1
|
Lin EZ, Zhao W, Shi JK, Sun YW, Xiong X, Qi X, Sun X, Li BJ. Construction of Nonadjacent Stereocenters Through Iridium-Catalyzed Desymmetric Hydroheteroarylation of Cyclopentenes. Angew Chem Int Ed Engl 2025:e202501641. [PMID: 40240307 DOI: 10.1002/anie.202501641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Transition metal-catalyzed direct addition of (hetero)aryl C─H bond to an alkene provides an expedited route to construct benzylic stereocenter from readily available arene and alkene feedstocks with complete atom-economy. However, creation of more than one stereocenter through enantioselective C─H (hetero)arylation remains a challenging goal. Here we report an iridium-catalyzed desymmetric hydroheteroarylation of cyclopentenes to construct 1,3-nonadjacent stereocenters. A series of heteroaryl C─H bonds were cleaved site-selectively and added regio- and enantioselectively to an unactivated alkene containing an amide coordinating group, delivering valuable enantioenriched cyclopentane scaffolds containing 1,3-tertiary-tertiary or 1,3-quaternary-tertiary stereocenters with exclusive diastereoselectivity and excellent enantioselectivity.
Collapse
Affiliation(s)
- En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Kai Shi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianrui Xiong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xin Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Wang H, Li JF, Xu M, Zhou QL, Xu W, Ye M. Enantioselective Construction of Oxindoles Bearing a Quaternary Carbon via Ni-Al Bimetal-Catalyzed Formyl C-H Alkylation. Angew Chem Int Ed Engl 2025; 64:e202413652. [PMID: 39323376 DOI: 10.1002/anie.202413652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Enantioselective transition metal-catalyzed C-H alkylation emerges as one of the most atom- and step-economical routes to chiral quaternary carbons, while big challenges still remain with acyl C-H alkylations. Herein, we use a Ni-Al bimetallic catalyst to facilitate a highly regioselective and highly enantioselective C-H alkylation of formamides with alkenes, constructing various oxindoles bearing a chiral quaternary carbon in up to 94 % yield and up to 95 % ee.
Collapse
Affiliation(s)
- Haorui Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jiang-Fei Li
- School of Pharmacy, Wannan Medical College, Anhui, 241002, China
| | - Mengying Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Yang L, Xie F, Zhang L, Wei J, Li J, Li X, Fu J, Lin B, Cheng M, Liu Y. Gold(I)-Catalyzed 6- exo- dig Hydroamination/7- endo- dig Cycloisomerization Domino Approach to 3,7 a-Diazacyclohepta[ jk]fluorene Derivatives. Org Lett 2024. [PMID: 39541164 DOI: 10.1021/acs.orglett.4c03926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A series of 3,7a-diazacyclohepta[jk]fluorene derivatives were synthesized via a gold(I)-catalyzed 6-exo-dig hydroamination/7-endo-dig cycloisomerization domino method. The method exhibits a broad substrate scope, and a plausible mechanism has been proposed. The efficacy of this strategy is further validated by the successful derivatization of 3,7a-diazacyclohepta[jk]fluorene.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Jipeng Wei
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Xiang Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang, Liaoning 110016, People's Republic of China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China
- Institute of Drug Research in Medicine Capital of China, Benxi, Liaoning 117000, People's Republic of China
| |
Collapse
|
4
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
5
|
Arribas A, Calvelo M, Rey A, Mascareñas JL, López F. Skeletal and Mechanistic Diversity in Ir-Catalyzed Cycloisomerizations of Allene-Tethered Pyrroles and Indoles. Angew Chem Int Ed Engl 2024; 63:e202408258. [PMID: 38837581 DOI: 10.1002/anie.202408258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| |
Collapse
|
6
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
7
|
Yin SY, Zhou Q, Liu CX, Gu Q, You SL. Enantioselective Synthesis of N-N Biaryl Atropisomers through Iridium(I)-Catalyzed C-H Alkylation with Acrylates. Angew Chem Int Ed Engl 2023; 62:e202305067. [PMID: 37140049 DOI: 10.1002/anie.202305067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
Enantioselective synthesis of N-N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N-N biaryl atropisomers is in great demand. Herein, the construction of N-N biaryl atropisomers through iridium-catalyzed asymmetric C-H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N-N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.
