1
|
Chen Y, Jiang C, Liu S, Yuan W, Li Q, Li Z. Promoting Photocatalytic Hydrogen Evolution by Stabilization of Excited Triplet States and Enhancement of Internal Electric Field at Dye/PCN Interface. Angew Chem Int Ed Engl 2025; 64:e202419850. [PMID: 39714415 DOI: 10.1002/anie.202419850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The heterojunction photocatalysts composed of organic dyes and polymeric carbon nitride (PCN) have great potential for photocatalytic hydrogen evolution (PHE). However, serious charge recombination exists at the dye/PCN interface for the large gaps in time scales and the poor driving force of charge transfer process. Herein, both the excited triplet states of organic dyes with long lifetimes and strong internal electric fields (IEF) as charge transfer driving forces are achieved by the construction of high dipole moments with aromatic-core engineering, and modulation of dye aggregates by alkyl modification. Accordingly, PHE efficiency can achieve up to 833.49 μmol/h, over 36-fold that of PCN/Pt (23.34 μmol/h) under the same conditions. The relationship between molecular structures and PHE performance has been systematically investigated by the photophysical properties of organic dyes and the strength of IEF at dye/PCN interface. It afforded an efficient strategy to balance the charge transfer process in PHE systems, which can guide the molecular design of organic dyes with optimized aggregated behaviors and stable excited triplet states.
Collapse
Affiliation(s)
- Yanting Chen
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Changzun Jiang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Siwei Liu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wentao Yuan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Wang S, Zhu C, Ji J, Li M, Zhao L, Cai F, Tao Z. High-Performance Aqueous Zinc-Organic Battery with a Photo-Responsive Covalent Organic Framework Cathode. SMALL METHODS 2024; 8:e2400557. [PMID: 38953303 DOI: 10.1002/smtd.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Covalent organic framework (COF) materials, known for their robust porous character, sustainability, and abundance, have great potential as cathodes for aqueous Zn-ion batteries (ZIBs). However, their application is hindered by low reversible capacity and discharge voltage. Herein, a donor-acceptor configuration COF (NT-COF) is utilized as the cathode for ZIBs. The cell exhibits a high discharge voltage plateau of ≈1.4 V and a discharge capacity of 214 mAh g-1 at 0.2 A g-1 when utilizing the Mn2+ electrolyte additive in the ZnSO4 electrolyte. A synergistic combination mechanism is proposed, involving the deposition/dissolution reactions of Zn4SO4(OH)6·4H2O and the co-(de)insertion reactions of H+ and SO4 2- in NT-COF. Meanwhile, the NT-COF with a donor-acceptor configuration facilitates efficient generation and separation of electron-hole pairs upon light exposure, thereby enhancing electrochemical reactions within the battery. This leads to a reduction in charging voltage and internal overvoltage, ultimately minimizing electricity consumption. Under ambient weather conditions, the cell exhibits an average discharge capacity of 430 mAh g-1 on sunny days and maintains consistent cycling stability for a duration of 200 cycles (≈19 days) at 0.2 A g-1. This research inspires the advancement of Zn-organic batteries for high-energy-density aqueous electrochemical energy storage systems or photo-electrochemical batteries.
Collapse
Affiliation(s)
- Shoucheng Wang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Lab for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Congcong Zhu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Lab for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiale Ji
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Lab for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Mengyuan Li
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Lab for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Zhao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Lab for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Fengshi Cai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Lab for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Zhao G, Lv S, Lou Y, Zhang Y, Zhang D, Jiang W, Sun Y, Duan L. Cascade Effect of a Dimerized Thermally Activated Delayed Fluorescence Dendrimer. Angew Chem Int Ed Engl 2024; 63:e202412720. [PMID: 39082148 DOI: 10.1002/anie.202412720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 11/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters with a high horizontal orientation are highly essential for improving the external quantum efficiency (EQE) of organic light-emitting diodes; however, pivotal molecular design strategies to improve the horizontal orientation of solution-processable TADF emitters are still scarce and challenging. Herein, a phenyl bridge is adopted to connect the double TADF units, and generate a dimerized TADF dendrimer, D4CzBNPh-SF. Compared to its counterpart with a single TADF unit, the proof-of-the-concept molecule not only exhibits an improved horizontal dipole ratio (78 %) due to the π-delocalization-induced extended molecular conjugation, but also displays a faster reversed intersystem crossing rate constant (6.08×106 s-1) and a high photoluminescence quantum yield of 95 % in neat film. Consequently, the non-doped solution-processed device with D4CzBNPh-SF as the emitter achieves an ultra-high maximum EQE of 32.6 %, which remains at 26.6 % under a luminance of 1000 cd/m2. Furthermore, when using D4CzBNPh-SF as a sensitizer, the TADF-sensitized fluorescence device exhibits a high maximum EQE of 30.7 % at a luminance of 575 cd/m2 and a full width at half maximum of 36 nm.
