1
|
Ansari H, Bharadwaj N, Pramanik G, Chakraborty I, Pathak B, Baksi A. Enhancement of NIR II Emission of Au 12Ag 32 Clusters by Tuning the Au Positions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502758. [PMID: 40270339 DOI: 10.1002/smll.202502758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Precise alloying at the preferred location to enhance the optical properties of metal nanoclusters is challenging as often the most stable isomer is produced. To alter the location of Au atoms on the [Au12Ag32(SR)30]4- cluster, a new approach by changing the reacting Au precursor following an inter-cluster reaction is reported. A Au(I) containing cluster, [Au18Se8(DPPE)6]2+ as the Au source, while reacting with [Ag44(SR)30]4-, is used, and the 12 Au atoms occupy the surface position instead of the core. The whole reaction is monitored in-line using high-resolution trapped ion mobility spectrometry (TIMS), and the change in collision cross section (CCS) of the intermediates and the final product reveal that Au atoms can dynamically migrate within the cluster and in the final product is an all Au out isomer of [Au12Ag32(SR)30]4-. Changing the location of the Au atoms shows an impact on the NIR II emission at ≈1340 nm of parent [Ag44(SR)30]4-. The emission of the synthesized alloy is enhanced tenfold compared to [Ag44(SR)30]4- and is ≈20 nm blueshifted. Density functional theory calculations reveal that the Au/Ag atoms on the staple are slightly positively charged, making it convenient for the reacting Au(I)18Se8 cluster to be exchanged on the surface.
Collapse
Affiliation(s)
- Hasem Ansari
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nishchal Bharadwaj
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata, 700 106, India
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Ananya Baksi
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Zhang C, Si WD, Tian WD, Xiao WJ, Gao ZY, Wang Z, Tung CH, Sun D. Single-atom "surgery" on chiral all-dialkynyl-protected superatomic silver nanoclusters. Sci Bull (Beijing) 2025; 70:365-372. [PMID: 39562187 DOI: 10.1016/j.scib.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The manipulation of single atom within the metallic kernel of nanoclusters has attracted considerable attention due to its potentials to elucidate kernel-based structure-property relationships at the single-atom level. Herein, new-designed chiral bialkynyl ligands, have been chosen as protective agents to isolate two pairs of 8-electron superatomic silver nanoclusters, R/S-Ag39 and R/S-Ag40. X-ray diffraction analysis reveals that Ag39 and Ag40 with the same number of chiral ligands, possess a closely analogous silver skeleton but a single-atomic difference. The incorporation of an extra Ag40th atom into Ag40 evokes two significant changes of structure and property compared to Ag39: (i) a reduction in the symmetry of the entire nanocluster, resulting in an enhancement of kernel-related asymmetry g-factor; (ii) a regulation of the transitions (1P → 1D and Ligand(π) → 1D) of excited state, leading to a second near-infrared (NIR-II, 1000-1700 nm) phosphorescent emission red-shift from 1088 to 1150 nm. This work not only provides vital insights into the relationship between structures and ground/excited states chiroptical activities at the single-atom level, but also presents bialkynyl as a promising stabilizing agent for building superatomic metal nanoclusters.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei-Dong Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wan-Jun Xiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
3
|
Ni YR, Pillay MN, Chiu TH, Liang H, Kahlal S, Chen JY, Chen YJ, Saillard JY, Liu CW. Sulfide-mediated growth of NIR luminescent Pd/Ag atomically precise nanoclusters. NANOSCALE 2025; 17:1990-1996. [PMID: 39665177 DOI: 10.1039/d4nr04136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
An essential feature of coinage metal nanoclusters (NCs) is their photoluminescence (PL), which spans a wide range of wavelengths from visible to near-infrared regions (NIR-I/II). A key challenge for synthetic chemists is to develop materials capable of efficient spectral change with maximum efficiency. Herein, we report novel dithiolate-protected bimetallic Pd-Ag NCs of the type [PdAg16S2{S2P(OR)2}12] (R = iPr, 1Pr and iBu, 1Bu) and [Pd6Ag14S{S2P(OiBu)2}12] (2Bu). Sulfide-mediated expansions of NCs result in unique PL in the NIR-I region for 1Pr and 1Bu (λmax = 808 and 811 nm) and the NIR-II region for 2Pr (λmax = 1007) at 77 K. NIR PL enhancement largely depends on structural modification with the sulfide anions at the central position. DFT calculations indicate that the PL properties are associated with 4dπ(Pd)/3pπ(S) → 5s/5p(Ag) excitation, resulting from the existence of S-Pd(0)-S motifs in both 1 and 2. The electrochemical gaps of 1Pr, 1Bu, and 2Bu are recorded by SWV.
