1
|
Newton LS, Gathmann C, Ridewood S, Smith RJ, Wijaya AJ, Hornsby TW, Morling KL, Annett D, Chiozzi RZ, Reuschl AK, Govasli ML, Tan YY, Thorne LG, Jolly C, Thalassinos K, Ciulli A, Towers GJ, Selwood DL. Macrocycle-based PROTACs selectively degrade cyclophilin A and inhibit HIV-1 and HCV. Nat Commun 2025; 16:1484. [PMID: 39929804 PMCID: PMC11811207 DOI: 10.1038/s41467-025-56317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Targeting host proteins that are crucial for viral replication offers a promising antiviral strategy. We have designed and characterised antiviral PROteolysis TArgeting Chimeras (PROTACs) targeting the human protein cyclophilin A (CypA), a host cofactor for unrelated viruses including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). The PROTAC warheads are based on fully synthetic macrocycles derived from sanglifehrin A, which are structurally different from the classical Cyp inhibitor, cyclosporine A. Our Cyp-PROTACs decrease CypA levels in cell lines and primary human cells and have high specificity for CypA confirmed by proteomics experiments. Critically, CypA degradation facilitates improved antiviral activity against HIV-1 in primary human CD4+ T cells compared to the non-PROTAC parental inhibitor, at limiting inhibitor concentrations. Similarly, we observe antiviral activity against HCV replicon in a hepatoma cell line. We propose that CypA-targeting PROTACs inhibit viral replication potently and anticipate reduced evolution of viral resistance and broad efficacy against unrelated viruses. Furthermore, they provide powerful tools for probing cyclophilin biology.
Collapse
Affiliation(s)
- Lydia S Newton
- Division of Infection and Immunity, University College London, London, UK
| | - Clara Gathmann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sophie Ridewood
- Division of Infection and Immunity, University College London, London, UK
| | - Robert J Smith
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Andre J Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas W Hornsby
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Kate L Morling
- Division of Infection and Immunity, University College London, London, UK
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dara Annett
- Division of Infection and Immunity, University College London, London, UK
| | - Riccardo Zenezini Chiozzi
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | | | - Morten L Govasli
- Division of Infection and Immunity, University College London, London, UK
- Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Ying Ying Tan
- Division of Infection and Immunity, University College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK
| | - Konstantinos Thalassinos
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
2
|
Deutscher RCE, Meyners C, Repity ML, Sugiarto WO, Kolos JM, Maciel EVS, Heymann T, Geiger TM, Knapp S, Lermyte F, Hausch F. Discovery of fully synthetic FKBP12-mTOR molecular glues. Chem Sci 2025:d4sc06917j. [PMID: 39916884 PMCID: PMC11796051 DOI: 10.1039/d4sc06917j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Molecular glues are a new drug modality with the potential to engage otherwise undruggable targets. However, the rational discovery of molecular glues for desired targets is a major challenge and most known molecular glues have been discovered by serendipity. Here we present the first fully synthetic FKBP12-mTOR molecular glues, which were discovered from a FKBP-focused, target-unbiased ligand library. Our biochemical screening of >1000 in-house FKBP ligands yielded one hit that induced dimerization of FKBP12 and the FRB domain of mTOR. The crystal structure of the ternary complex revealed that the hit targeted a similar surface on the FRB domain compared to natural product rapamycin but with a radically different interaction pattern. Structure-guided optimization improved potency 500-fold, and led to compounds which initiate FKBP12-FRB complex formation in cells. Our results show that molecular glues targeting flat surfaces can be discovered by focused screening and support the use of FKBP12 as a versatile presenter protein for molecular glues.
