1
|
Zhou S, Zhan C, Zhu J, Yang C, Zhao Q, Sun Y, Zhou J, Shen S, Luo J. Molecular and biochemical evolution of casbene-type diterpene and sesquiterpene biosynthesis in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1105-1118. [PMID: 39791450 DOI: 10.1111/jipb.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
Casbene and neocembrene are casbene-type macrocyclic diterpenes; their derivatives play significant roles in plant defense and have pharmaceutical applications. We had previously characterized a casbene synthase, TERPENE SYNTHASE 28 (OsTPS28), in rice (Oryza sativa). However, the mechanism of neocembrene biosynthesis in rice remained unclear. In this study, we identified two genes of the TPS-a1 subfamily, OsTPS2 and OsTPS10, encoding a neocembrene synthase and sesquiterpene synthase, respectively, as supported by enzyme activity assays and determination of subcellular localization. Metabolic profiling of rice lines overexpressing either TPS confirmed the catalytic functions of OsTPS2 and OsTPS10, and suggested that OsTPS10 enhances resistance to rice bacterial blight. An evolutionary analysis revealed that OsTPS10 is conserved in monocots and first appeared in wild rice, whereas OsTPS2 and OsTPS28 sequentially evolved through gene duplication, transit peptide recruitment, and mutation of key amino acids such as H362R. In summary, this study not only deepens our understanding of the metabolic pathways and evolutionary history governing the biosynthesis of casbene-type diterpenoids in rice, representing parallel and divergent evolution within the gene family, and offers gene resources for the improvement of rice.
Collapse
Affiliation(s)
- Shen Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | | | - Jinjin Zhu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Chenkun Yang
- Yazhouwan National Laboratory, Sanya, 572025, China
| | | | - Yangyang Sun
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Junjie Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | | | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| |
Collapse
|
2
|
Iobbi V, Parisi V, Giacomini M, De Riccardis F, Brun P, Núñez-Pons L, Drava G, Giordani P, Monti MC, Poggi R, Murgia Y, De Tommasi N, Bisio A. Sesterterpenoids: sources, structural diversity, biological activity, and data management. Nat Prod Rep 2025; 42:443-481. [PMID: 39832137 DOI: 10.1039/d4np00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Reviewing the literature published up to October 2024.Sesterterpenoids are one of the most chemically diverse and biologically promising subgroup of terpenoids, the largest family of secondary metabolites. The present review article summarizes more than seven decades of studies on isolation and characterization of more than 1600 structurally novel sesterterpenoids, supplemented by biological, pharmacological, ecological, and geographic distribution data. All the information have been implemented in eight tables available on the web and a relational database https://sesterterpenoids.unige.net/. The interface has two sections, one open to the public for reading only and the other, protected by an authentication mechanism, for timely updating of published results.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Valentina Parisi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli, 63, 35121 Padova, Italy
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Paolo Giordani
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Napoli "Federico II", Via T. De Amicis 95, 80131 Napoli, Italy
| | - Roberto Poggi
- Museo Civico di Storia Naturale Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy
| | - Ylenia Murgia
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Via all'Opera Pia 13, 16146 Genova, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| |
Collapse
|
3
|
Guo K, Tang X, Liu Y, Cheng H, Liu H, Fan Y, Qi X, Xu R, Kang J, Li D, Wang G, Gershenzon J, Liu Y, Li S. From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415370. [PMID: 39792598 PMCID: PMC11884544 DOI: 10.1002/advs.202415370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.2-fold increased sesterterpene production. These structurally diverse products suggest a comprehensive cyclization mechanism for plant sesterterpenes and provide compelling evidence for the initial cyclization of geranylfarnesyl diphosphate via a crucial 15-membered monocyclic carbocation. The activities of these sesterterpenes against liver fibrosis is inferred from the inhibition of the transforming growth factor-β/Smad signaling pathway and collagen synthesis. These findings greatly expand the chemical space and biological functions of sesterterpenes and provide new insights into the catalytic mechanism of terpene synthases.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Hui‐Zhen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Huan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Yu‐Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Xiao‐Yu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Juan‐Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - De‐Sen Li
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| | - Guo‐Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijing100101P. R. China
| | | | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
| | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengdu611137P. R. China
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyChinese Academy of SciencesKunming650201P. R. China
| |
Collapse
|
4
|