Collapse
Affiliation(s)
- Yu-Rong Ni
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Hao Liang
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Jie-Ying Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, Republic of China
| | - Yuan-Jang Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, Republic of China
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
4
|
Zhang C, Si WD, Wang Z, Tung CH, Sun D. Chiral Ligand-Concentration Mediating Asymmetric Transformations of Silver Nanoclusters: NIR-II Circularly Polarized Phosphorescence Lighting. Angew Chem Int Ed Engl 2024; 63:e202404545. [PMID: 38664228 DOI: 10.1002/anie.202404545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Near infrared (NIR) emitter with circularly polarized phosphorescence (CPP), known as NIR CPP, has emerged as a key part in the research of cutting-edge luminescent materials. However, it remains a challenge to obtain nanoclusters with NIR CPP activity. Here, we propose an asymmetric transformation approach to efficiently synthesize two pairs of chiral silver nanoclusters (R/S-Ag29 and R/S-Ag16) using an achiral Ag10 nanocluster as starting material in the presence of different concentration chiral inducer (R/S)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (R/S-BNP). R/S-Ag29, formed in the low-concentration R/S-BNP, exhibits a unique kernel-shell structure consisting of a distorted Ag13 icosahedron and an integrated cage-like organometallic shell with a C3 symmetry, and possesses a superatomic 6-electron configuration (1S2|1P4). By contrast, R/S-Ag16, formed in the high-concentration R/S-BNP, features a sandwich-like pentagram with AgI-pure kernel. Profiting from the hierarchically chiral structures and superatomic kernel-dominated phosphorescence, R/S-Ag29 exhibits infrequent CPP activity in the second near-infrared (975 nm) region, being the first instance of NIR-II CPP observed among CPL-active metal nanoclusters. This study presents a new approach to reduce the difficulty of de novo synthesis for chiral silver nanomaterials, and facilitates the design of CPP-active superatomic nanoclusters in NIR region.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, 250100, Ji'nan, People's Republic of China
| |
Collapse
|
5
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Wang Z, Wang Y, Zhang C, Zhu YJ, Song KP, Aikens CM, Tung CH, Sun D. Silvery fullerene in Ag 102 nanosaucer. Natl Sci Rev 2024; 11:nwae192. [PMID: 39071102 PMCID: PMC11282957 DOI: 10.1093/nsr/nwae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
Despite the discovery of a series of fullerenes and a handful of noncarbon clusters with the typical topology of I h-C60, the smallest fullerene with a large degree of curvature, C20, and its other-element counterparts are difficult to isolate experimentally. In coinage metal nanoclusters (NCs), the first all-gold fullerene, Au32, was discovered after a long-lasting pursuit, but the isolation of similar silvery fullerene structures is still challenging. Herein, we report a flying saucer-shaped 102-nuclei silver NC (Ag102) with a silvery fullerene kernel of Ag32, which is embraced by a robust cyclic anionic passivation layer of (KPO4)10. This Ag32 kernel can be viewed as a non-centered icosahedron Ag12 encaged into a dodecahedron Ag20, forming the silvery fullerene of Ag12@Ag20. The anionic layer (KPO4)10 is located at the interlayer between the Ag32 kernel and Ag70 shell, passivating the Ag32 silvery fullerene and templating the Ag70 shell. The t BuPhS- and CF3COO- ligands on the silver shell show a regioselective arrangement with the 60 t BuPhS- ligands as expanders covering the upper and lower of the flying saucer and 10 CF3COO- as terminators neatly encircling the edges of the structure. In addition, Ag102 shows excellent photothermal conversion efficiency (η) from the visible to near-infrared region (η = 67.1% ± 0.9% at 450 nm, 60.9% ± 0.9% at 660 nm and 50.2% ± 0.5% at 808 nm), rendering it a promising material for photothermal converters and potential application in remote laser ignition. This work not only captures silver kernels with the topology of the smallest fullerene C20, but also provides a pathway for incorporating alkali metal (M) into coinage metal NCs via M-oxoanions.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Yuchen Wang
- Department of Chemistry, Kansas State University, Manhattan 66506, USA
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Ke-Peng Song
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | | | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
