receptor-expressing target cells.
Collapse
Affiliation(s)
- Fengrong Zhang
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany; (F.Z.); (T.B.-H.); (J.S.)
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany; (F.Z.); (T.B.-H.); (J.S.)
| | - Wei Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China;
| | - Johanna Seidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany; (F.Z.); (T.B.-H.); (J.S.)
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China;
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität Munich, 81377 Munich, Germany; (F.Z.); (T.B.-H.); (J.S.)
| |
Collapse
|
11
|
Fang WW, Yang GY, Fan ZH, Chen ZC, Hu XL, Zhan Z, Hussain I, Lu Y, He T, Tan BE. Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization. Nat Commun 2023; 14:2891. [PMID: 37210380 DOI: 10.1038/s41467-023-38402-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
The use of light to regulate photocatalyzed reversible deactivation radical polymerization (RDRP) under mild conditions, especially driven by broadband light or sunlight directly, is highly desired. But the development of a suitable photocatalyzed polymerization system for large-scale production of polymers, especially block copolymers, has remained a big challenge. Herein, we report the development of a phosphine-based conjugated hypercrosslinked polymer (PPh3-CHCP) photocatalyst for an efficient large-scale photoinduced copper-catalyzed atom transfer radical polymerization (Cu-ATRP). Monomers including acrylates and methyl acrylates can achieve near-quantitative conversions under a wide range (450-940 nm) of radiations or sunlight directly. The photocatalyst could be easily recycled and reused. The sunlight-driven Cu-ATRP allowed the synthesis of homopolymers at 200 mL from various monomers, and monomer conversions approached 99% in clouds intermittency with good control over polydispersity. In addition, block copolymers at 400 mL scale can also be obtained, which demonstrates its great potential for industrial applications.
Collapse
Affiliation(s)
- Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Gui-Yu Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zi-Hui Fan
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zi-Chao Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Xun-Liang Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhen Zhan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore Cantt, Lahore, 54792, Pakistan
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Bi-En Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
12
|
Yu Y, Zeng Q, Tao S, Xia C, Liu C, Liu P, Yang B. Carbon Dots Based Photoinduced Reactions: Advances and Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207621. [PMID: 36737845 PMCID: PMC10131860 DOI: 10.1002/advs.202207621] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Seeking clean energy as an alternative to traditional fossil fuels is the inevitable choice to realize the sustainable development of the society. Photocatalytic technique is considered a promising energy conversion approach to store the abundant solar energy into other wieldy energy carriers like chemical energy. Carbon dots, as a class of fascinating carbon nanomaterials, have already become the hotspots in numerous photoelectric researching fields and particularly drawn keen interests as metal-free photocatalysts owing to strong UV-vis optical absorption, tunable energy-level configuration, superior charge transfer ability, excellent physicochemical stability, facile fabrication, low toxicity, and high solubility. In this review, the classification, microstructures, general synthetic methods, optical and photoelectrical properties of carbon dots are systematically summarized. In addition, recent advances of carbon dots based photoinduced reactions including photodegradation, photocatalytic hydrogen generation, CO2 conversion, N2 fixation, and photochemical synthesis are highlighted in detail, deep insights into the roles of carbon dots in various systems combining with the photocatalytic mechanisms are provided. Finally, several critical issues remaining in photocatalysis field are also proposed.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Pengyuan Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
13
|
Schild DJ, Bem J, Szczepaniak G, Jazani AM, Matyjaszewski K. Blue‐light‐induced atom transfer radical polymerization enabled by iron/copper dual catalysis. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dirk J. Schild
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Juliana Bem
