1
|
Viennet T. NMR and semi-synthesis in synergy to study protein regulation. J Struct Biol 2025; 217:108192. [PMID: 40089044 DOI: 10.1016/j.jsb.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Structural biology as a field has advanced immensely in the last few years, but the mechanistic roles of protein disordered regions and their associated post-translational modifications on the molecular level are still poorly understood. Nuclear magnetic resonance offers the possibility to investigate these regions with atomic resolution and understand the effect of protein modification, and thus protein regulation. However, obtaining suitable and well-defined samples is not straightforward. Here, I review some approaches to protein semi-synthesis for nuclear magnetic resonance purposes, and their applications. I hope to demonstrate that these chemical and structural biology techniques create a powerful synergy that enables structural studies of protein regulation.
Collapse
Affiliation(s)
- Thibault Viennet
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Locke A, Guarino K, Rule GS. Labeling of methyl groups: a streamlined protocol and guidance for the selection of 2H precursors based on molecular weight. JOURNAL OF BIOMOLECULAR NMR 2024; 78:149-159. [PMID: 38787508 PMCID: PMC11491418 DOI: 10.1007/s10858-024-00441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024]
Abstract
A streamlined one-day protocol is described to produce isotopically methyl-labeled protein with high levels of deuterium for NMR studies. Using this protocol, the D2O and 2H-glucose content of the media and protonation level of ILV labeling precursors (ketobutyrate and ketovalerate) were varied. The relaxation rate of the multiple-quantum (MQ) state that is present during the HMQC-TROSY pulse sequence was measured for different labeling schemes and this rate was used to predict upper limits of molecular weights for various labeling schemes. The use of deuterated solvents (D2O) or deuterated glucose is not required to obtain 1H-13C correlated NMR spectra of a 50 kDa homodimeric protein that are suitable for assignment by mutagenesis. High quality spectra of 100-150 kDa proteins, suitable for most applications, can be obtained without the use of deuterated glucose. The proton on the β-position of ketovalerate appears to undergo partial exchange with deuterium under the growth conditions used in this study.
Collapse
Affiliation(s)
- Alexandra Locke
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA, 15213, USA
| | - Kylee Guarino
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA, 15213, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Wang C, Gu Y, Chen C, Li Y, Li L, Chai Y, Jiang Z, Chen X, Yuan Y. One-Step Synthesis and Oriented Immobilization of Strep-Tag II Fused PDGFRβ for Screening Intracellular Domain-Targeted Ligands. Anal Chem 2024; 96:11479-11487. [PMID: 38943570 DOI: 10.1021/acs.analchem.4c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Accurate orientations and stable conformations of membrane receptor immobilization are particularly imperative for accurate drug screening and ligand-protein affinity analysis. However, there remain challenges associated with (1) traditional recombination, purification, and immobilization of membrane receptors, which are time-consuming and labor-intensive; (2) the orientations on the stationary phase are not easily controlled. Herein, a novel one-step synthesis and oriented-immobilization membrane-receptor affinity chromatography (oSOMAC) method was developed to realize high-throughput and accurate drug screening targeting specific domains of membrane receptors. We employed Strep-tag II as a noncovalent immobilization tag fused into platelet-derived growth factor receptor β (PDGFRβ) through CFPS, and meanwhile, the Strep-Tactin-modified monolithic columns are prepared in batches. The advantages of oSOMAC are as follows: (1) targeted membrane receptors can be expressed independent of living cell within 1-2 h; (2) orientation of membrane receptors can be flexibly controlled and active sites can expose accurately; and (3) targeted membrane receptors can be synthesized, purified, and orientation-immobilized on monolithic columns in one step. Accordingly, three potential PDGFRβ intracellular domain targeted ligands: tanshinone IIA (Tan IIA), hydroxytanshinone IIA, and dehydrotanshinone IIA were successfully screened out from Salvia miltiorrhiza extract through oSOMAC. Pharmacological experiments and molecular docking further demonstrated that Tan IIA could attenuate hepatic stellate cells activation by targeting the protein kinase domain of PDGFRβ with a KD value of 9.7 μM. Ultimately, the novel oSOMAC method provides an original insight for accurate drug screening and interaction analysis which can be applied in other membrane receptors.
Collapse
Affiliation(s)
- Chengliang Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Chun Chen
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yanting Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Ling Li
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
4
|
Karunanithy G, Shukla VK, Hansen DF. Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks. Nat Commun 2024; 15:5073. [PMID: 38871714 PMCID: PMC11176362 DOI: 10.1038/s41467-024-49378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising large biomolecules in solution. However, preparing samples for these experiments is demanding and entails deuteration, limiting its use. Here we demonstrate that NMR spectra recorded on protonated, uniformly 13C labelled samples can be processed using deep neural networks to yield spectra that are of similar quality to typical deuterated methyl-TROSY spectra, potentially providing information for proteins that cannot be produced in bacterial systems. We validate the methodology experimentally on three proteins with molecular weights in the range 42-360 kDa. We further demonstrate the applicability of our methodology to 3D NOESY spectra of Escherichia coli Malate Synthase G (81 kDa), where observed NOE cross-peaks are in good agreement with the available structure. The method represents an advance in the field of using deep learning to analyse complex magnetic resonance data and could have an impact on the study of large biomolecules in years to come.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- The Francis Crick Institute, London, NW1 1BF, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
- The Francis Crick Institute, London, NW1 1BF, UK.
| |
Collapse
|
5
|
Mallis RJ, Lee JJ, den Berg AV, Brazin KN, Viennet T, Zmuda J, Cross M, Radeva D, Rodriguez‐Mias R, Villén J, Gelev V, Reinherz EL, Arthanari H. Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein. Protein Sci 2024; 33:e4950. [PMID: 38511503 PMCID: PMC10955624 DOI: 10.1002/pro.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the β subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 μM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Thibault Viennet
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Denitsa Radeva
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | | | - Judit Villén
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
9
|
Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Local Deuteration Enables NMR Observation of Methyl Groups in Proteins from Eukaryotic and Cell-Free Expression Systems. Angew Chem Int Ed Engl 2021; 60:13783-13787. [PMID: 33768661 PMCID: PMC8251921 DOI: 10.1002/anie.202016070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Indexed: 01/13/2023]
Abstract
Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.
Collapse
Affiliation(s)
- Abhinav Dubey
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Nikolay Stoyanov
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Thibault Viennet
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Sandeep Chhabra
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Shantha Elter
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Jan Borggräfe
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Aldino Viegas
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Radosław P. Nowak
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Nikola Burdzhiev
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Ognyan Petrov
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Eric S. Fischer
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Manuel Etzkorn
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Haribabu Arthanari
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| |
Collapse
|