7
|
Zhang J, Dong Y, Deng L, Chi M, Feng Y, Zhao M, Lv H, Yang GY. Polyoxometalate-mediated syntheses of three structurally new silver clusters. NANOSCALE 2024; 16:11518-11523. [PMID: 38819267 DOI: 10.1039/d4nr02016b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Three structurally new polyoxometalate-templated silver clusters, homometallic [(SiW9O34)@Ag24(iPrS)11(DPPP)6Cl]2(SiW12O40) (Ag24), heterometallic [(SiW9O34)@Ag22Cu(iPrS)11(DPPP)6Cl](SbF6)2 (Ag22Cu) and {Ag16(iPrS)6(DPPP)8(CH3COO)4[Co4(OH)3(H2O)SiW9O33]2}·(CH3CN)4 (Ag16Co8) (iPrS- = isopropanethiolate, DPPP = 1,3-bis(diphenylphosphino)propane, SbF6- = hexafluoroantimonate) have been successfully synthesized using a facile solvothermal approach. The introduction of copper and cobalt ions can induce obvious changes in the molecular configuration of the obtained clusters, leading to distinct temperature-dependent photoluminescence and photothermal conversion properties.
Collapse
Affiliation(s)
- Jing Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yuanyuan Dong
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Lan Deng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Manzhou Chi
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yeqin Feng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Mengyun Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
8
|
Ma QQ, Zhai XJ, Huang JH, Si Y, Dong XY, Zang SQ, Mak TCW. Construction of novel Ag(0)-containing silver nanoclusters by regulating auxiliary phosphine ligands. NANOSCALE 2024. [PMID: 38660780 DOI: 10.1039/d4nr01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Controlled synthesis of metal clusters through minor changes in surface ligands holds significant interest because the corresponding entities serve as ideal models for investigating the ligand environment's stereochemical and electronic contributions that impact the corresponding structures and properties of metal clusters. In this work, we obtained two Ag(0)-containing nanoclusters (Ag17 and Ag32) with near-infrared emissions by regulating phosphine auxiliary ligands. Ag17 and Ag32 bear similar shells wherein Ag17 features a trigonal bipyramid Ag5 kernel while Ag32 has a bi-icosahedral interpenetrating an Ag20 kernel. Ag17 and Ag32 showed a near-infrared emission (NIR) of around 830 nm. Benefiting from the rigid structure, Ag17 displayed a more intense near-infrared emission than Ag32. This work provides new insight into the construction of novel superatomic silver nanoclusters by regulating phosphine ligands.
Collapse
Affiliation(s)
- Qing-Qing Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xue-Jing Zhai
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jia-Hong Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China
| |
Collapse
|
9
|
Feng Y, Fu F, Zeng L, Zhao M, Xin X, Liang J, Zhou M, Fang X, Lv H, Yang GY. Atomically Precise Silver Clusters Stabilized by Lacunary Polyoxometalates with Photocatalytic CO 2 Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202317341. [PMID: 38153620 DOI: 10.1002/anie.202317341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
The syntheses of atomically precise silver (Ag) clusters stabilized by multidentate lacunary polyoxometalate (POM) ligands have been emerging as a promising but challenging research direction, the combination of redox-active POM ligands and silver clusters will render them unexpected geometric structures and catalytic properties. Herein, we report the successful construction of two structurally-new lacunary POM-stabilized Ag clusters, TBA6 H14 Ag14 (DPPB)4 (CH3 CN)9 [Ag24 (Si2 W18 O66 )3 ] ⋅ 10CH3 CN ⋅ 9H2 O ({Ag24 (Si2 W18 O66 )3 }, TBA=tetra-n-butylammonium, DPPB=1,4-Bis(diphenylphosphino)butane) and TBA14 H6 Ag9 Na2 (H2 O)9 [Ag27 (Si2 W18 O66 )3 ] ⋅ 8CH3 CN ⋅ 10H2 O ({Ag27 (Si2 W18 O66 )3 }), using a facile one-pot solvothermal approach. Under otherwise identical synthetic conditions, the molecular structures of two POM-stabilized Ag clusters could be readily tuned by the addition of different organic ligands. In both compounds, the central trefoil-propeller-shaped {Ag24 }14+ and {Ag27 }17+ clusters bearing 10 delocalized valence electrons are stabilized by three C-shaped {Si2 W18 O66 } units. The femtosecond/nanosecond transient absorption spectroscopy revealed the rapid charge transfer between {Ag24 }14+ core and {Si2 W18 O66 } ligands. Both compounds have been pioneeringly investigated as catalysts for photocatalytic CO2 reduction to HCOOH with a high selectivity.
