1
|
Nguyen AL, Zhang J, Huang SH, Wang Q. Copper-Catalyzed 1,3-Aminocyclization of Cyclopropanes as a Rapid Entry to γ-Amino Heterocycles. Org Lett 2024; 26:9508-9512. [PMID: 39442149 DOI: 10.1021/acs.orglett.4c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We herein report a copper-catalyzed 1,3-aminocyclization of cyclopropanes as a direct and versatile entry into important heterocycles. This reaction was initiated by a copper-catalyzed, NFSI-promoted ring opening of cyclopropanes, followed by nucleophilic cyclization. A variety of nucleophiles successfully participate in this transformation, including alcohols, carboxylic acids, sulfonamides, and amides, for the construction of diverse cyclic ethers, pyrrolidines, lactones, and iminolactones.
Collapse
Affiliation(s)
- Andrew L Nguyen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Justin Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sheng-Hao Huang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Liu CX, Wang Q, Zhu J. Chemoselective Pd-Based Dyotropic Rearrangement: Fluorocyclization and Regioselective Wacker Reaction of Homoallylic Amides. J Am Chem Soc 2024; 146:30014-30019. [PMID: 39453186 DOI: 10.1021/jacs.4c13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fluorocyclization of alkenes tethered with a pronucleophile is an efficient transformation that converts easily accessible starting materials to fluorinated heterocycles in a single step. We report herein an unprecedented Pd(II)-catalyzed oxidative domino process that transforms homoallylic amides to 5,6-dihydro-4H-1,3-oxazines through a domino oxypalladation/PdII-oxidation/dyotropic rearrangement/reductive elimination sequence. Three chemical bonds are created under these operationally simple conditions. Taking advantage of the facile hydrolysis of the α-fluoro tertiary alkyl ether under acidic conditions, a one-pot conversion of homoallylic amides to homologated ketones is subsequently developed, which represents a rare example of regioselective Wacker oxidation reaction of 1,1-disubstituted alkenes.
Collapse
Affiliation(s)
- Chen-Xu Liu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL-SB-ISIC-LSPN), BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Yang Z, Xu J, Sun Y, Li X, Jia B, Du Y. Preparation of a benziodazole-type iodine(III) compound and its application as a nitrating reagent for synthesis of furazans via a copper-catalyzed cascade process. Commun Chem 2024; 7:155. [PMID: 38982259 PMCID: PMC11233585 DOI: 10.1038/s42004-024-01238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The existing hypervalent I(III) reagents bearing ONO2 group are limited in types and their applications primarily focused on the nitrooxylation reactions featuring a fully-exo fashion. Herein, a benziodazole-type O2NO-I(III) compound was prepared and its reaction with β-monosubstituted enamines in the presence of CuI could trigger a radical nitration/cyclization/dehydration cascade to provide a series of less explored but biologically interesting furazan heterocycles. Mechanistically, the benziodazole-type O2NO-I(III) compound acts as a nitrating reagent and incorporates its NO moiety into the final furazan product in a fully-endo model, a process of which was proposed to involve nitration, cyclization and dehydration.
Collapse
Affiliation(s)
- Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Bohan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Shao Y, Ren Z, Han Z, Chen L, Li Y, Xue XS. Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model. Beilstein J Org Chem 2024; 20:1444-1452. [PMID: 38952960 PMCID: PMC11216094 DOI: 10.3762/bjoc.20.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Although hypervalent iodine(III) reagents have become staples in organic chemistry, the exploration of their isoelectronic counterparts, namely hypervalent bromine(III) and chlorine(III) reagents, has been relatively limited, partly due to challenges in synthesizing and stabilizing these compounds. In this study, we conduct a thorough examination of both homolytic and heterolytic bond dissociation energies (BDEs) critical for assessing the chemical stability and functional group transfer capability of cyclic hypervalent halogen compounds using density functional theory (DFT) analysis. A moderate linear correlation was observed between the homolytic BDEs across different halogen centers, while a strong linear correlation was noted among the heterolytic BDEs across these centers. Furthermore, we developed a predictive model for both homolytic and heterolytic BDEs of cyclic hypervalent halogen compounds using machine learning algorithms. The results of this study could aid in estimating the chemical stability and functional group transfer capabilities of hypervalent bromine(III) and chlorine(III) reagents, thereby facilitating their development.