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | | | - Arman Moini Jazani
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | | |
Collapse
|
14
|
Kumar D, Sahu B, Arif Mohammad S, Banerjee S. Phosphorus-containing smart, multifunctional polymers towards materials with dual stimuli responsivity, self-aggregation ability and tunable wettability. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Szczepaniak G, Jeong J, Kapil K, Dadashi-Silab S, Yerneni SS, Ratajczyk P, Lathwal S, Schild DJ, Das SR, Matyjaszewski K. Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chem Sci 2022; 13:11540-11550. [PMID: 36320395 PMCID: PMC9557244 DOI: 10.1039/d2sc04210j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-CuII/L). The role of PC was to trigger and drive the polymerization, while X-CuII/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-CuII/L, generating CuI/L activator and PC˙+. The ATRP ligand (L) used in excess then reduced the PC˙+, closing the photocatalytic cycle. The continuous reduction of X-CuII/L back to CuI/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-CuII/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | | | - Paulina Ratajczyk
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Dirk J Schild
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | | |
Collapse
|
16
|
Wu Z, Fang W, Wu C, Corrigan N, Zhang T, Xu S, Boyer C. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem Sci 2022; 13:11519-11532. [PMID: 36320386 PMCID: PMC9555728 DOI: 10.1039/d2sc03952d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 09/19/2023] Open
Abstract
We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system using tetrasulfonated zinc phthalocyanine (ZnPcS4 -) as a photocatalyst. Owing to the high catalytic efficiency and excellent oxygen tolerance of this system, well-controlled polyacrylamides, polyacrylates, and polymethacrylates were synthesized at fast rates without requiring deoxygenation. Notably, NIR wavelengths possess enhanced light penetration through non-transparent barriers compared to UV and visible light, allowing high polymerization rates through barriers. Using 6.0 mm pig skin as a barrier, the polymerization rate was only reduced from 0.36 to 0.21 h-1, indicating potential for biomedical applications. Furthermore, longer wavelengths (higher λ) can be considered an ideal light source for dispersion photopolymerization, especially for the synthesis of large diameter (d) nanoparticles, as light scattering is proportional to d 6/λ 4. Therefore, this aqueous photo-RAFT system was applied to photoinduced polymerization-induced self-assembly (photo-PISA), enabling the synthesis of polymeric nanoparticles with various morphologies, including spheres, worms, and vesicles. Taking advantage of high penetration and reduced light scattering of NIR wavelengths, we demonstrate the first syntheses of polymeric nanoparticles with consistent morphologies through thick barriers.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Wenbo Fang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 Shandong P. R. China
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Tong Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Sihao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
17
|
Luo X, Wan J, Meckbach N, Strehmel V, Li S, Chen Z, Strehmel B. A Porphyrin-Based Organic Network Comprising Sustainable Carbon Dots for Photopolymerization. Angew Chem Int Ed Engl 2022; 61:e202208180. [PMID: 35882626 PMCID: PMC9826160 DOI: 10.1002/anie.202208180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/11/2023]
Abstract
Sustainable carbon dots (CDs) based on furfuraldehyde (F-CD) resulted in a photosensitive material after pursuing the Alder-Longo reaction. The porphyrin moiety formed connects the F-CDs in a covalent organic network. This heterogeneous material (P-CD) was characterized by XPS indicating incorporation of the respective C, N and O moieties. Time resolved fluorescence including global analysis showed contribution of three linked components to the overall dynamics of the excited state. Electrochemical and photonic properties of this heterogeneous material facilitated photopolymerization in a photo-ATRP setup where either CuBr2 /TPMA, FeBr3 /Br- or a metal free reaction setup activated controlled polymerization. Chain extension experiments worked in all three cases showing end group fidelity for activation of controlled block copolymerization using MMA and styrene as monomers. Traditional radical polymerization using a diaryl iodonium salt as co-initiator failed.