Collapse
Affiliation(s)
- Yeqin Feng
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Fangyu Fu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Linlin Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengyun Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xing Xin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiakai Liang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
10
|
Deng G, Ki T, Liu X, Chen Y, Lee K, Yoo S, Tang Q, Bootharaju MS, Hyeon T. Tailoring the subshell and electronic structure of an atomically precise AuAg alloy nanocluster. Chem Commun (Camb) 2024; 60:1289-1292. [PMID: 38197160 DOI: 10.1039/d3cc04432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Manipulating the atomic-level structure of the subshell of a nanocluster while preserving the inner and outer shell structure is challenging. We present the synthesis and molecular structure of an alkynyl-protected Au34Ag27 nanocluster, which exhibits distinct third shell atomic arrangement, electronic structure, and optical properties from those of the Au34Ag28 nanocluster.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Wang Z, Zhu YJ, Han BL, Li YZ, Tung CH, Sun D. A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates. Nat Commun 2023; 14:5295. [PMID: 37652941 PMCID: PMC10471715 DOI: 10.1038/s41467-023-41050-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Metalloligands provide a potent strategy for manipulating the surface metal arrangements of metal nanoclusters, but their synthesis and subsequent installation onto metal nanoclusters remains a significant challenge. Herein, two atomically precise silver nanoclusters {Ag14[(TC4A)6(V9O16)](CyS)3} (Ag14) and {Ag43S[(TC4A)2(V4O9)]3(CyS)9(PhCOO)3Cl3(SO4)4(DMF)3·6DMF} (Ag43) are synthesized by controlling reaction temperature (H4TC4A = p-tert-butylthiacalix[4]arene). Interestingly, the 3D scaffold-like [(TC4A)6(V9O16)]11- metalloligand in Ag14 and 1D arcuate [(TC4A)2(V4O9)]6- metalloligand in Ag43 exhibit a dual role that is the internal polyoxovanadates as anion template and the surface TC4A4- as the passivating agent. Furthermore, the thermal-induced structure transformation between Ag14 and Ag43 is achieved based on the temperature-dependent assembly process. Ag14 shows superior photothermal conversion performance than Ag43 in solid state indicating its potential for remote laser ignition. Here, we show the potential of two thiacalix[4]arene modified polyoxovanadates metalloligands in the assembly of metal nanoclusters and provide a cornerstone for the remote laser ignition applications of silver nanoclusters.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Yi-Zhi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| |
Collapse
|
12
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
13
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
14
|
Jia T, Guan ZJ, Zhang C, Zhu XZ, Chen YX, Zhang Q, Yang Y, Sun D. Eight-Electron Superatomic Cu 31 Nanocluster with Chiral Kernel and NIR-II Emission. J Am Chem Soc 2023; 145:10355-10363. [PMID: 37104621 DOI: 10.1021/jacs.3c02215] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.
