1
|
Kuciel T, Wieczorek P, Rajchel-Mieldzioć P, Wytrwał M, Zapotoczny S, Szuwarzyński M. Surface-grafted macromolecular nanowires with pedant fluorescein chromophores by dense non-aggregated nanoarchitectonics as versatile photoactive platforms. J Colloid Interface Sci 2024; 670:182-190. [PMID: 38761571 DOI: 10.1016/j.jcis.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
In this paper, we present a facile method of synthesis and modification of poly(glycidyl methacrylate) brushes with 6-aminofluorescein (6AF) molecules. Polymer brushes were obtained using surface-grafted atom transfer radical polymerization (SI-ATRP) and functionalized in the presence of triethylamine (TEA) acting both as a reaction catalyst and an agent preventing aggregation of chromophores. Atomic force microscopy (AFM), FTIR, X-ray photoelectron spectroscopy (XPS) were used to study the structure and formation of obtained photoactive platforms. UV-Vis absorption and emission spectroscopy and confocal microscopy were conducted to investigate photoactivity of chromophores within the macromolecular matrix. Owing to the simplicity of fabrication and good ordering of the chromophore in a thin nanometric layer, the proposed method may open new opportunities for obtaining light sensors, photovoltaic devices, or other light-harvesting systems.
Collapse
Affiliation(s)
- Tomasz Kuciel
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Piotr Wieczorek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Paulina Rajchel-Mieldzioć
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland
| | - Magdalena Wytrwał
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland; AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Michał Szuwarzyński
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
2
|
Mountaki S, Whitfield R, Liarou E, Truong NP, Anastasaki A. Open-Air Chemical Recycling: Fully Oxygen-Tolerant ATRP Depolymerization. J Am Chem Soc 2024; 146:18848-18854. [PMID: 38958656 PMCID: PMC11258787 DOI: 10.1021/jacs.4c05621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
While oxygen-tolerant strategies have been overwhelmingly developed for controlled radical polymerizations, the low radical concentrations typically required for high monomer recovery render oxygen-tolerant solution depolymerizations particularly challenging. Here, an open-air atom transfer radical polymerization (ATRP) depolymerization is presented, whereby a small amount of a volatile cosolvent is introduced as a means to thoroughly remove oxygen. Ultrafast depolymerization (i.e., 2 min) could efficiently proceed in an open vessel, allowing a very high monomer retrieval to be achieved (i.e., ∼91% depolymerization efficiency), on par with that of the fully deoxygenated analogue. Oxygen probe studies combined with detailed depolymerization kinetics revealed the importance of the low-boiling point cosolvent in removing oxygen prior to the reaction, thus facilitating effective open-air depolymerization. The versatility of the methodology was demonstrated by performing reactions with a range of different ligands and at high polymer loadings (1 M monomer repeat unit concentration) without significantly compromising the yield. This approach provides a fully oxygen-tolerant, facile, and efficient route to chemically recycle ATRP-synthesized polymers, enabling exciting new applications.
Collapse
Affiliation(s)
- Stella
Afroditi Mountaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Evelina Liarou
- Department
of Chemistry, University of Warwick Library Road, Coventry CV4 7SH, U.K.
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
3
|
Seera SD, Pester CW. Surface-Initiated PET-RAFT via the Z-Group Approach. ACS POLYMERS AU 2023; 3:428-436. [PMID: 38107417 PMCID: PMC10722567 DOI: 10.1021/acspolymersau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) is a user-friendly and versatile approach for polymer brush engineering. For SI-RAFT, synthetic strategies follow either surface-anchoring of radical initiators (e.g., azo compounds) or anchoring RAFT chain transfer agents (CTAs) onto a substrate. The latter can be performed via the R-group or Z-group of the CTA, with the previous scientific focus in literature skewed heavily toward work on the R-group approach. This contribution investigates the alternative: a Z-group approach toward light-mediated SI photoinduced electron transfer RAFT (SI-PET-RAFT) polymerization. An appropriate RAFT CTA is synthesized, immobilized onto SiO2, and its ability to control the growth (and chain extension) of polymer brushes in both organic and aqueous environments is investigated with different acrylamide and methacrylate monomers. O2 tolerance allows Z-group SI-PET-RAFT to be performed under ambient conditions, and patterning surfaces through photolithography is illustrated. Polymer brushes are characterized via X-ray photoelectron spectroscopy (XPS), ellipsometry, and water contact angle measurements. An examination of polymer brush grafting density showed variation from 0.01 to 0.16 chains nm-2. Notably, in contrast to the R-group SI-RAFT approach, this chemical approach allows the growth of intermittent layers of polymer brushes underneath the top layer without changing the properties of the outermost surface.
Collapse
Affiliation(s)
- Sai Dileep
Kumar Seera
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Christian W. Pester
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Xie P, Yan W, Ji H, He H, Zhang L, Cao H. Emulsion-Directed Synthesis of Poly-Porphyrin Nanoparticles as Heterogeneous Photocatalysts for PET-RAFT Polymerization. Macromol Rapid Commun 2023; 44:e2300336. [PMID: 37571924 DOI: 10.1002/marc.202300336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous photocatalysts have attracted extensive attention in photo-induced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization due to their remarkable advantages such as easy preparation, tunable photoelectric properties, and recyclability. In this study, zinc (II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (ZnTAPP)-based poly-porphyrin nanoparticles (PTAPP-Zn) are constructed by an emulsion-directed approach. It is investigated as a heterogeneous photocatalyst for PET-RAFT polymerization of various methacrylate monomers under visible light exposure, and the reactions show refined polymerization control with high monomer conversions. Furthermore, it is demonstrated that the PTAPP-Zn nanoparticles with the larger pore size enhance photocatalytic activity in PET-RAFT polymerization. In addition, the capabilities of oxygen tolerance and temporal control are demonstrated and PTAPP-Zn particles can be easily recycled and reused without an obvious decrease in catalytic efficiency.