Collapse
Affiliation(s)
- Xiongfei Luo
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Jianyong Wan
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Nicolai Meckbach
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Veronika Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Shujun Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Zhijun Chen
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Bernd Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| |
Collapse
|
18
|
Wan K, Zhai Y, Liu S, Li J, Li S, Strehmel B, Chen Z, James TD. Sustainable Afterglow Room‐Temperature Phosphorescence Emission Materials Generated Using Natural Phenolics. Angew Chem Int Ed Engl 2022; 61:e202202760. [DOI: 10.1002/anie.202202760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Keliang Wan
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China
| | - Bernd Strehmel
- Department of Chemistry Institute for Coatings and Surface Chemistry Niederrhein University of Applied Sciences Adlerstr. 1 47798 Krefeld Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China
| | - Tony D. James
- Department of Chemistry University of Bath Bath BA2 7AY United Kingdom
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 P. R.China
| |
Collapse
|
19
|
Huang Y, Sun Y, Weng Y, Zhang W. A Simple and Green Oxygen‐Tolerant RAFT Polymerization without Additional Catalyst and Initiator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| | - Yue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research Jiangsu Key Laboratory of Thin Films Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis School of Physical Science and Technology Soochow University Suzhou 215006 P. R. China
| |
Collapse
|
20
|
Porphyrin Based Organic Network Comprising Sustainable Carbon Dots for Photopolymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J Am Chem Soc 2022; 144:15413-15430. [PMID: 35882005 DOI: 10.1021/jacs.2c05364] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
22
|
Wan K, Zhai Y, Liu S, Li J, Li S, Strehmel B, Chen Z, James TD. Sustainable afterglow room‐temperature phosphorescence emission materials generated using natural phenolics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Keliang Wan
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education CHINA
| | - Yingxiang Zhai
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education CHINA
| | - Shouxin Liu
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education CHINA
| | - Jian Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education CHINA
| | - Shujun Li
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education CHINA
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences: Hochschule Niederrhein Department of Chemistry, Institute for Coatings and Surface Chemistry GERMANY
| | - Zhijun Chen
- Northeast Forestry University Key Laboratory of Bio-based Material Science and Technology of Ministry of Education CHINA
| | - Tony D James
- University of Bath Department of Chemistry Departemt of Chemistry BA2 7AY Bath UNITED KINGDOM
| |
Collapse
|
23
|
Dadashi-Silab S, Kim K, Lorandi F, Szczepaniak G, Kramer S, Peteanu L, Matyjaszewski K. Red-Light-Induced, Copper-Catalyzed Atom Transfer Radical Polymerization. ACS Macro Lett 2022; 11:376-381. [PMID: 35575360 DOI: 10.1021/acsmacrolett.2c00080] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advances in photochemical atom transfer radical polymerization (photoATRP), these systems often rely on the use of UV light for the activation/generation of the copper-based catalytic species. To circumvent the problems associated with the UV light, we developed a dual photoredox catalytic system to mediate photoinduced ATRP under red-light irradiation. The catalytic system is comprised of a Cu catalyst to control the polymerization via ATRP equilibrium and a photocatalyst, such as zinc(II) tetraphenylporphine or zinc(II) phthalocyanine, to generate the activator CuI species under red-light irradiation. In addition, this system showed oxygen tolerance due to the consumption of oxygen in the photoredox reactions, yielding well-controlled polymerizations without the need for deoxygenation processes.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Khidong Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Stephanie Kramer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Linda Peteanu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
|
25
|
Shen J, Xu Y, Wang Z, Chen W, Zhao H, Liu X. Facile and green synthesis of carbon nanodots from environmental pollutants for cell imaging and Fe 3+ detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj02236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An economical and green approach has been provided to turn environmental pollutants into carbon nanodots for their potential applications in both bioimaging and Fe3+ detection.
Collapse
Affiliation(s)
- Jialu Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 443002 Yichang, Hubei, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yanyi Xu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Weifeng Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 443002 Yichang, Hubei, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 443002 Yichang, Hubei, China