Collapse
Affiliation(s)
- Guimin Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Shuai Lv
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yuheng Lou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yuewei Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yueming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Lu C, Han J, Li N, Chen D, Xu Q, Li H, Lu J. Triazine-based conjugated polymers with regulation of D-A configuration for enhanced photocatalytic activity. J Colloid Interface Sci 2024; 668:59-67. [PMID: 38669996 DOI: 10.1016/j.jcis.2024.04.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Photocatalysis is a green and environmentally friendly method for degrading dangerous and nonbiodegradable pollutants. In this study, a sequence of metal-free triazine-based electronic donor-acceptor (D-A) conjugated polymers Tr-X (X = Th, BT, BTh) were prepared by D-A configuration regulation between triazine (Tr) and monomers containing N and S, such as thiophene (Th), bithiophene (BTh) and benzothiadiazole (BT) units, for the photocatalytic degradation of bisphenol A (BPA) and benzene contaminants in water under visible light. Among these, Tr-BTh exhibited complete photocatalytic degradation owing to its excellent D-A configuration. Moreover, the N and S atoms, which are rich in triazine and thiophene units, serve as highly dispersed reactive sites. The separation and transfer of photogenerated carriers can be further improved by expanding the light-absorption range of polymers. In addition, the polymers showed good adsorption for BPA and other aromatic organic pollutants through π-π interaction and surface hydrogen bonding, which provides a facile strategy for efficient polymer-based photocatalysts for water purification.
Collapse
Affiliation(s)
- Chengwei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
6
|
Su N, Chen B, Ding J. Two Birds with One Stone: Polymerized Thermally Activated Delayed Fluorescence Small Molecules. Chemistry 2024; 30:e202304095. [PMID: 38246880 DOI: 10.1002/chem.202304095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Thermally activated delayed fluorescence (TADF) polymers show a great potential in low-cost, large-area and flexible full-color flat-panel displays. One of the most promising design rules is based on TADF+Linker, where a small molecular TADF unit is bonded to each other by a simple linker. Unlike the expensive vacuum deposition for small molecules, these polymerized TADF small molecules (Poly-TADF-SMs) are capable of cost-effective solution processing. Meanwhile, the good luminescent property of small molecular TADF emitters can be well inherited by Poly-TADF-SMs so as to bridge the efficiency gap between small molecules and polymers. Herein, we will highlight the recent progress of Poly-TADF-SMs, together with emphasis on their molecular design, photophysical and electroluminescence properties.
Collapse
Affiliation(s)
- Ning Su
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Bitian Chen
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
- Southwest United Graduate School, Kunming, 650092, P. R. China
| |
Collapse
|
7
|
Fu M, Chen Y, Jin W, Dai H, Zhang G, Fan K, Gao Y, Guan L, Chen J, Zhang C, Ma J, Wang C. A donor-acceptor (D-A) conjugated polymer for fast storage of anions. Angew Chem Int Ed Engl 2023:e202317393. [PMID: 38062863 DOI: 10.1002/anie.202317393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Organic electrode materials have attracted a lot interest in batteries in recent years. However, most of them still suffer from low performance such as low electrode potential, slow reaction kinetics, and short cycle life. In this work, we report a strategy of fabricating donor-acceptor (D-A) conjugated polymers for facilitating the charge transfer and therefore accelerating the reaction kinetics by using the copolymer (p-TTPZ) of dihydrophenazine (PZ) and thianthrene (TT) as a proof-of-concept. The D-A conjugated polymer as p-type cathode could store anions and exhibited high discharge voltages (two plateaus at 3.82 V, 3.16 V respectively), a reversible capacity of 152 mAh g-1 at 0.1 A g-1 , excellent rate performance with a high capacity of 124.2 mAh g-1 at 10 A g-1 (≈50 C) and remarkable cyclability. The performance, especially the rate capability was much higher than that of its counterpart homopolymers without D-A structure. As a result, the p-TTPZ//graphite full cells showed a high output voltage (3.26 V), a discharge specific capacity of 139.1 mAh g-1 at 0.05 A g-1 and excellent rate performance. This work provides a novel strategy for developing high performance organic electrode materials through molecular design and will pave a way towards high energy density organic batteries.