Collapse
Affiliation(s)
- Robin C E Deutscher
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Maximilian L Repity
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Wisely Oki Sugiarto
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Jürgen M Kolos
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Edvaldo V S Maciel
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Tim Heymann
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences Max-von-Laue-Str. 15 60438 Frankfurt am Main Germany
- German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz 69120 Heidelberg Germany
| | - Frederik Lermyte
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
- Centre for Synthetic Biology, Technical University of Darmstadt 64287 Darmstadt Germany
| |
Collapse
|
3
|
Flaxman HA, Chrysovergi MA, Han H, Kabir F, Lister RT, Chang CF, Yvon R, Black KE, Weigert A, Savai R, Egea-Zorrilla A, Pardo-Saganta A, Lagares D, Woo CM. Sanglifehrin A mitigates multiorgan fibrosis by targeting the collagen chaperone cyclophilin B. JCI Insight 2024; 9:e171162. [PMID: 38900587 PMCID: PMC11383833 DOI: 10.1172/jci.insight.171162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as antifibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photoaffinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1-activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress or affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct antifibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Hope A Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maria-Anna Chrysovergi
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Farah Kabir
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rachael T Lister
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Robert Yvon
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Katharine E Black
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Germany
| | - Rajkumar Savai
- Frankfurt Cancer Institute (FCI), Goethe University, and German Cancer Consortium (DKTK), Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Alejandro Egea-Zorrilla
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Ana Pardo-Saganta
- Institute for Lung Health (ILH), Department of Internal Medicine, Justus-Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Department of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
5
|
Xie XQ, Li X, Liu PN. Enantioselective synthesis of spiro- N, O-ketals via iridium and Brønsted acid co-catalyzed asymmetric formal [4+2] cycloaddition. Chem Commun (Camb) 2024; 60:1448-1451. [PMID: 38213273 DOI: 10.1039/d3cc05923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We present an iridium and Brønsted acid co-catalyzed enantioselective formal [4+2] cycloaddition reaction of cyclic enamides with 2-(1-hydroxyallyl)phenols. This method yields a wide range of N-unsubstituted spiro-N,O-ketals, with good efficiency (up to 94%) and excellent enantioselectivities (most >95% ee). The protocol features easy scale-up and facile product derivatization.
Collapse
Affiliation(s)
- Xiang-Qi Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
7
|
Wang S, Xie C, Zhu Y, Zi G, Zhang Z, Hou G. Enantioselective Synthesis of Chiral Cyclic Hydrazines by Ni-Catalyzed Asymmetric Hydrogenation. Org Lett 2023; 25:3644-3648. [PMID: 37184220 DOI: 10.1021/acs.orglett.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An efficient Ni-(S,S)-Ph-BPE complex that catalyzed asymmetric hydrogenation of cyclic N-acyl hydrazones has been developed to produce various chiral cyclic hydrazines in high yields with excellent enantioselectivities of up to >99% enantiomeric excess. Moreover, the hydrogenation can not only proceed smoothly on a gram scale under lower catalyst loading (S/C = 3000) without any decrease of enantioselectivity but can also be applied to the asymmetric synthesis of a RIP-1 kinase inhibitor.
Collapse
Affiliation(s)
- Siwei Wang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yu Zhu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhanbin Zhang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
8
|
Flaxman HA, Chrysovergi MA, Han H, Kabir F, Lister RT, Chang CF, Black KE, Lagares D, Woo CM. Sanglifehrin A mitigates multi-organ fibrosis in vivo by inducing secretion of the collagen chaperone cyclophilin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531890. [PMID: 36945535 PMCID: PMC10028952 DOI: 10.1101/2023.03.09.531890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis by myofibroblasts have clinical potential as anti-fibrotic agents. Lysine hydroxylation by the prolyl-3-hydroxylase complex, comprised of cartilage associated protein, prolyl 3-hydroxylase 1, and cyclophilin B, is essential for collagen type I crosslinking and formation of stable fibers. Here, we identify the collagen chaperone cyclophilin B as a major cellular target of the macrocyclic natural product sanglifehrin A (SfA) using photo-affinity labeling and chemical proteomics. Our studies reveal a unique mechanism of action in which SfA binding to cyclophilin B in the endoplasmic reticulum (ER) induces the secretion of cyclophilin B to the extracellular space, preventing TGF-β1-activated myofibroblasts from synthesizing collagen type I in vitro without inhibiting collagen type I mRNA transcription or inducing ER stress. In addition, SfA prevents collagen type I secretion without affecting myofibroblast contractility or TGF-β1 signaling. In vivo, we provide chemical, molecular, functional, and translational evidence that SfA mitigates the development of lung and skin fibrosis in mouse models by inducing cyclophilin B secretion, thereby inhibiting collagen synthesis from fibrotic fibroblasts in vivo . Consistent with these findings in preclinical models, SfA reduces collagen type I secretion from fibrotic human lung fibroblasts and precision cut lung slices from patients with idiopathic pulmonary fibrosis, a fatal fibrotic lung disease with limited therapeutic options. Our results identify the primary liganded target of SfA in cells, the collagen chaperone cyclophilin B, as a new mechanistic target for the treatment of organ fibrosis.
Collapse
|
9
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
10
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|