Collapse
Affiliation(s)
- Peng Xie
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weifeng Yan
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongyu Ji
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haochen He
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liangshun Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongliang Cao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
5
|
Dutta S, Shreyash N, Satapathy BK, Saha S. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1861. [PMID: 36284373 DOI: 10.1002/wnan.1861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soumyadip Dutta
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Nehil Shreyash
- Rajiv Gandhi Institute of Petroleum Technology Jais Uttar Pradesh India
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
6
|
Besford QA, Uhlmann P, Fery A. Spatially Resolving Polymer Brush Conformation: Opportunities Ahead. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quinn A. Besford
- Leibniz‐Institut für Polymerforschung e.V. Hohe Str. 6 01069 Dresden Germany
| | - Petra Uhlmann
- Leibniz‐Institut für Polymerforschung e.V. Hohe Str. 6 01069 Dresden Germany
| | - Andreas Fery
- Leibniz‐Institut für Polymerforschung e.V. Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
7
|
Fromel M, Pester CW. Polycarbonate Surface Modification via Aqueous SI-PET-RAFT. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Poisson J, Hudson ZM. Luminescent Surface‐Tethered Polymer Brush Materials. Chemistry 2022; 28:e202200552. [DOI: 10.1002/chem.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
9
|
Besford QA, Schubotz S, Chae S, Özdabak Sert AB, Weiss ACG, Auernhammer GK, Uhlmann P, Farinha JPS, Fery A. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces. Molecules 2022; 27:molecules27093043. [PMID: 35566393 PMCID: PMC9102696 DOI: 10.3390/molecules27093043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular permeability through polymer brush chains is implicated in surface lubrication, wettability, and solute capture and release. Probing molecular transport through polymer brushes can reveal information on the polymer nanostructure, with a permeability that is dependent on chain conformation and grafting density. Herein, we introduce a brush system to study the molecular transport of fluorophores from an aqueous droplet into the external “dry” polymer brush with the vapour phase above. The brushes consist of a random copolymer of N-isopropylacrylamide and a Förster resonance energy transfer (FRET) donor-labelled monomer, forming ultrathin brush architectures of about 35 nm in solvated height. Aqueous droplets containing a separate FRET acceptor are placed onto the surfaces, with FRET monitored spatially around the 3-phase contact line. FRET is used to monitor the transport from the droplet to the outside brush, and the changing internal distributions with time as the droplets prepare to recede. This reveals information on the dynamics and distances involved in the molecular transport of the FRET acceptor towards and away from the droplet contact line, which are strongly dependent on the relative humidity of the system. We anticipate our system to be extremely useful for studying lubrication dynamics and surface droplet wettability processes.
Collapse
Affiliation(s)
- Quinn A. Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| | - Simon Schubotz
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Ayşe B. Özdabak Sert
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey;
| | - Alessia C. G. Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Günter K. Auernhammer
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| |
Collapse
|
10
|
Fromel M, Benetti EM, Pester CW. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology? ACS Macro Lett 2022; 11:415-421. [PMID: 35575317 DOI: 10.1021/acsmacrolett.2c00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
Collapse
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edmondo M. Benetti
- Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Mao W, Tay XT, Sarkar J, Wang CG, Goto A. Air-tolerant Reversible Complexation Mediated Polymerization (RCMP) Using Aldehyde as Oxygen Remover a. Macromol Rapid Commun 2022; 43:e2200091. [PMID: 35338552 DOI: 10.1002/marc.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Indexed: 11/08/2022]
Abstract
An air-tolerant reversible complexation mediated polymerization (RCMP) technique, which can be carried out without prior deoxygenation, was developed. The system contains a monomer, an alkyl iodide initiating dormant species, air (oxygen), an aldehyde, N-hydroxyphthalimide (NHPI), and a base. Oxygen is consumed via the NHPI-catalyzed conversion of the aldehyde (RCHO) to a carboxylic acid (RCOOH). The generated RCOOH is further converted to a carboxylate anion (RCOO- ) by the base. The RCOO- generated in situ works as an RCMP catalyst; the polymerization proceeds with the monomer, alkyl iodide dormant species, and RCOO- catalyst. Thus, the system is not only air-tolerant but also does not require additional RCMP catalysts, which is a notable feature of this system. (NHPI is used as an oxidation catalyst for converting RCHO to RCOOH.) This technique is amenable to methyl methacrylate, butyl methacrylate, benzyl methacrylate, 2-hydroxyethyl methacrylate, and styrene, yielding polymers with relatively low-dispersity (Mw /Mn = 1.20-1.49), where Mw and Mn are the weight- and number-average molecular weights, respectively. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weijia Mao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiu Ting Tay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Chen-Gang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Arjmand F, Mohamadnia Z. Fabrication of a light-responsive polymer nanocomposite containing spiropyran as a sensor for reversible recognition of metal ions. Polym Chem 2022. [DOI: 10.1039/d1py01620b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(spiropyran ethylacrylate-co-glycidyl methacrylate) grafted onto the surface of modified TiO2 (TiO2-g-P(SPEA-co-GMA)) as a novel stimuli-responsive polymer was fabricated and employed as sensor for reversible recognition of metal ions.
Collapse
Affiliation(s)
- Fakhri Arjmand
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Zahra Mohamadnia
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| |
Collapse
|