1
|
Zhang XY, Fu JH, Chen ZQ, Gong WW, Wang Y, Kang LX, Zhao Y, Shu CH, Li DY, Liu PN. Isomerization of Organometallic Polymers on Ag(111): Revealing the Intermolecular Hydrogen Transfer Mechanism. ACS NANO 2025. [PMID: 40265293 DOI: 10.1021/acsnano.4c18959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Dehalogenation plays a crucial role in on-surface synthesis, but the bond-forming sites in dehalogenation occasionally differ from the original halogen-substituted sites, leading to unexpected products. Revealing its mechanism is essential for the atomically precise fabrication of low-dimensional nanomaterials, although it remains elusive. Herein, we report an isomerization of organometallic polymers derived from debromination on Ag(111) and elucidate the mechanism involving intermolecular hydrogen transfer via combining scanning tunneling microscopy, noncontact atomic force microscopy, and density functional theory calculations. At room temperature, the precursor 1,4-bis(3-bromothiophen-2-yl)benzene undergoes surface-assisted debromination on Ag(111), forming two organometallic polymers where the bond-forming sites correspond to the original debromination sites. Upon annealing to 393 K, the isomerization of organometallic polymers generates a linear organometallic polymer, where the bond-forming sites mismatched with the original debromination sites. Control experiments combined with theoretical calculations demonstrate that the unexpected isomerization proceeds through the dissociation of polymer chains into surface-stabilized diradical monomers or oligomers, intermolecular hydrogen transfer, and the final recombination of surface-stabilized radicals with Ag adatoms.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jian-Hui Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhen-Qiang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wen-Wen Gong
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ying Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yan Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chen-Hui Shu
- School of Future Technology, Henan University, Kaifeng 475004, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Wang Y, Gong WW, Zhao Y, Xing GY, Kang LX, Sha F, Huang ZY, Liu JW, Han YJ, Li P, Li DY, Liu PN. Two-Dimensional Nonbenzenoid Heteroacene Crystals Synthesized via In-Situ Embedding of Ladder Bipyrazinylenes on Au(111). Angew Chem Int Ed Engl 2024; 63:e202318142. [PMID: 38265124 DOI: 10.1002/anie.202318142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Precisely introducing topological defects is an important strategy in nanographene crystal engineering because defects can tune π-electronic structures and control molecular assemblies. The synergistic control of the synthesis and assembly of nanographenes by embedding the topological defects to afford two-dimensional (2D) crystals on surfaces is still a great challenge. By in-situ embedding ladder bipyrazinylene (LBPy) into acene, the narrowest nanographene with zigzag edges, we have achieved the precise preparation of 2D nonbenzenoid heteroacene crystals on Au(111). Through intramolecular electrocyclization of o-diisocyanides and Au adatom-directed [2+2] cycloaddition, the nonbenzenoid heteroacene products are produced with high chemoselectivity, and lead to the molecular 2D assembly via LBPy-derived interlocking hydrogen bonds. Using bond-resolved scanning tunneling microscopy, we determined the atomic structures of the nonbenzenoid heteroacene product and diverse organometallic intermediates. The tunneling spectroscopy measurements revealed the electronic structure of the nonbenzenoid heteroacene, which is supported by density functional theory (DFT) calculations. The observed distinct organometallic intermediates during progression annealing combined with DFT calculations demonstrated that LBPy formation proceeds via electrocyclization of o-diisocyanides, trapping of heteroarynes by Au adatoms, and stepwise elimination of Au adatoms.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Wen-Wen Gong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Yan Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Guang-Yan Xing
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Zheng-Yang Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Yan-Jie Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Peng Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
3
|
Xu J, Xing S, Hu J, Shi Z. Stepwise on-surface synthesis of nitrogen-doped porous carbon nanoribbons. Commun Chem 2024; 7:40. [PMID: 38402282 PMCID: PMC10894233 DOI: 10.1038/s42004-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Precise synthesis of carbon-based nanostructures with well-defined structural and chemical properties is of significance towards organic nanomaterials, but remains challenging. Herein, we report on a synthesis of nitrogen-doped porous carbon nanoribbons through a stepwise on-surface polymerization. Scanning tunneling microscopy revealed that the selectivity in molecular conformation, intermolecular debrominative aryl-aryl coupling and inter-chain dehydrogenative cross-coupling determined the well-defined topology and chemistry of the final products. Density functional theory calculations predict that the ribbons are semiconductors, and the band gap can be tuned by the width of the ribbons.
Collapse
Affiliation(s)
- Jin Xu
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Shuaipeng Xing
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Jun Hu
- School of Physical Science and Technology, Ningbo University, Ningbo, 315112, China.