Collapse
Affiliation(s)
- Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiansujia Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
8
|
Gul R, Hu L, Liu Y, Xie Y. Synthesis of 1-Aryltetralins via Re 2O 7/HReO 4 Mediated Intramolecular Hydroarylations. J Org Chem 2023; 88:12079-12086. [PMID: 37559373 DOI: 10.1021/acs.joc.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Here, we describe highly efficient intramolecular hydroarylations mediated by Re2O7/HReO4. Styrene derivatives of different electronic properties have been activated to effect a challenging intramolecular hydroarylation for the facile access to various substituted 1-aryltetralin structures. This method is characterized by mild reaction conditions, broad substrate scope, high chemical yields, and 100% atom economy. The potential synthetic application of this methodology was exemplified by the efficient total synthesis of an isoCA-4 analogue.
Collapse
Affiliation(s)
- Rukhsar Gul
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yibing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
9
|
Hung Nigel Tang K, Tokutake R, Ito M, Shibata T. Ir-Catalyzed Distal Branch-Selective Hydroarylation of Unactivated Internal Alkenes with Benzanilides via C-H Activation along with Consecutive Isomerization. Org Lett 2023. [PMID: 37427870 DOI: 10.1021/acs.orglett.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
We herein report a synergistic strategy of C-H activation and consecutive isomerization catalyzed by an Ir catalyst to selectively obtain branched isomers as C-H alkylated products of benzanilide derivatives. A well-tuned ligand and a directing group are crucial to achieve this selectivity. The scope of this reaction is demonstrated by the use of a variety of substituents and complex molecules.
Collapse
Affiliation(s)
- King Hung Nigel Tang
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ryo Tokutake
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
10
|
Azizzade M, Rashidi Ranjbar P, Sajadi A. Palladium-Catalyzed Oxidative Annulation Leading to Substituted Pyrrolo[3,2,1- jk]carbazoles by Sequential C-N and C-C Bond Formation. Org Lett 2023; 25:1823-1828. [PMID: 36926942 DOI: 10.1021/acs.orglett.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
A novel regioselective annulation of propargylic alcohols with simple carbazoles for the construction of [3,2,1-jk]carbazole scaffolds is described to be the first example of intermolecular synthesis of [3,2,1-jk]carbazoles from simple carbazoles. In situ synthesis of propargyl alcohols from simple, cheap, and easily accessible ketones has also been developed during the one-pot synthesis of [3,2,1-jk]carbazoles.
Collapse
Affiliation(s)
- Meysam Azizzade
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | | | - Akram Sajadi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| |
Collapse
|
11
|
Liu ZJ, Li JF, Zhang FP, Xu XT, Ye M. Catalyst-Controlled Nickel-Catalyzed Intramolecular endo-Selective C-H Cyclization of Benzimidazoles with Alkenes. Org Lett 2023; 25:353-357. [PMID: 36606754 DOI: 10.1021/acs.orglett.2c04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Compared with the widely explored exo-selective C-H cyclization, transition metal-catalyzed endo-selective C-H cyclization of benzimidazoles with alkenes has been a formidable challenge. Previous efforts mainly rely on substrate-controlled methods, rendering the product complexity restricted. Herein we report a catalyst-controlled method to facilitate endo-cyclization, in which a bulky N-heterocyclic carbene ligand and tBuOK base-enabled Ni-Al bimetallic catalyst prove critical to the endo selectivity.
Collapse
Affiliation(s)
- Zi-Jian Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng-Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Mengchun Ye
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong 529020, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Hirao S, Saeki R, Takahashi T, Iwai K, Nishiwaki N, Ohga Y. Synthesis of Unsymmetrical Ketones Using Chelation-Controlled Sequential Substitution of N-Triazinylamide/Weinreb Amide by Organometallic Reagents. ACS OMEGA 2022; 7:48476-48483. [PMID: 36591189 PMCID: PMC9798741 DOI: 10.1021/acsomega.2c06756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
N-(2,4-Dimethoxy-1,3,5-triazinyl)amide was found to exhibit similar behavior to N-methoxy-N-methylamide (Weinreb amide) but higher reactivity for nucleophilic substitution by organometallic reagents. Triazinylamide suppresses overaddition, leading to the formation of a tertiary alcohol by the chelating ability of the triazinyl and carbonyl groups. Ureas possessing both triazinylamino and methoxy(methyl)amino groups underwent sequential nucleophilic substitution with different organometallic reagents, which furnished unsymmetrical ketones without any detectable tertiary alcohols.