Collapse
Affiliation(s)
- Yingbo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihui Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, P. R. China,
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
6
|
Ruyet L, Roblick C, Häfliger J, Wang ZX, Stoffels TJ, Daniliuc CG, Gilmour R. Catalytic Ring Expanding Difluorination: An Enantioselective Platform to Access β,β-Difluorinated Carbocycles. Angew Chem Int Ed Engl 2024; 63:e202403957. [PMID: 38482736 DOI: 10.1002/anie.202403957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Cyclic β,β-difluoro-carbonyl compounds have a venerable history as drug discovery leads, but limitations in the synthesis arsenal continue to impede chemical space exploration. This challenge is particularly acute in the arena of fluorinated medium rings where installing the difluoromethylene unit subtly alters the ring conformation by expanding the internal angle (∠C-CF2-C>∠C-CH2-C): this provides a handle to modulate physicochemistry (e.g. pKa). To reconcile this disparity, a highly modular ring expansion has been devised that leverages simple α,β-unsaturated esters and amides, and processes them to one-carbon homologated rings with concomitant geminal difluorination (6 to 10 membered rings, up to 95 % yield). This process is a rare example of the formal difluorination of an internal alkene and is enabled by sequential I(III)-enabled O-activation. Validation of enantioselective catalysis in the generation of unprecedented medium ring scaffolds is reported (up to 93 : 7 e.r.) together with X-ray structural analyses and product derivatization.
Collapse
Affiliation(s)
- Louise Ruyet
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Christoph Roblick
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Joel Häfliger
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Zi-Xuan Wang
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Tobias Jürgen Stoffels
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Huang M, Zhang C. Fluorotrifluoromethylation of Alkenes Mediated by a Hypervalent Trifluoromethyl-Iodine(III) Reagent. Org Lett 2024; 26:4158-4162. [PMID: 38695913 DOI: 10.1021/acs.orglett.4c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Herein, we present a novel strategy for synthesizing polyfluorinated compounds by the fluorotrifluoromethylation of olefins, which was achieved through a new trifluoromethyl-iodine(III) reagent TFNI-1. TFNI-1 was readily synthesized via a three-step process, and its structure was characterized by NMR spectroscopy and X-ray crystallography. It is shown by radical trapping and radical clock experiments that the reaction involves the CF3 radical intermediate.
Collapse
Affiliation(s)
- Mingqin Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
9
|
Wei YL, Lin XC, Liu YY, Lei YQ, Zhuang XD, Zhang HT, Wang XR. Effects of water fluoridation on early embryonic development of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115907. [PMID: 38176185 DOI: 10.1016/j.ecoenv.2023.115907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.
Collapse
Affiliation(s)
- Ya-Lan Wei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Ying-Ying Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu-Qing Lei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xu-Dong Zhuang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hai-Tao Zhang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Rui Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
10
|
Parr JM, Crimmin MR. Carbon-carbon bond activation by Mg, Al, and Zn complexes. Chem Sci 2023; 14:11012-11021. [PMID: 37860653 PMCID: PMC10583701 DOI: 10.1039/d3sc03336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
Examples of carbon-carbon bond activation reactions at Mg, Al, and Zn are described in this review. Several distinct mechanisms for C-C bond activation at these metals have been proposed, with the key C-C bond activation step occurring by (i) α-alkyl elimination, (ii) β-alkyl elimination, (iii) oxidative addition, or (iv) an electrocyclic reaction. Many of the known pathways involve an overall 2-electron redox process. Despite this, the direct oxidative addition of C-C bonds to these metals is relatively rare, instead most reactions occur through initial installation of the metal on a hydrocarbon scaffold (e.g. by a cycloaddition reaction or hydrometallation) followed by an α-alkyl or β-alkyl elimination step. Emerging applications of Mg, Al, and Zn complexes as catalysts for the functionalisation of C-C bonds are also discussed.