Collapse
Affiliation(s)
- Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yun-Xin Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
15
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022; 61:e202205947. [PMID: 35596616 DOI: 10.1002/anie.202205947] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/20/2022]
Abstract
It remains challenging to manipulate the nature of photoluminescence as either fluorescence or phosphorescence for a correlated cluster series. In this work, two correlated nanoclusters, Au5 Ag11 (SR)8 (DPPOE)2 and Pt1 Ag16 (SR)8 (DPPOE)2 with comparable structure features, were synthesized and structurally determined. These two alloy nanoclusters displayed distinct photoluminescent nature-the Au5 Ag11 nanocluster is fluorescent, whereas the Pt1 Ag16 nanocluster is phosphorescent. The decay processes of the excited electrons in these two nanoclusters have been explicitly mapped out by both experimental and theoretical approaches, disclosing the mechanisms of their fluorescence and phosphorescence. Specifically, the metallic compositions of the nanocluster kernels mattered in determining their photoluminescent nature. The results herein provide an intriguing nanomodel that enables us to grasp the origin of photoluminescence at the atomic level, which further paves the way for fabricating novel nanoclusters or cluster-based nanomaterials with customized photophysical properties.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Junsheng Xin
- Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
16
|
Tang Y, Sun F, Ma X, Qin L, Ma G, Tang Q, Tang Z. Alkynyl and halogen co-protected (AuAg) 44 nanoclusters: a comparative study on their optical absorbance, structure, and hydrogen evolution performance. Dalton Trans 2022; 51:7845-7850. [PMID: 35546313 DOI: 10.1039/d2dt00634k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis, structure, and electrochemical hydrogen evolution reaction (HER) performance of two alkynyl and halogen coprotected AuAg alloy nanoclusters, namely Au24Ag20(tBuPh-CC)24Cl2 (NC 1 for short) and Au22Ag22(tBuCC)16Br3.28Cl2.72 (NC 2 for short). Single crystal X-ray structural analysis revealed that the two nanoclusters possess a rather similar core@shell@shell keplerate metal core configuration to M12@M20@M12 with the main difference in the outermost shell (Au12vs. Au10Ag2). Interestingly, such a subtle difference in the two-metal-atoms results in different optical absorbance features and drastically different HER performances. Both NCs have excellent long-term stability for the HER, but NC 1 possesses superior activity to NC 2, and density functional theory calculations disclosed that the binding energy of hydrogen to form the key *H intermediate for NC 1 is much lower and hence it adopts a more energetically feasible HER pathway.
Collapse
Affiliation(s)
- Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong, 510006, P. R. China.
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University, Chongqing, 401331, P. R. China
| | - Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong, 510006, P. R. China.
| | - Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong, 510006, P. R. China.
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong, 510006, P. R. China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University, Chongqing, 401331, P. R. China
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, Guangdong, 510006, P. R. China. .,Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
17
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Zhu
- Anhui University Department of Chemistry CHINA
| | | | - Jing Li
- Xiangtan University Department of Chemistry CHINA
| | - Hao Li
- Anhui University Department of Chemistry CHINA
| | - Xi Kang
- Anhui University Department of Chemistry CHINA
| | - Yong Pei
- Xiangtan University Department of Chemistry CHINA
| | - Manzhou Zhu
- Anhui University Department of Chemistry and Chemical Engineering 111 Jiulong Rd 230601 Hefei CHINA
| |
Collapse
|
18
|
Zhang Y, Tang A, Cai X, Xu J, Liu X, Zhu Y. Manipulating the organic-inorganic interface of atomically precise Au 36(SR) 24 catalysts for CO oxidation. Chem Commun (Camb) 2022; 58:3003-3006. [PMID: 35147620 DOI: 10.1039/d1cc07268d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a series of atomically precise Au36 nanoclusters protected by thiol ligands to explore the influence of organic-inorganic interfaces, that is, the local environment around heterogeneous catalysts, on catalytic oxidation of CO. Our studies give molecular-level insights into the relationship between the catalytic reactivity and the metal-ligand surface bonding, which tunes access to the active sites, thereby precisely tailoring the activity of the Au36 catalysts for CO oxidation.