Collapse
Affiliation(s)
- Manli Fu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuan Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| | - Weihao Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Huichao Dai
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guoqun Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kun Fan
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| | - Yanbo Gao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linnan Guan
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jizhou Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenyang Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chengliang Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
8
|
Xin Y, Zhu Y, Chi R, Duan C, Yan P, Han C, Xu H. Phosphine-Oxide-Balanced Intra- and Interchain Through-Space Charge Transfer in Thermally Activated Delayed Fluorescence Polymers: Beyond 30% External Quantum Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304103. [PMID: 37401728 DOI: 10.1002/adma.202304103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Through-space charge transfer (TSCT) is crucial for developing highly efficient thermally activated delayed fluorescence polymers. The balance of intra- and interchain TSCT can markedly improve performance, but it is still a big challenge. In this work, an effective strategy for "intra- and interchain TSCT balance" is demonstrated by way of a series of non-conjugated copolymers containing a 9,9-dimethylacridine donor and triazine-phosphine oxide (PO)-based acceptors. Steady-state and transient emission spectra indicate that compared to the corresponding blends, the copolymers can indeed achieve balanced intra- and interchain TSCT by accurately optimizing the inductive and steric effects of the acceptors. The DPOT acceptor with the strongest electron-withdrawing ability and the second bigger steric hindrance endows its copolymers with state-of-the-art photoluminescence and electroluminescence quantum efficiencies beyond 95% and 32%, respectively. This demonstrates that, compared to other congeners, the synergistic inductive and steric effects effectively enhance TSCT in DPOT-based copolymers for radiation, and suppress singlet and triplet quenching. The record-high efficiencies of its devices make this kind of copolymers hold the potential for low-cost, large-scale, and high-efficiency applications.
Collapse
Affiliation(s)
- Ying Xin
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yonglin Zhu
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Ruixin Chi
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry (Chinese Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
9
|
Zhou T, Zhang W, Cao Q, Zhang K, Ban X, Pei M, Wang J. Unveiling the In Situ and Solvent Polymerization Engineering for Highly Efficient and Flexible Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37197999 DOI: 10.1021/acsami.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Thermally activated delayed fluorescence (TADF) polymer has great potential for the construction of flexible solution-processed organic light-emitting diodes (OLEDs). However, the relationship between polymerization engineering and device functions has rarely been reported. Here, two novel TADF polymers, P-Ph4CzCN and P-Ph5CzCN, with a small energy gap between the first excited singlet and triplet states (ΔEST; <0.16 eV) were newly developed by both solvent and in situ polymerization of a styrene component. Detailed device performance testing indicates that both polymerization strategies ensure that the TADF polymer achieves comparable high efficiencies in commonly rigid devices, and the maximum external quantum efficiencies (EQEmax) were 11.9%, 14.1%, and 16.2% for blue, green, and white OLEDs, respectively. Although in situ polymerization provides a simplified device fabrication process, which avoids the complicated synthesis and purification of the polymer, the inevitable high-temperature annealing makes it fail in a plastic substrate device. In contrast, P-Ph5CzCN achieved by solvent polymerization enables the successful fabrication of a flexible device on a poly(ethylene terephthalate) (PET) substrate, which was the first reported flexible OLED based on a TADF polymer. This work provides a strong guideline for the simple fabrication of TADF polymer devices and the application of TADF polymer materials in OLED flexible panels and flexible lighting.