Collapse
Affiliation(s)
- Joseph M Parr
- Department of Chemistry, Molecular Science Research Hub, Imperial College London 82 Wood Lane, White City London W12 0BZ UK
| | - Mark R Crimmin
- Department of Chemistry, Molecular Science Research Hub, Imperial College London 82 Wood Lane, White City London W12 0BZ UK
| |
Collapse
|
11
|
Li Q, Liu XB, Wang H. Iodine(III)-Mediated Migratory gem-Difluorinations: Synthesis of β Transformable Functionality Substituted gem-Difluoroalkanes. CHEM REC 2023:e202300231. [PMID: 37665225 DOI: 10.1002/tcr.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Geminal-difluoroalkanes featuring intriguing steric and electronic properties are of great significance in medicinal chemistry, and great progresses have been achieved for their synthesis. In recent years, iodine(III) reagent-mediated migratory gem-difluorination of alkenes has proved to be an efficient and powerful strategy to access to diverse gem-difluoroalkanes, especially those bearing a readily transformable functionality (TF), which are important for rapid assembly of complex gem-difluorinated molecules in a modular and diverse manner. In this review, we systematically summarize the recent development of iodine(III)-mediated migratory gem-difluorination reactions for the synthesis of gem-difluoroalkanes bearing a synthetically versatile TF at the β position. The reaction mechanism and the utilities of the products are also discussed. This review is presented and grouped basically according to the types of transformable functionalities within the products.
Collapse
Affiliation(s)
- Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Bin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
12
|
Sheng W, Huang X, Cai J, Zheng Y, Wen Y, Song C, Li J. Electrochemical Oxidation Enables Regioselective 1,3-Hydroxyfunctionalization of Cyclopropanes. Org Lett 2023; 25:6178-6183. [PMID: 37584476 DOI: 10.1021/acs.orglett.3c02309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The direct construction of 1,3-hydroxyfunctionalized molecules is still a significant challenge, as they can currently be obtained through multiple synthetic steps. Herein, we report a general and efficient 1,3-hydroxyfunctionalization of arylcyclopropanes by electrochemical oxidation with a strategic choice of nucleophiles and H2O. 1,3-Amino alcohols, 1,3-alkynyl alcohols, 1,3-hydroxyesters, and 1,3-halo alcohols are achieved with high levels of chemo- and regio-selectivity, opening a new dimension for 1,3-difunctionalization reaction.
Collapse
Affiliation(s)
- Wei Sheng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuejin Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jianhua Cai
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Ye Zheng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yuxi Wen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jiakun Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Yang S, Wu JY, Lin S, Pu M, Huang ZS, Wang H, Li Q. Divergent Fluorinations of Vinylcyclopropanes: Ring-Opening 1,5-Hydrofluorination and Ring-Retaining 1,2-Difluorination. Chem Asian J 2023; 18:e202300476. [PMID: 37366264 DOI: 10.1002/asia.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
Organofluorine compounds have been widely used in pharmaceutical, agrochemical, and material sciences. Reported herein are divergent fluorination reactions of vinylcyclopropanes with different electrophiles, which allow the facile synthesis of homoallylic monofluorides and vicinal-difluorides through ring-opening 1,5-hydrofluorination and ring-retaining 1,2-difluorination, respectively. Both protocols feature mild conditions, simple operations, good functional group tolerance, and generally good yields. The practicality of these reactions is demonstrated by their scalability, as well as the successful conversion of the formed homoallylic monofluorides into other complex fluorinated molecules.
Collapse
Affiliation(s)
- Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jun-Yunzi Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
Jang Y, Deng W, Sprague IS, Lindsay VNG. Divergent Synthesis of β-Fluoroamides via Silver-Catalyzed Oxidative Deconstruction of Cyclopropanone Hemiaminals. Org Lett 2023; 25:5389-5394. [PMID: 37413978 PMCID: PMC10829026 DOI: 10.1021/acs.orglett.3c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
An expedient approach for the synthesis of challenging β-fluoroamides from readily accessible cyclopropanone equivalents is reported. Following the addition of pyrazole used here as a transient leaving group, silver-catalyzed regiospecific ring-opening fluorination of the resulting hemiaminal leads to a β-fluorinated N-acylpyrazole intermediate reactive to substitution with amines, ultimately affording β-fluoroamides. The process could also be extended to the synthesis of β-fluoroesters and γ-fluoroalcohols via the addition of alcohols or hydrides as terminal nucleophiles, respectively.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Weixia Deng
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Ivan S. Sprague
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N. G. Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
15
|
Zhou N, Liu R, Zhang C, Wang K, Feng J, Zhao X, Lu K. Photoinduced Three-Component Difluoroalkylation of Quinoxalinones with Alkenes via Difluoroiodane(III) Reagents. Org Lett 2022; 24:3576-3581. [PMID: 35546558 DOI: 10.1021/acs.orglett.2c01358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An environmentally friendly strategy for the photocatalyzed three-component reaction between quinoxalinones, alkenes, and hypervalent iodine(III) reagents is disclosed. The new designed difluoroiodane(III) reagent shows excellent reactivity, providing a wide range of difluoroalkyl-substituted quinoxaline-2(1H)-ones in moderate to excellent yields under mild conditions. Experimental studies demonstrated that a difluoroalkyl radical intermediate was involved in this reaction.