Collapse
Affiliation(s)
- Yuying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Ancheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
19
|
Luo X, Liu J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103971. [PMID: 34796699 PMCID: PMC8787435 DOI: 10.1002/advs.202103971] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Indexed: 05/07/2023]
Abstract
In the past decade, ultrasmall luminescent metal nanoparticles (ULMNPs, d < 3 nm) have achieved rapid progress in addressing many challenges in the healthcare field because of their excellent physicochemical properties and biological behaviors. With the sharp shrinking size of large plasmonic metal nanoparticles (PMNPs), the contributions from the surface characteristics increase significantly, which brings both opportunities and challenges in the application-driven surface engineering of ULMNPs toward advanced biological applications. Here, the systematic advancements in the biological applications of ULMNPs from bioimaging to theranostics are summarized with emphasis on the versatile surface engineering strategies in the regulation of biological targeting and imaging performance. The efforts in the surface functionalization strategies of ULMNPs for enhanced disease targeting abilities are first discussed. Thereafter, self-assembly strategies of ULMNPs for fabricating multifunctional nanostructures for multimodal imaging and nanomedicine are discussed. Further, surface engineering strategies of ratiometric ULMNPs to enhance the imaging stability to address the imaging challenges in complicated bioenvironments are summarized. Finally, the phototoxicity of ULMNPs and future perspectives are also reviewed, which are expected to provide a fundamental understanding of the physicochemical properties and biological behaviors of ULMNPs to accelerate their future clinical applications in healthcare.
Collapse
Affiliation(s)
- Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
20
|
Wu YG, Huang JH, Zhang C, Dong XY, Guo XK, Wu W, Zang SQ. Site-specific sulfur-for-metal replacement in silver nanocluster. Chem Commun (Camb) 2022; 58:7321-7324. [DOI: 10.1039/d2cc00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Ag36 nanocluster with a closed electronic structure and eight valence electrons is reported, which has a similar structure to an open-shell Ag34 nanocluster with three valence electrons, except...
Collapse
|
21
|
Kang X, Wei X, Wang S, Zhu M. An insight, at the atomic level, into the polarization effect in controlling the morphology of metal nanoclusters. Chem Sci 2021; 12:11080-11088. [PMID: 34522305 PMCID: PMC8386652 DOI: 10.1039/d1sc00632k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022] Open
Abstract
The polarization effect has been a powerful tool in controlling the morphology of metal nanoparticles. However, a precise investigation of the polarization effect has been a challenging pursuit for a long time, and little has been achieved for analysis at the atomic level. Here the atomic-level analysis of the polarization effect in controlling the morphologies of metal nanoclusters is reported. By simply regulating the counterions, the controllable transformation from Pt1Ag28(S-PhMe2)x(S-Adm)18−x(PPh3)4 (x = 0–6, Pt1Ag28-2) to Pt1Ag24(S-PhMe2)18 (Pt1Ag24) with a spherical configuration or to Pt1Ag28(S-Adm)18(PPh3)4 (Pt1Ag28-1) with a tetrahedral configuration has been accomplished. In addition, the spherical or tetrahedral configuration of the clusters could be reversibly transformed by re-regulating the proportion of counterions with opposite charges. More significantly, the configuration transformation rate has been meticulously manipulated by regulating the polarization effect of the ions on the parent nanoclusters. The observations in this paper provide an intriguing nanomodel that enables the polarization effect to be understood at the atomic level. Based on the inter-conversion between Pt1Ag24(SR)18 and Pt1Ag28(SR)18(PPh3)4, an insight into the polarization effect in controlling the morphology of metal nanoparticles is presented.![]()
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xiao Wei
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Shuxin Wang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
22
|
Lee S, Bootharaju MS, Deng G, Malola S, Häkkinen H, Zheng N, Hyeon T. [Pt 2Cu 34(PET) 22Cl 4] 2-: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt-Pt Bond. J Am Chem Soc 2021; 143:12100-12107. [PMID: 34314590 DOI: 10.1021/jacs.1c04002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heteroatom-doped metal nanoclusters (NCs) are highly desirable to gain fundamental insights into the effect of doping on the electronic structure and catalytic properties. Unfortunately, their controlled synthesis is highly challenging when the metal atomic sizes are largely different (e.g., Cu and Pt). Here, we design a metal-exchange strategy that enables simultaneous doping and resizing of NCs. Specifically, [Pt2Cu34(PET)22Cl4]2- NC, the first example of a Pt-doped Cu NC, is synthesized by utilizing the unique reactivity of [Cu32(PET)24Cl2H8]2- NC with Pt4+ ions. The single-crystal X-ray structure reveals that two directly bonded Pt atoms occupy the two centers of an unusually interpenetrating, incomplete biicosahedron core (Pt2Cu18), which is stabilized by a Cu16(PET)22Cl4 shell. The molecular structure and composition of the NC are validated by combined experimental and theoretical results. Electronic structure calculations, using the density functional theory, show that the Pt2Cu34 NC is a 10-electron superatom. The computed absorption spectrum matches well with the measured data and allows for assignment of the absorption peaks. The calculations also rationalize energetics for ligand exchange observed in the mass spectrometry data. The synergistic effects induced by Pt doping are found to enhance the catalytic activity of Cu NCs by ∼300-fold in silane to silanol conversion under mild conditions. Furthermore, our synthetic strategy has potential to produce Ni-, Pd-, and Au-doped Cu NCs, which will open new avenues to uncover their molecular structures and catalytic properties.