Collapse
Affiliation(s)
- Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Wenhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Qingpeng Cao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Ming Pei
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jiayi Wang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| |
Collapse
|
10
|
Liu S, Tian Y, Yan L, Wang S, Zhao L, Tian H, Ding J, Wang L. Color Tuning in Thermally Activated Delayed Fluorescence Polymers with Carbazole and Tetramethylphenylene Backbone. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shen Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yiting Tian
- School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Libing Yan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
11
|
Wang SR, Yao Y, Su ZM, Liu YL, Xu HL. The Change of Hydrogen Position on π-conjugated Bridge to Affect NLO Property of D(-NH2)-π(DHTPs)-A(-NO2) System. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wang C, Wu J, Huang H, Xu Q, Ju H. Electrochemiluminescence of Polymer Dots Featuring Thermally Activated Delayed Fluorescence for Sensitive DNA Methylation Detection. Anal Chem 2022; 94:15695-15702. [DOI: 10.1021/acs.analchem.2c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hao Huang
- Research & Development Center, Canon Medical Systems (China) Co., Ltd.Beijing, 100015, China
| | - Qiqi Xu
- Research & Development Center, Canon Medical Systems (China) Co., Ltd.Beijing, 100015, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
13
|
Takemura K, Ohira K, Higashino T, Imato K, Ooyama Y. Synthesis, optical and electrochemical properties of (D–π) 2-type and (D–π) 2Ph-type fluorescent dyes. Beilstein J Org Chem 2022; 18:1047-1054. [PMID: 36105734 PMCID: PMC9443425 DOI: 10.3762/bjoc.18.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The (D–π)2-type fluorescent dye OTT-2 with two (diphenylamino)carbazole-thiophene units as D (electron-donating group)–π (π-conjugated bridge) moiety and the (D–π)2Ph-type fluorescent dye OTK-2 with the two D–π moieties connected through a phenyl ring were derived by oxidative homocoupling of a stannyl D–π unit and Stille coupling of a stannyl D–π unit with 1,3-diiodobenzene, respectively. Their optical and electrochemical properties were investigated by photoabsorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, cyclic voltammetry (CV) and molecular orbital (MO) calculations. In toluene the photoabsorption and fluorescence maximum wavelengths (λmax,abs and λmax,fl) of OTT-2 appear in a longer wavelength region than those of OTK-2. The fluorescence quantum yield (Φfl) of OTT-2 is 0.41, which is higher than that (Φfl = 0.36) of OTK-2. In the solid state OTT-2 shows relatively intense fluorescence properties (Φfl-solid = 0.24 nm), compared with OTK-2 (Φfl-solid = 0.15 nm). CV results demonstrated that OTT-2 and OTK-2 exhibit a reversible oxidation wave. Based on photoabsorption, fluorescence spectroscopy and CV for the two dyes, it was found that the lowest unoccupied molecular orbital (LUMO) energy level of OTT-2 is lower than that of OTK-2, but OTT-2 and OTK-2 have comparable highest occupied molecular orbital (HOMO) energy levels. Consequently, this work reveals that compared to the (D–π)2Ph-type structure, the (D–π)2-type structure exhibits not only a bathochromic shift of the photoabsorption band, but also intense fluorescence emission both in solution and the solid state.
Collapse
Affiliation(s)
- Kosuke Takemura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Taiki Higashino
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
14
|
Grobelny A, Grobelny A, Zapotoczny S. Precise Stepwise Synthesis of Donor-Acceptor Conjugated Polymer Brushes Grafted from Surfaces. Int J Mol Sci 2022; 23:ijms23116162. [PMID: 35682845 PMCID: PMC9181774 DOI: 10.3390/ijms23116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Donor-acceptor (D-A) conjugated polymers are promising materials in optoelectronic applications, especially those forming ordered thin films. The processability of such conjugated macromolecules is typically enhanced by introducing bulky side chains, but it may affect their ordering and/or photophysical properties of the films. We show here the synthesis of surface-grafted D-A polymer brushes using alternating attachment of tailored monomers serving as electron donors (D) and acceptors (A) via coupling reactions. In such a stepwise procedure, alternating copolymer brushes consisting of thiophene and benzothiadiazole-based moieties with precisely tailored thickness and no bulky substituents were formed. The utilization of Sonogashira coupling was shown to produce densely packed molecular wires of tailored thickness, while Stille coupling and Huisgen cycloaddition were less efficient, likely because of the higher flexibility of D-A bridging groups. The D-A brushes exhibit reduced bandgaps, semiconducting properties and can form aggregates, which can be adjusted by changing the grafting density of the chains.