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Mahmood A, Dimitrova M, Sundholm D. Current-Density Calculations on Zn-Porphyrin 40 Nanorings. J Phys Chem A 2023; 127:7452-7459. [PMID: 37665662 PMCID: PMC10510378 DOI: 10.1021/acs.jpca.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Two porphyrinoid nanorings have been studied computationally. They were built by linking 40 Zn-porphyrin units with butadiyne bridges. The molecular structures belonging to the D40h point group were fully optimized with the Turbomole program at the density functional theory (DFT) level using the B3LYP functional and the def2-SVP basis sets. The aromatic character was studied at the DFT level by calculating the magnetically induced current-density (MICD) susceptibility using the GIMIC program. The neutral molecules are globally non-aromatic with aromatic Zn-porphyrin units. Charged nanorings could not be studied because almost degenerate frontier orbitals led to vanishing optical gaps for the cations. Since DFT calculations of the MICD are computationally expensive, we also calculated the MICD using three pseudo-π models. Appropriate pseudo-π models were constructed by removing the outer hydrogen atoms and replacing all carbon and nitrogen atoms with hydrogen atoms. The central Zn atom was either replaced with a beryllium atom or with two inner hydrogen atoms. Calculations with the computationally inexpensive pseudo-π models yielded qualitatively the same magnetic response as obtained in the all-electron calculations.
Collapse
Affiliation(s)
- Atif Mahmood
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Maria Dimitrova
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, University
of Helsinki, P.O. Box 55, A. I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| |
Collapse
|
5
|
Huseynzada A, Aghayev M, Hajiyeva S, Israyilova A, Sayin K, Gasimov E, Rzayev F, Hasanova U, Eyvazova G, Abbasov V, Gakhramanova Z, Huseynova S, Huseynova P, Huseynova L, Salimova N. Synthesis, nanostructuring and in silico studies of a new imine bond containing a macroheterocycle as a promising PBP-2a non-β-lactam inhibitor. J Mater Chem B 2023; 11:8271-8280. [PMID: 37581615 DOI: 10.1039/d3tb00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
This study is devoted to the synthesis of a 40-membered macroheterocycle with its further nanostructuring by magnetite nanoparticles. The mentioned macroheterocycle was synthesized by the [2+2] cyclocondensation of the oxygen-containing diamine with an aromatic dialdehyde in a non-catalytic medium and with no work-up procedure. The structure of the obtained macroheterocycle was studied by 1H and 13C nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Furthermore, the nanosupramolecular complex of macroheterocycles with magnetite nanoparticles was obtained and investigated by Fourier-transform infrared and ultraviolet-visible spectroscopy methods. Shifts in the infrared spectra of the nanosupramolecular complex indicate the interaction through metal-aromatic ring non-covalent bonding. The shift is also observed for the C-O-C stretching band of ether bonds. The loading rate of macroheterocycles on magnetite nanoparticles was 18.6%. The morphology of the ensemble was studied by transmission electron microscopy, which confirmed the synthesis of nanospherical particles with a diameter range of 10-20 nm. Powder X-ray diffraction analysis showed patterns of cubic Fe3O4 nanoparticles with a crystallite size equal to 9.1 nm. The macroheterocycle and its nanosupramolecular complex were tested against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. The results have shown that the created complex has shown 64 times better activity against Staphylococcus aureus in comparison with the individual macroheterocycle and 32 times better activity in comparison with the pristine antibiotic Ampicillin as a control. In addition, computational analysis of the macroheterocycle was performed at the B3LYP/6-31G level in water. Molecular docking analyses for the macroheterocycle revealed Penicillin-binding protein PBP2a (5M18) from the transpeptidase family as a target protein in Staphylococcus aureus.
Collapse
Affiliation(s)
- Alakbar Huseynzada
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- Chemistry Department, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku, AZ 1009, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St, OH-44, Rootstown, OH 44272, USA
| | - Sarvinaz Hajiyeva
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- Physics Department, Kent State University, 800 E. Summit St., Kent, OH 44242, USA
| | - Aygun Israyilova
- Laboratory of Microbiology and Virology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- Research Institute of Crop Husbandry, Ministry of Agriculture, Baku, AZ 1098, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Koray Sayin
- Chemistry Department, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Eldar Gasimov
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan
| | - Fuad Rzayev
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan
| | - Ulviyya Hasanova
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Goncha Eyvazova
- Nanoresearch Center, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Vagif Abbasov
- Institute of Petrochemical Processes, K. Avenue 30, Baku, AZ 1005, Azerbaijan
| | - Zarema Gakhramanova
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
| | - Sanam Huseynova
- Department of Molecular Biology and Biotechnology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Parvana Huseynova
- Chemistry Department, Ganja State University, H. Aliyev 429, Ganja, AZ 2001, Azerbaijan
| | - Lala Huseynova
- Industrial Safety and Labor Protection Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan
| | - Nigar Salimova
- Petrochemical Technology and Industrial Ecology Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan
| |
Collapse
|
6
|
Dou W, Wu M, Song B, Zhi G, Hua C, Zhou M, Niu T. High-Yield Production of Quantum Corrals in a Surface Reconstruction Pattern. NANO LETTERS 2023; 23:148-154. [PMID: 36566458 DOI: 10.1021/acs.nanolett.2c03814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The power of surface chemistry to create atomically precise nanoarchitectures offers intriguing opportunities to advance the field of quantum technology. Strategies for building artificial electronic lattices by individually positioning atoms or molecules result in precisely tailored structures but lack structural robustness. Here, taking the advantage of strong bonding of Br atoms on noble metal surfaces, we report the production of stable quantum corrals by dehalogenation of hexabromobenzene molecules on a preheated Au(111) surface. The byproducts, Br adatoms, are confined within a new surface reconstruction pattern and aggregate into nanopores with an average size of 3.7 ± 0.1 nm, which create atomic orbital-like quantum resonance states inside each corral due to the interference of scattered electron waves. Remarkably, the atomic orbitals can be hybridized into molecular-like orbitals with distinct bonding and antibonding states. Our study opens up an avenue to fabricate quantum structures with high yield and superior robustness.