Tang X, Zhang XJ, Pan JF, Guo K, Tan CL, Zhang QZ, Long LP, Ding RF, Niu XM, Liu Y, Li SH. Z/E configuration controlled by a Taxus sesquiterpene synthase facilitating the biosynthesis of (3Z,6E)-α-farnesene. PHYTOCHEMISTRY 2025; 229:114304. [PMID: 39424093 DOI: 10.1016/j.phytochem.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plant enzymes often present advantages in the synthesis of natural products with specific configurations. Farnesene is a pharmacologically active sesquiterpene with three natural Z/E configurations, among which the enzyme selectively responsible for the biosynthesis of (3Z,6E)-α-farnesene remains elusive. Herein, a sesquiterpene synthase TwSTPS1 biosynthesizing (3Z,6E)-α-farnesene as the major product was identified from Taxus wallichiana through genome mining. Utilizing molecular dynamics simulations and mutation analysis, the catalytic mechanism of TwSTPS1, especially Z/E configuration control, was explored. Moreover, the crucial residues associated with the specific catalytic activity of TwSTPS1 was elucidated through mutagenesis experiments. The findings contribute to our understanding of the Z/E configuration control by plant terpene synthases and also provide an alternative tool for manipulating (3Z,6E)-α-farnesene production using synthetic biology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xian-Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing-Feng Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui-Feng Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
5
|
Das P, Ghosh P, Mainkar PS, Madhavachary R, Chandrasekhar S. Total Synthesis of an Immunosuppressive C 25 Macrocyclic Terpenoid Produced by Terpene Synthase ( LcTPS2). J Org Chem 2024; 89:15145-15150. [PMID: 39358673 DOI: 10.1021/acs.joc.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Macrocyclic natural products, particularly those with no functionalities except unsaturation, are recognized for their therapeutic potential but are notoriously challenging to synthesize. In this study, we report the first total synthesis of an unconventional 18-membered, C25 macrocyclic terpenoid, which has demonstrated substantial immunosuppressive activity. This synthesis was achieved through strategic modifications and innovative reaction engineering, utilizing α-terpineol and geraniol as starting materials, highlighting a novel approach in macrocyclic terpenoid synthesis.
Collapse
Affiliation(s)
- Pralay Das
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rudrakshula Madhavachary
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Zhang W, Wang X, Zhu G, Zhu B, Peng K, Hsiang T, Zhang L, Liu X. Function Switch of a Fungal Sesterterpene Synthase through Molecular Dynamics Simulation Assisted Alteration of an Aromatic Residue Cluster in the Active Pocket of PfNS. Angew Chem Int Ed Engl 2024; 63:e202406246. [PMID: 38934471 DOI: 10.1002/anie.202406246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsis fici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H⋅⋅⋅π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
- School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Kaitong Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China
| |
Collapse
|
7
|
Xu M, Xu H, Lei Z, Xing B, Dickschat JS, Yang D, Ma M. Structural Insights Into the Terpene Cyclization Domains of Two Fungal Sesterterpene Synthases and Enzymatic Engineering for Sesterterpene Diversification. Angew Chem Int Ed Engl 2024; 63:e202405140. [PMID: 38584136 DOI: 10.1002/anie.202405140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Little is known about the structures and catalytic mechanisms of sesterterpene synthases (StTSs), which greatly hinders the structure-based engineering of StTSs for structural diversity expansion of sesterterpenes. We here report on the crystal structures of the terpene cyclization (TC) domains of two fungal StTSs: sesterfisherol synthase (NfSS) and sesterbrasiliatriene synthase (PbSS). Both TC structures contain benzyltriethylammonium chloride (BTAC), pyrophosphate (PPi), and magnesium ions (Mg2+), clearly defining the catalytic active sites. A combination of theory and experiments including carbocationic intermediates modeling, site-directed mutagenesis, and isotope labeling provided detailed insights into the structural basis for their catalytic mechanisms. Structure-based engineering of NfSS and PbSS resulted in the formation of 20 sesterterpenes including 13 new compounds and four pairs of epimers with different configurations at C18. These results expand the structural diversity of sesterterpenes and provide important insights for future synthetic biology research.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
8
|
Gu B, Goldfuss B, Dickschat JS. Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401539. [PMID: 38372063 DOI: 10.1002/anie.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Li M, Tao H. Enhancing structural diversity of terpenoids by multisubstrate terpene synthases. Beilstein J Org Chem 2024; 20:959-972. [PMID: 38711588 PMCID: PMC11070974 DOI: 10.3762/bjoc.20.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Terpenoids are one of the largest class of natural products with diverse structures and activities. This enormous diversity is embedded in enzymes called terpene synthases (TSs), which generate diverse terpene skeletons via sophisticated cyclization cascades. In addition to the many highly selective TSs, there are many promiscuous TSs that accept multiple prenyl substrates, or even noncanonical ones, with 6, 7, 8, 11, and 16 carbon atoms, synthesized via chemical approaches, C-methyltransferases, or engineered lepidopteran mevalonate pathways. The substrate promiscuity of TSs not only expands the structural diversity of terpenes but also highlights their potential for the discovery of novel terpenoids via combinatorial biosynthesis. In this review, we focus on the current knowledge on multisubstrate terpene synthases (MSTSs) and highlight their potential applications.