Collapse
Affiliation(s)
- Shotaro Hirao
- Faculty
of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Rumi Saeki
- Graduate
School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Toru Takahashi
- Faculty
of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Kento Iwai
- School
of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research
Center for Molecular Design, Kochi University
of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Nagatoshi Nishiwaki
- School
of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research
Center for Molecular Design, Kochi University
of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Yasushi Ohga
- Faculty
of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| |
Collapse
|
13
|
Sun X, Lin EZ, Li BJ. Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C-H Cleavage of Enamides. J Am Chem Soc 2022; 144:17351-17358. [PMID: 36121772 DOI: 10.1021/jacs.2c07477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalytic branch-selective hydrofunctionalization of feedstock α-olefins to form enantioenriched chiral compounds is a particularly attractive yet challenging transformation in asymmetric catalysis. Herein we report an iridium-catalyzed asymmetric hydroalkenylation of α-olefins through directed C-H cleavage of enamides. This atom-economical addition process is highly branch-selective and enantioselective, delivering trisubstituted alkenes with an allylic stereocenter. DFT calculations reveal the origin of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xin Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
15
|
Feng W, Liu X, Xiao L, Zhou Q. Synthesis of Tricyclic [1,2‐
a
]Indoles via Nickel‐Catalyzed Intramolecular Imine‐Alkene Coupling. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Min Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Xian‐Ming Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Li‐Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 People's Republic of China
| |
Collapse
|
16
|
Wang Z, Li B. Iridium‐Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1‐Disubstituted Alkenes. Angew Chem Int Ed Engl 2022; 61:e202201099. [DOI: 10.1002/anie.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
17
|
Kusaka S, Ohmura T, Suginome M. Iridium-Catalyzed Enantioselective Intramolecular Cross-Dehydrogenative Coupling of Alkyl Aryl Ethers Giving Enantioenriched 2,3-Dihydrobenzofurans. CHEM LETT 2022. [DOI: 10.1246/cl.220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Kusaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshimichi Ohmura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
18
|
Mei H, Liu A, He J, Yu Y, Han J. Visible-Light-Irradiated Cascade Reaction of Indole-Tethered Alkenes to Access Tetracyclic Tetrahydro-γ-carbolines. Org Lett 2022; 24:2630-2635. [PMID: 35354314 DOI: 10.1021/acs.orglett.2c00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of indole-derived alkenes have been designed and applied in a photocatalytic cascade reaction with bromodifluoroacetate esters, affording an unknown type of tetracyclic tetrahydro-γ-carboline derivative in up to 90% yields. Mechanistic studies suggest that the reaction proceeds with tetrahydro-γ-carboline as a key intermediate. The reaction tolerates a diverse pool of substrates, which provides an efficient method for the construction of tetracyclic tetrahydro-γ-carboline compounds.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingrui He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yingjie Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Wang Z, Li B. Iridium‐Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1‐Disubstituted Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
20
|
Cooper P, Dalling AG, Farrar EHE, Aldhous TP, Grélaud S, Lester E, Feron LJ, Kemmitt PD, Grayson MN, Bower JF. Atom and step economical synthesis of acyclic quaternary centers via iridium-catalyzed hydroarylative cross-coupling of 1,1-disubstituted alkenes. Chem Sci 2022; 13:11183-11189. [PMID: 36320466 PMCID: PMC9516889 DOI: 10.1039/d2sc02790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Quaternary benzylic centers are accessed with high atom and step economy by intermolecular Ir-catalyzed hydroarylation of non-polarized 1,1-disubstituted alkenes.
Collapse
Affiliation(s)
- Phillippa Cooper
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | | | - Timothy P. Aldhous
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Simon Grélaud
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Eleanor Lester
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Lyman J. Feron
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Paul D. Kemmitt
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - John F. Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
21
|
Liu YH, Xie PP, Liu L, Fan J, Zhang ZZ, Hong X, Shi BF. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C-H Activation. J Am Chem Soc 2021; 143:19112-19120. [PMID: 34747617 DOI: 10.1021/jacs.1c08562] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand. A broad range of C2-alkylated indoles were obtained in high yields and excellent enantioselectivities. DFT calculations revealed the reaction mechanism and elucidated the origins of chiral induction in the stereodetermining alkene insertion step.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhuo-Zhuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|