Collapse
Affiliation(s)
- Anna Grobelny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Artur Grobelny
- Selvita Services Sp. Z o.o., Bobrzyńskiego 14, 30-348 Kraków, Poland;
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-686-25-30
| |
Collapse
|
15
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical-Dendronized TADF Emitters for Efficient Non-doped Solution-Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022; 61:e202115140. [PMID: 34870886 PMCID: PMC9306820 DOI: 10.1002/anie.202115140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully-conjugated or fully-nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical "half-dendronized" and "half-dendronized-half-encapsulated" emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge-transfer state, assuring a solely thermal equilibrium route for an effective spin-flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non-doped solution-processed devices reach a high external quantum efficiency (EQEmax ) of 24.0 % (65.9 cd A-1 , 59.2 lm W-1 ) with CIE coordinates of (0.24, 0.45) with a low efficiency roll-off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m-2 .
Collapse
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Cheng Zeng
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | | | - Zhongjie Ren
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Key Laboratory of Rubber-PlasticsMinistry of EducationQingdao University of Science & TechnologyQingdao266042P.R. China
| | - Martin R. Bryce
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
16
|
Zhang J, Wei Q, Lyu L, Cao L, Zhao M, Fei N, Wang T, Ge Z. Thermally Activated Delayed Fluorescent (TADF) Mono‐Polymeric OLED with Higher EQE over Its TADF Repeating Unit. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiasen Zhang
- College of material science and engineering Zhejiang Sci‐Tech University Hangzhou 310018 PR China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Qiang Wei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | | | - Liang Cao
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Mengyu Zhao
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Nannan Fei
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| | - Tao Wang
- College of material science and engineering Zhejiang Sci‐Tech University Hangzhou 310018 PR China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 PR China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences PR China
| |
Collapse
|
17
|
Abarbanel OD, Rozon J, Hutchison GR. Strategies for Computer-Aided Discovery of Novel Open-Shell Polymers. J Phys Chem Lett 2022; 13:2158-2164. [PMID: 35226497 DOI: 10.1021/acs.jpclett.2c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic π-conjugated polymers with a triplet ground state have been the focus of recent research for their interesting and unique electronic properties, arising from the presence of the two unpaired electrons. These compounds are usually built from alternating electron-donating and electron-accepting monomer pairs which lower the HOMO-LUMO gap and yield a triplet state instead of the typical singlet ground state. In this paper, we use density functional theory calculations to explore the design rules that govern the creation of a ground-state triplet conjugated polymer and find that a small HOMO-LUMO gap in the singlet state is the best predictor for the existence of a triplet ground state, compared to previous use of a pro-quinoidal bonding character. This work can accelerate the discovery of new stable triplet materials by reducing the computational resources needed for electronic-state calculations and the number of potential candidates for synthesis.
Collapse
Affiliation(s)
- Omri D Abarbanel
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Julisa Rozon
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Geoffrey R Hutchison
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
18
|
Hu J, Chang Y, Chen F, Yang Q, Shao S, Wang L. Design, synthesis, and properties of
polystyrene‐based through‐space
charge transfer polymers: Effect of triplet energy level of electron donor moiety on delayed fluorescence and electroluminescence performance. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Fan Chen
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
| | - Shiyang Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of sciences Changchun P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| |
Collapse
|
19
|
Zong W, Qiu W, Yuan P, Wang F, Liu Y, Xu S, Su SJ, Cao S. Thermally activated delayed fluorescence polymers for high-efficiency solution-processed non-doped OLEDs: Convenient synthesis by binding TADF units and host units to the pre-synthesized polycarbazole-based backbone via click reaction. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Chu B, Zhang H, Hu L, Liu B, Zhang C, Zhang X, Tang BZ. Altering Chain Flexibility of Aliphatic Polyesters for Yellow‐Green Clusteroluminescence in 38 % Quantum Yield. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Chu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Lanfang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Liu
- School of Energy and Power Engineering North University of China Taiyuan 03005 China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen 518172 China
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
21
|
Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Asymmetrical‐Dendronized TADF Emitters for Efficient Non‐doped Solution‐Processed OLEDs by Eliminating Degenerate Excited States and Creating Solely Thermal Equilibrium Routes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chensen Li
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| | | | - Yuchao Liu
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Cheng Zeng
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Fernando B. Dias
- Physics Department Durham University South Road Durham DH1 3LE UK
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Key Laboratory of Rubber-Plastics Ministry of Education Qingdao University of Science & Technology Qingdao 266042 P.R. China
| | - Martin R. Bryce
- Chemistry Department Durham University South Road Durham DH1 3LE UK
| |
Collapse
|
22
|
Liu XT, Hua W, Nie HX, Chen M, Chang Z, Bu XH. Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. Natl Sci Rev 2021; 9:nwab222. [PMID: 36105943 PMCID: PMC9466880 DOI: 10.1093/nsr/nwab222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.