Collapse
Affiliation(s)
- Min Li
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hui Tao
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
10
|
Li R, Yao B, Zeng H. Identification and Characterization of a Nerol Synthase in Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:416-423. [PMID: 38156892 DOI: 10.1021/acs.jafc.3c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.
Collapse
Affiliation(s)
- Rumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bo Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
11
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
12
|
Li Z, Zhang L, Xu K, Jiang Y, Du J, Zhang X, Meng LH, Wu Q, Du L, Li X, Hu Y, Xie Z, Jiang X, Tang YJ, Wu R, Guo RT, Li S. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase. Nat Commun 2023; 14:4001. [PMID: 37414771 PMCID: PMC10325987 DOI: 10.1038/s41467-023-39706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, Shandong, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Qile Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yuechan Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
13
|
Ma Y, Chen Q, Wang Y, Zhang F, Wang C, Wang G. Heteromerization of short-chain trans-prenyltransferase controls precursor allocation within a plastidial terpenoid network. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1170-1182. [PMID: 36647626 DOI: 10.1111/jipb.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 05/13/2023]
Abstract
Terpenes are the largest and most diverse class of plant specialized metabolites. Sesterterpenes (C25), which are derived from the plastid methylerythritol phosphate pathway, were recently characterized in plants. In Arabidopsis thaliana, four genes encoding geranylfarnesyl diphosphate synthase (GFPPS) (AtGFPPS1 to 4) are responsible for the production of GFPP, which is the common precursor for sesterterpene biosynthesis. However, the interplay between sesterterpenes and other known terpenes remain elusive. Here, we first provide genetic evidence to demonstrate that GFPPSs are responsible for sesterterpene production in Arabidopsis. Blockage of the sesterterpene pathway at the GFPPS step increased the production of geranylgeranyl diphosphate (GGPP)-derived terpenes. Interestingly, co-expression of sesterTPSs in GFPPS-OE (overexpression) plants rescued the phenotypic changes of GFPPS-OE plants by restoring the endogenous GGPP. We further demonstrated that, in addition to precursor (DMAPP/IPP) competition by GFPPS and GGPP synthase (GGPPS) in plastids, GFPPS directly decreased the activity of GGPPS through protein-protein interaction, ultimately leading to GGPP deficiency in planta. Our study provides a new regulatory mechanism of the plastidial terpenoid network in plant cells.
Collapse
Affiliation(s)
- Yihua Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qingwen Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoyao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengyuan Wang
- Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
14
|
Li DS, Shi LL, Guo K, Luo SH, Liu YC, Chen YG, Liu Y, Li SH. A new sesquiterpene synthase catalyzing the formation of (R)-β-bisabolene from medicinal plant Colquhounia coccinea var. mollis and its anti-adipogenic and antibacterial activities. PHYTOCHEMISTRY 2023; 211:113681. [PMID: 37080413 DOI: 10.1016/j.phytochem.2023.113681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The sesquiterpene β-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-β-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-β-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-β-bisabolene synthase. The production of (R)-β-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-β-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-β-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.