- Hubei Three Gorges Laboratory, 443007 Yichang, Hubei, China
| |
Collapse
|
26
|
Zaborniak I, Chmielarz P. Comestible curcumin: From kitchen to polymer chemistry as a photocatalyst in metal-free ATRP of (meth)acrylates. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Jeong J, Szczepaniak G, Yerneni SS, Lorandi F, Jafari H, Lathwal S, Das SR, Matyjaszewski K. Biocompatible photoinduced CuAAC using sodium pyruvate. Chem Commun (Camb) 2021; 57:12844-12847. [PMID: 34787596 DOI: 10.1039/d1cc05566f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sodium pyruvate, a natural intermediate produced during cellular metabolism, is commonly used in buffer solutions and media for biochemical applications. Here we show the use of sodium pyruvate (SP) as a reducing agent in a biocompatible aqueous photoinduced azide-alkyne cycloaddition (CuAAC) reaction. This copper(I)-catalyzed 1,3-dipolar cycloaddition is triggered by SP under UV light irradiation, exhibits oxygen tolerance and temporal control, and provides a convenient alternative to current CuAAC systems, particularly for biomolecular conjugations.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. .,University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | | | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. .,Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
28
|
Wang J, Liu J, Wang M, Qiu Y, Kong J, Zhang X. A host guest interaction enhanced polymerization amplification for electrochemical detection of cocaine. Anal Chim Acta 2021; 1184:339041. [PMID: 34625250 DOI: 10.1016/j.aca.2021.339041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Cocaine (Coc) is one of the illegal drugs and is harmful to digestive, immune, cardiovascular and urogenital systems. To achieve drug abuse control and legal action, it is essential to develop an effective method for cocaine analysis. In this work, an aptasensor has been developed using atom transfer radical polymerization (ATRP) based on host-guest chemistry for electrochemical analysis of cocaine. The NH2-DNA (Apt1) was immobilized on the indium tin oxide (ITO) electrode via addition reaction, and Fc-DNA (Apt2) was introduced to ITO relying on the specific recognition of cocaine. The Apt2 can initiate host-guest chemistry between Apt2 and ATRP initiators (β-CD-Br15), then the β-CD-Br15 further triggers ATRP. Moreover, ATRP avoids the sluggish kinetics and poor coupling capability sustained. The result shows a sensitive and selective analysis of cocaine within a linear range from 0.1 ng/mL to 10 μg/mL (R2 = 0.9985), with the detection limit down to 0.0335 ng/mL. Thus, this strategy provides a universal method for the analysis of illegal drugs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Meng Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Yunliang Qiu
- Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing, 210023, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
29
|
Dergunov SA. Biomimetic controlled radical photopolymerization in a two-dimensional organized environment under visible light. Chem Commun (Camb) 2021; 57:10612-10615. [PMID: 34570148 DOI: 10.1039/d1cc03982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fast and well-controlled photoinduced atom transfer radical polymerization (photoATRP) in the organized medium of a bilayer activated by visible light under environmentally friendly mild aqueous conditions leads to polymers with predetermined molecular weight and low dispersity. The decisive parameter for photoATRP of monomers in the organized medium was their mobility and orientation with respect to the bilayer and the photoredox catalyst localized in the interstitial layer.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, 06269, CT, USA.
| |
Collapse
|
30
|
Kocaarslan A, Eroglu Z, Metin Ö, Yagci Y. Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation. Beilstein J Org Chem 2021; 17:2477-2487. [PMID: 34630727 PMCID: PMC8474068 DOI: 10.3762/bjoc.17.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
The development of long-wavelength photoinduced copper-catalyzed azide-alkyne click (CuAAC) reaction routes is attractive for organic and polymer chemistry. In this study, we present a novel synthetic methodology for the photoinduced CuAAC reaction utilizing exfoliated two-dimensional (2D) few-layer black phosphorus nanosheets (BPNs) as photocatalysts under white LED and near-IR (NIR) light irradiation. Upon irradiation, BPNs generated excited electrons and holes on its conduction (CB) and valence band (VB), respectively. The excited electrons thus formed were then transferred to the CuII ions to produce active CuI catalysts. The ability of BPNs to initiate the CuAAC reaction was investigated by studying the reaction between various low molar mass alkyne and azide derivatives under both white LED and NIR light irradiation. Due to its deeper penetration of NIR light, the possibility of synthesizing different macromolecular structures such as functional polymers, cross-linked networks and block copolymer has also been demonstrated. The structural and molecular properties of the intermediates and final products were evaluated by spectral and chromatographic analyses.