Collapse
Affiliation(s)
- Xiao-Ting Liu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing210094, China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing100871, China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
23
|
Chu B, Zhang H, Hu L, Liu B, Zhang C, Zhang X, Tang BZ. Altering Chain Flexibility of Aliphatic Polyesters for Yellow-Green Clusteroluminescence in 38 % Quantum Yield. Angew Chem Int Ed Engl 2021; 61:e202114117. [PMID: 34820976 DOI: 10.1002/anie.202114117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/11/2022]
Abstract
Preparation of non-conjugated polymers with long-wavelength emission and high quantum yield (QY) is still a huge challenge. Herein, we report the first example of linear non-conjugated polyester exhibiting yellow-green clusteroluminescence (CL) and a high QY of 38 %. We discovered that the polyester P3 with balanced flexibility and rigidity showed the longest CL wavelength and highest QY. Systematically photophysical characterization unravel the key role of ester cluster in the CL and the cluster formation via the aggregate of ester units was visualized. Moreover, P3 was demonstrated to be a highly selective, quick-responsive (ca. 1.2 min) and sensitive detector (detection limit is 0.78 μM) for irons owing to the fast disassociation of clusters by irons. This work not only gains further mechanistic insight into CL but also provides a new strategy to design high-efficiency and long-wavelength CL, meanwhile, enlightens the glorious application prospect of luminescent polyester.
Collapse
Affiliation(s)
- Bo Chu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Lanfang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, Taiyuan, 03005, China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.,The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Wang YF, Li M, Teng JM, Zhou HY, Zhao WL, Chen CF. Chiral TADF-Active Polymers for High-Efficiency Circularly Polarized Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2021; 60:23619-23624. [PMID: 34490710 DOI: 10.1002/anie.202110794] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Indexed: 12/11/2022]
Abstract
A strategy of chiral donor-acceptor copolymerization is proposed to develop chiral nonconjugated polymers with thermally activated delayed fluorescence (TADF). Based on this strategy, two pairs of chiral polymers (R,R)-/(S,S)-pTpAcDPS and (R,R)-/(S,S)-pTpAcBP were synthesized. The alternating copolymerization of the chiral donors and acceptors could effectively separate the frontier molecular orbitals, which made the polymers show small ΔEST of 0.01-0.03 eV and efficient TADF properties. Moreover, the polymers also showed the quantum yield of up to 92 % and the circularly polarized luminescence. The solution-processed circularly polarized organic light-emitting diodes showed circularly polarized electroluminescence signals with high external quantum efficiencies of up to 22.1 % and maximum luminance of up to 34350 cd m-2 . This is the first report of CP-OLEDs based on chiral TADF polymer, which provides a useful and valuable guidance for the development of high-efficiency CPEL polymers.
Collapse
Affiliation(s)
- Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin-Ming Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Chiral TADF‐Active Polymers for High‐Efficiency Circularly Polarized Organic Light‐Emitting Diodes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Liu H, Liu Z, Li G, Huang H, Zhou C, Wang Z, Yang C. Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021; 60:12376-12380. [DOI: 10.1002/anie.202103187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/16/2022]
Affiliation(s)
- He Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiwen Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Huaina Huang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Changjiang Zhou
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|