Collapse
Affiliation(s)
- Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Ruiyue Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Chunmeng Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Kun Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Huang LL, Lin PP, Li YX, Feng SX, Tu FH, Yang S, Zhao GY, Huang ZS, Wang H, Li Q. Oxidative Fluoroarylation of Benzylidenecyclopropanes with HF·Py and Aryl Iodides via Iodonio-[3,3]-Rearrangement. Org Lett 2022; 24:3389-3394. [PMID: 35486481 DOI: 10.1021/acs.orglett.2c01150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reported herein is an in situ-generated hypervalent iodine-incorporating fluoroarylation of benzylidenecyclopropanes using commercially available HF·Py and aryl iodides as fluorine and aryl sources, respectively. The reaction proceeds via regioselective 1,2-fluoroiodination of a double bond followed by an iodonio-[3,3]-rearrangement of the formed cyclopropyl-I(III) species. The protocol offers facile access to valuable monofluorinated 1,1-bis-benzyl-alkenes with mild reaction conditions and moderate to good yields. The synthetic utility of the products was demonstrated by further transformations. Preliminary mechanistic studies were conducted.
Collapse
Affiliation(s)
- Long-Ling Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peng-Peng Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yu-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Si-Xin Feng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fang-Hai Tu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui-Yang Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
17
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
18
|
Ren J, Jia MC, Du FH, Zhang C. A general method for one-step synthesis of monofluoroiodane(III) reagents using silver difluoride. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
20
|
Yang S, Liu XB, Feng SX, Li Y, Tu FH, Huang B, Huang LL, Huang ZS, Wang H, Li Q. Hypervalent iodine( iii)-mediated ring-expansive difluorination of alkynylcyclopropanes en route to the synthesis of difluorinated alkylidenecyclobutanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a hypervalent iodine(iii)-mediated ring-expansive difluorination of alkynylcyclopropanes featuring a Wagner–Meerwein-type rearrangement to access a variety of difluorinated alkylidenecyclobutanes.
Collapse
Affiliation(s)
- Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xiao-Bin Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Si-Xin Feng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fang-Hai Tu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Bin Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Long-Ling Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
21
|
Shea MT, Rohde GT, Vlasenko YA, Postnikov PS, Yusubov MS, Zhdankin VV, Saito A, Yoshimura A. Convenient Synthesis of Benziodazolone: New Reagents for Direct Esterification of Alcohols and Amidation of Amines. Molecules 2021; 26:molecules26237355. [PMID: 34885939 PMCID: PMC8659036 DOI: 10.3390/molecules26237355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hypervalent iodine heterocycles represent one of the important classes of hypervalent iodine reagents with many applications in organic synthesis. This paper reports a simple and convenient synthesis of benziodazolones by the reaction of readily available iodobenzamides with m-chloroperoxybenzoic acid in acetonitrile at room temperature. The structure of one of these new iodine heterocycles was confirmed by X-ray analysis. In combination with PPh3 and pyridine, these benziodazolones can smoothly react with alcohols or amines to produce the corresponding esters or amides of 3-chlorobenzoic acid, respectively. It was found that the novel benziodazolone reagent reacts more efficiently than the analogous benziodoxolone reagent in this esterification.
Collapse
Affiliation(s)
- Michael T. Shea
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA;
| | | | - Yulia A. Vlasenko
- Research School of Chemisty and Applied Biomediacl Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russia; (Y.A.V.); (P.S.P.); (M.S.Y.)
| | - Pavel S. Postnikov
- Research School of Chemisty and Applied Biomediacl Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russia; (Y.A.V.); (P.S.P.); (M.S.Y.)
| | - Mekhman S. Yusubov
- Research School of Chemisty and Applied Biomediacl Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russia; (Y.A.V.); (P.S.P.); (M.S.Y.)
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA;
- Correspondence: (V.V.Z.); (A.S.); (A.Y.)
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
- Correspondence: (V.V.Z.); (A.S.); (A.Y.)
| | - Akira Yoshimura
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA;
- Research School of Chemisty and Applied Biomediacl Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russia; (Y.A.V.); (P.S.P.); (M.S.Y.)
- Correspondence: (V.V.Z.); (A.S.); (A.Y.)
| |
Collapse
|