Collapse
Affiliation(s)
- Wenzhen Dou
- School of Physics, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Meimei Wu
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Biyu Song
- School of Physics, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Guoxiang Zhi
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Chenqiang Hua
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Miao Zhou
- School of Physics, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| | - Tianchao Niu
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
| |
Collapse
|
7
|
Li E, Lyu CK, Chen C, Xie H, Zhang J, Lam JWY, Tang BZ, Lin N. On-surface synthesis and spontaneous segregation of conjugated tetraphenylethylene macrocycles. Commun Chem 2022; 5:174. [PMID: 36697742 PMCID: PMC9814618 DOI: 10.1038/s42004-022-00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Creating conjugated macrocycles has attracted extensive research interest because their unique chemical and physical properties, such as conformational flexibility, intrinsic inner cavities and aromaticity/antiaromaticity, make these systems appealing building blocks for functional supramolecular materials. Here, we report the synthesis of four-, six- and eight-membered tetraphenylethylene (TPE)-based macrocycles on Ag(111) via on-surface Ullmann coupling reactions. The as-synthesized macrocycles are spontaneously segregated on the surface and self-assemble as large-area two-dimensional mono-component supramolecular crystals, as characterized by scanning tunneling microscopy (STM). We propose that the synthesis benefits from the conformational flexibility of the TPE backbone in distinctive multi-step reaction pathways. This study opens up opportunities for exploring the photophysical properties of TPE-based macrocycles.
Collapse
Affiliation(s)
- En Li
- grid.24515.370000 0004 1937 1450Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cheng-Kun Lyu
- grid.24515.370000 0004 1937 1450Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Chengyi Chen
- grid.24515.370000 0004 1937 1450Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huilin Xie
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jianyu Zhang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jacky Wing Yip Lam
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ben Zhong Tang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong China
| | - Nian Lin
- grid.24515.370000 0004 1937 1450Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
8
|
Wang J, Niu K, Xu C, Zhu H, Ding H, Han D, Zheng Y, Xi J, You S, Deng C, Lin H, Rosen J, Zhu J, Björk J, Li Q, Chi L. Influence of Molecular Configurations on the Desulfonylation Reactions on Metal Surfaces. J Am Chem Soc 2022; 144:21596-21605. [DOI: 10.1021/jacs.2c08736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Yuanjing Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiahao Xi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Sifan You
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Chuan Deng
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 58183, Sweden
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
9
|
Lisiecki J, Szabelski P. Monte Carlo simulation of the surface-assisted self-assembly of metal-organic precursors comprising phenanthrene building blocks. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Lisiecki J, Szabelski P. Theoretical modeling of the metal-organic precursors of anthracene-based covalent networks on surfaces. Chemphyschem 2022; 23:e202100877. [PMID: 35129274 DOI: 10.1002/cphc.202100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Indexed: 11/08/2022]
Abstract
Surface-assisted fabrication of molecular network architectures has been a promising route to low-dimensional materials with unique physicochemical properties and functionalities. One versatile way in this field is the Ullmann coupling reaction of halogenated organic monomers on catalytically active metallic surfaces. In this work, using the coarse grained Monte Carlo simulations, we studied the on-surface self-assembly of metal-organic precursors preceding the covalent Ullman-type linkage of tetrahalogenated anthracene building blocks. To that end a series of positional isomers was examined and classified with respect to their ability of creation of extended network structures. Our simulations focused on the identification of basic types of self-assembly scenarios distinguishing enantiopure and racemic systems and producing periodic and aperiodic networks. The calculations carried out for selected tectons demonstrated wide possibilities of controlling porosity (e.g. pore size, shape, periodicity, chirality, heterogeneity) of the networks by suitable functionalization of the monomeric unit. The findings reported here can be helpful in rational designing of 2D polymeric networks with predefined structures and properties.
Collapse
Affiliation(s)
- Jakub Lisiecki
- Maria Curie-Sklodowska University: Uniwersytet Marii Curie-Sklodowskiej, Theoretical Chemistry, Pl. M.C. Skłodowskiej 3, 20-031, Lublin, POLAND
| | - Paweł Szabelski
- Maria Curie Skłodowska University, Theoretical Chemistry, Pl. M.C. Skłodowskiej 3, 20-031, Lublin, POLAND
| |
Collapse
|