Collapse
Affiliation(s)
- Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Nanfeng Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Wei X, Shen H, Xu C, Li H, Jin S, Kang X, Zhu M. Ag 48 and Ag 50 Nanoclusters: Toward Active-Site Tailoring of Nanocluster Surface Structures. Inorg Chem 2021; 60:5931-5936. [PMID: 33826306 DOI: 10.1021/acs.inorgchem.1c00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The determination of active sites in metal nanoclusters is of great significance for the in-depth understanding of the structural evolution and the mechanism of physicochemical properties. In this work, the surface active Ag2(SR)3 units of the Ag48Cl14(S-Adm)30 nanocluster are determined, and the active-site tailoring of this nanocluster gives rise to two derivative nanoclusters, i.e., the structure-maintained Ag48Cl14(S-Adm)26(S-c-C6H11)4 and the structure-growth Ag50Cl16(S-Adm)28(DPPP)2. Both Ag48 and Ag50 nanoclusters exhibit almost the same cluster framework, but the Ag2(S-Adm)3 active units are regulated to Ag3(S-Adm)2(DPPP)1Cl1 with the transformation from Ag48 to Ag50. The surface active sites on Ag48 are rationalized by analyzing its crystal structure and the ligand-exchange-induced cluster transformation. This study provides some inspiration toward the active-site tailoring of nanocluster surface structures, which is significant for the preparation of new cluster-based nanomaterials with customized structures and enhanced performance.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Chao Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
24
|
Wu X, Lv Y, Bai Y, Yu H, Zhu M. The pivotal alkyne group in the mutual size-conversion of Au9 with Au10 nanoclusters. Dalton Trans 2021; 50:10113-10118. [PMID: 34251382 DOI: 10.1039/d1dt01586a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, density functional theory (DFT) calculations were performed to elucidate the mechanism of the reversible single atom size conversion between [Au10(DMPP)4(C6H11C[triple bond, length as m-dash]C)]3+ and [Au9(DMPP)4]3+ (DMPP is 2,2'-bis-(dimethylphosphino)-1,1'-biphenyl, the simplified, theoretical model of the experimentally used 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl). The presence of a unique alkyne group is pivotal to the nucleophilic attack of the phosphine ligand on the electron-deficient Au10 core. After that, a formal ligand exchange and facile 1,2-P (of the diphosphine ligand) transfer occur to generate the Au9 cluster product. By contrast, the absence of the alkyne group results in a relatively electron-rich Au9 core, and thus an electrophilic attack of the Au(alkyne) complex on the most electron-rich metal sites occurs first. After that, the Au(alkyne) migration on the cluster surface, 1,2-P transfer and core-reconstruction occur successively to generate the thermodynamically highly stable Au10 cluster product.
Collapse
Affiliation(s)
- Xiaohang Wu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China.
| | - Ying Lv
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China.
| | - Yuyuan Bai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China.
| | - Haizhu Yu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China. and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601 P. R. China
| | - Manzhou Zhu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China. and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601 P. R. China
| |
Collapse
|
25
|
Zhu C, Duan T, Li H, Wei X, Kang X, Pei Y, Zhu M. Structural determination of a metastable Ag 27 nanocluster and its transformations into Ag 8 and Ag 29 nanoclusters. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00684c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The atomically precise structure of a metastable nanocluster, Ag27H11(SPhMe2)12(DPPM)6, was determined, and its transformations into size-reduction Ag8 and size-growth Ag29 nanoclusters have been mapped out.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|