Collapse
Affiliation(s)
- Azra Kocaarslan
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Zafer Eroglu
- Department of Chemistry, Koç University, Sarıyer, 34450, Istanbul, Turkey
- Department of Nanoscience and Nanoengineering, Atatürk University, 25240 Erzurum, Turkey
| | - Önder Metin
- Department of Chemistry, Koç University, Sarıyer, 34450, Istanbul, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- King Abdulaziz University, Faculty of Science, Chemistry Department, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Chen W, Shen J, Wang Z, Liu X, Xu Y, Zhao H, Astruc D. Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging. Chem Sci 2021; 12:11722-11729. [PMID: 34659707 PMCID: PMC8442693 DOI: 10.1039/d1sc02837e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022] Open
Abstract
In an effort to turn waste into wealth, Reactive Red 2 (RR2), a common and refractory organic pollutant in industrial wastewater, has been employed for the first time as a precursor to synthesize carbon nanodots (CNDs) by a facile, green and low-cost route, without utilization of any strong acids or other oxidizers. The detailed characterizations have confirmed that the synthesized CNDs exhibit good water dispersibility, with a mean particle size of 2.43 nm and thickness of 1-3 layers. Importantly, the excellent fluorescence properties and much reduced biotoxicity of the CNDs confer its potential applications in further biological imaging, which has been successfully verified in both in vitro (cell culture) and in vivo (zebrafish) model systems. Thus, it is demonstrated that the synthesized CNDs exhibit nice biocompatibility and fluorescence properties for bioimaging. This work not only provides a novel economical and environmentally friendly approach in recycling a chemical pollutant, but also greatly promotes the potential application of CNDs in biological imaging.
Collapse
Affiliation(s)
- Weifeng Chen
- College of Materials and Chemical Engineering, Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Jialu Shen
- College of Materials and Chemical Engineering, Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang Hubei 443002 P. R. China
| | - Yanyi Xu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Didier Astruc
- ISM, UMR CNRS No. 5255, Univ. Bordeaux 351 Cours de la Libération 33405 Talence Cedex France
| |
Collapse
|
32
|
Sun M, Lorandi F, Yuan R, Dadashi-Silab S, Kowalewski T, Matyjaszewski K. Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. Front Chem 2021; 9:734076. [PMID: 34476232 PMCID: PMC8407075 DOI: 10.3389/fchem.2021.734076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Photoluminescent nanosized quasi-spherical polymeric assemblies prepared by the hydrothermal reaction of polyacrylonitrile (PAN), ht-PLPPAN, were demonstrated to have the ability to photo-induce atom transfer radical polymerization (ATRP) catalyzed by low, parts per million concentrations of CuII complex with tris(2-pyridylmethyl)amine (TPMA). Such photo induced ATRP reactions of acrylate and methacrylate monomers were performed in water or organic solvents, using ht-PLPPAN as the photo-cocatalyst under blue or green light irradiation. Mechanistic studies indicate that ht-PLPPAN helps to sustain the polymerization by facilitating the activation of alkyl bromide species by two modes: 1) green or blue light-driven photoreduction of the CuII catalyst to the activating CuI form, and 2) direct activation of dormant alkyl bromide species which occurs only under blue light. The photoreduction of the CuII complex by ht-PLPPAN was confirmed by linear sweep voltammetry performed under illumination. Analysis of the polymerization kinetics in aqueous media indicated even though CuI complexes comprised only 1-1.4% of all Cu species at equilibrium, they exhibited high activation rate constant and activated the alkyl bromide initiators five to six orders of magnitude faster than ht-PLPPAN.
Collapse
|
33
|
Kütahya C, Meckbach N, Strehmel V, Strehmel B. Cyanines comprising barbiturate group facilitate
NIR‐light
assisted
ATRP
under anaerobic and aerobic conditions at two wavelengths using Fe(
III
) catalyst. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ceren Kütahya
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Nicolai Meckbach
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Veronika Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| | - Bernd Strehmel
- Institute for Coatings and Surface Chemistry, Department of Chemistry Niederrhein University of Applied Sciences Krefeld Germany
| |
Collapse
|
34
|