Collapse
Affiliation(s)
- De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin-Lin Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, PR China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
15
|
Liu Y, Zhou YY, Luo SH, Guo K, Zhang MW, Jing SX, Li CH, Hua J, Li SH. Labdane diterpenoids from the heartwood of Leucosceptrum canum that impact on root growth and seed germination of Arabidopsis thaliana. PHYTOCHEMISTRY 2023; 206:113531. [PMID: 36464100 DOI: 10.1016/j.phytochem.2022.113531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Eleven undescribed diterpenoids possessing labdane, 3,18-cyclo-labdane, 19 (4 → 3)-labdane and 12-nor-labdane skeletons, named leucolactones A-K, were isolated from the heartwood of a large woody Lamiaceae plant, Leucosceptrum canum. Their structures were determined by NMR, MS, and in the case of leucolactones A by single crystal X-ray diffraction analysis. Plausible biosynthetic pathway of leucolactones were proposed. Leucolactones showed significant inhibitory effects against seed germination and root elongation of Arabidopsis thaliana in the Petri dish bioassay. Among them, the diastereomeric leucolactones G and H were the most potent, with EC50 values for root elongation of 6.53 ± 1.35 and 9.75 ± 1.25 μM, respectively. The preliminary structure-activity relationship of leucolactones was discussed. The increase of auxin reporter activity in A. thaliana DR5::GUS roots by leucolactone H was observed, indicating that leucolactones altered auxin accumulation and distribution. These findings suggested that leucolactones might be involved in regulation of plant growth and development through altering auxin accumulation and distribution, presumably contributing to the heartwood formation in L. canum.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yan-Ying Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Man-Wen Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
16
|
Research Progress on Fungal Sesterterpenoids Biosynthesis. J Fungi (Basel) 2022; 8:jof8101080. [PMID: 36294645 PMCID: PMC9605422 DOI: 10.3390/jof8101080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Sesterterpenes are 25-carbon terpenoids formed by the cyclization of dimethyl allyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) as structural units by sesterterpenes synthases. Some (not all) sesterterpenoids are modified by cytochrome P450s (CYP450s), resulting in more intricate structures. These compounds have significant physiological activities and pharmacological effects in anti-inflammatory, antibacterial, antitumour, and hypolipidemic communities. Despite being a rare class of terpenoids, sesterterpenoids derived from fungi show a wide range of structural variations. The discovered fungal sesterterpenoid synthases are composed of C-terminal prenyltransferase (PT) and N-terminal terpene synthase (TS) domains, which were given the name PTTSs. PTTSs have the capacities to catalyze chain lengthening and cyclization concurrently. This review summarizes all 52 fungal PTTSs synthases and their biosynthetic pathways involving 100 sesterterpenoids since the discovery of the first PTTSs synthase from fungi in 2013.
Collapse
|
17
|
Abstract
All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene1. This approach is fundamentally different from the biosynthesis of short-chain (C10–C25) terpenes that are formed from polyisoprenyl diphosphates2–4. In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature. Chimeric triterpene synthases are identified that catalyse non-squalene-dependent triterpene biosynthesis.
Collapse
|
18
|
Characterization of two chimeric sesterterpene synthases from a fungal symbiont isolated from a sesterterpenoid-producing Lamiaceae plant Leucosceptrum canum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2022. [PMID: 35133387 DOI: 10.1039/d2np90004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as anisotanol A from Anisodus tanguticus.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
20
|
Yan J, Pang J, Liang J, Yu W, Liao X, Aobulikasimu A, Yi X, Yin Y, Deng Z, Hong K. The Biosynthesis and Transport of Ophiobolins in Aspergillus ustus 094102. Int J Mol Sci 2022; 23:ijms23031903. [PMID: 35163826 PMCID: PMC8836403 DOI: 10.3390/ijms23031903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Ophiobolins are a group of sesterterpenoids with a 5-8-5 tricyclic skeleton. They exhibit a significant cytotoxicity and present potential medicinal prospects. However, the biosynthesis and transport mechanisms of these valuable compounds have not been fully resolved. Herein, based on a transcriptome analysis, gene inactivation, heterologous expression and feeding experiments, we fully explain the biosynthesis pathway of ophiobolin K in Aspergillus ustus 094102, especially proved to be an unclustered oxidase OblCAu that catalyzes dehydrogenation at the site of C16 and C17 of both ophiobolin F and ophiobolin C. We also find that the intermediate ophiobolin C and final product ophiobolin K could be transported into a space between the cell wall and membrane by OblDAu to avoid the inhibiting of cell growth, which is proved by a fluorescence observation of the subcellular localization and cytotoxicity tests. This study completely resolves the biosynthesis mechanism of ophiobolins in strain A. ustus 094102. At the same time, it is revealed that the burden of strain growth caused by the excessive accumulation and toxicity of secondary metabolites is closely related to compartmentalized biosynthesis.
Collapse
|