Dadashi-Silab S, Lorandi F, DiTucci MJ, Sun M, Szczepaniak G, Liu T, Matyjaszewski K. Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. J Am Chem Soc 2021; 143:9630-9638. [PMID: 34152140 DOI: 10.1021/jacs.1c04428] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using the power of light to drive controlled radical polymerizations has provided significant advances in synthesis of well-defined polymers. Photoinduced atom transfer radical polymerization (ATRP) systems often employ UV light to regenerate copper activator species to mediate the polymerization. Taking full advantage of long-wavelength visible light for ATRP would require developing appropriate photocatalytic systems that engage in photoinduced electron transfer processes with the ATRP components to generate activating species. Herein, we developed conjugated microporous polymers (CMP) as heterogeneous photocatalysts to exploit the power of visible light in promoting copper-catalyzed ATRP. The photocatalyst was designed by cross-linking phenothiazine (PTZ) as a photoactive core in the presence of dimethoxybenzene as a cross-linker via the Friedel-Crafts reaction. The resulting PTZ-CMP network showed photoactivity in the visible region due to the extended conjugation throughout the network because of the aromatic groups connecting the PTZ units. Therefore, photoinduced copper-catalyzed ATRP was performed with CMPs that regenerated activator species under green or red light irradiation to start the ATRP process. This resulted in efficient polymerization of acrylate and methacrylate monomers with high conversion and well-controlled molecular weight. The heterogeneous nature of the photocatalyst enabled easy separation and efficient reusability in subsequent polymerizations.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew J DiTucci
- PPG Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
35
|
Kütahya C, Zhai Y, Li S, Liu S, Li J, Strehmel V, Chen Z, Strehmel B. Distinct Sustainable Carbon Nanodots Enable Free Radical Photopolymerization, Photo-ATRP and Photo-CuAAC Chemistry. Angew Chem Int Ed Engl 2021; 60:10983-10991. [PMID: 33576086 PMCID: PMC8252733 DOI: 10.1002/anie.202015677] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 01/18/2023]
Abstract
Carbon nanodots (CDs) originating from different biomass result in different activities to sensitize photo-ATRP and photo-CuAAC reaction protocols with visible light. Free radical polymerization of tri(propylene glycol)diacrylate also exhibited a good efficiency using CDs in combination with an iodonium salt employing LEDs emitting either at 405 nm, 525 nm or 660 nm. Photo-ATRP experiments confirmed controlled polymerization conditions using CuII at the ppm scale resulting in dispersities between 1.06 to 1.10. Chain end fidelity was successfully provided by chain extension and block copolymerization additionally approving the living feature of polymerization using a CD synthesized from lac dye comprising olefinic moieties in the originating biomass. By global analysis, time resolved fluorescence measurements indicated the appearance of several emitting species contributing to the reactivity of the excited states. Different cytotoxic response appeared following the answer of MCF-10A cells in a flow cytometry assay; that is 400 μg mL-1 . Thus, cell viability was greater 80 % in the case of CD-2-CD-5 while that of CD-1 was close to 70 %.
Collapse
Affiliation(s)
- Ceren Kütahya
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Yingxiang Zhai
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shujun Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Shouxin Liu
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Jian Li
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Veronika Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| | - Zhijun Chen
- Northeast Forestry UniversityKey Laboratory of Bio-based Material Science and Technology of Ministry of EducationHexing Road 26150040HarbinChina
| | - Bernd Strehmel
- Department of ChemistryInstitute for Coatings and Surface ChemistryNiederrhein University of Applied SciencesAdlerstr. 147798KrefeldGermany
| |
Collapse
|
36
|
Pang Y, Jiao H, Zou Y, Strehmel B. The NIR-sensitized cationic photopolymerization of oxetanes in combination with epoxide and acrylate monomers. Polym Chem 2021. [DOI: 10.1039/d1py00999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NIR-sensitized photopolymerisation at 805 nm facilitates the cationic polymerization of oxetanes. This can additionally be combined with free-radical polymerization.
Collapse
Affiliation(s)
- Yulian Pang
- College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Hongjun Jiao
- Hubei Gurun Technology Co., LTD, Jingmen Chemical Recycling Industrial Park, 448000, Jingmen, Hubei Province, P. R. China
| | - Yingquan Zou
- College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Bernd Strehmel
- Department of Chemistry, Institute for Coatings and Surface Chemistry Niederrhein University of Applied Sciences, Krefeld, Germany
| |
Collapse
|
37
|
Mohammad SA, Kumar D, Alam MM, Banerjee S. Ultrafast, green and recyclable photoRDRP in an ionic liquid towards multi-stimuli responsive amphiphilic copolymers. Polym Chem 2021. [DOI: 10.1039/d1py01014j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A simple and inexpensive method for ultrafast and recyclable photoRDRP in an ionic liquid is developed, yielding low dispersity poly(glycidyl methacrylate) and well-defined amphiphilic multi-stimuli responsive diblock copolymers thereof.
Collapse
Affiliation(s)
- Sk Arif Mohammad
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Md. Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|