1
|
Li H, Wang J, Zhu W, Li D, Li X, He C. Host-Guest Approach to Enhancing Photocatalysis via Photoinduced Energy and Electron Transfer from a Photoactive Triphenylamine-Based Metal-Organic Cage to Bound Guests. Inorg Chem 2025; 64:6621-6630. [PMID: 40136070 DOI: 10.1021/acs.inorgchem.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The host-guest strategy presents an ideal way to construct versatile supramolecular systems that mimic the structure and functionality of natural enzymes and, therefore, achieve efficient chemical conversions. An emissive triphenylamine-based cage-like host donor was constructed as an energy or electron donor to achieve efficient photoinduced energy or electron transfer (PEnT or PET) by encapsulating the energy or electron acceptor into the cavity of the cage. The host-guest complexes, which served as enzyme-mimicking supramolecular systems, were successfully used as photocatalysts for the selective aerobic oxidation of sulfides and the efficient photocatalytic reduction of aryl halides with high reduction potentials. This work details a promising approach for creating a host-guest system via a host-guest encapsulation strategy to enhance the efficiency of the PEnT or PET process. The resulting designed artificial supramolecular systems achieve efficient chemical conversions by mimicking the structure and functionality of natural enzymes.
Collapse
Affiliation(s)
- Hechuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Wenting Zhu
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116012, China
| | - Danyang Li
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116012, China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
2
|
Zhao Y, Mei Y, Liu Z, Sun J, Tian Y. Molecularly engineered supramolecular fluorescent chemodosimeter for measuring epinephrine dynamics. Nat Commun 2025; 16:1848. [PMID: 39984456 PMCID: PMC11845772 DOI: 10.1038/s41467-025-57100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Accurately visualizing epinephrine (EP) activity is essential for understanding its physiological functions and pathological processes in brain. However, to the best of our knowledge, reliable, rapid, and specifical measurement of EP dynamics at cellular and in vivo level hasn't been previously reported. Herein, we report the probe for EP imaging and biosensing in neurons and living brain of freely behaving animals, based on creating a series of supramolecular fluorescent chemodosimeters through host-guest interaction. The optimized chemodosimeter enables real-time imaging and quantifying of EP with high specificity, sensitivity, signal-to-noise ratio, and rapid kinetics (~240 ms) in neurons, brain tissues and zebrafish. More significantly, we demonstrate real-time monitoring of EP in 26 regions within deep brain of freely behaving male mice, unraveling an augmented EP concentration in the amygdala, thalamus, hypothalamus, hippocampus and striatum under fear-induced stress. These findings highlight our chemodosimeter as a powerful tool for precise measurements of EP dynamics in diverse model organisms.
Collapse
Affiliation(s)
- Yudan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, PR China
| | - Yuxiao Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, PR China.
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, PR China
| | - Jing Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, PR China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, PR China.
| |
Collapse
|
3
|
Shang W, Huang Y, Xu Z, Li L, Gu Z, Cheng L, Hong Y. The impact of a high-carbohydrate diet on the cognitive behavior of mice in a low-pressure, low-oxygen environment. Food Funct 2025; 16:1116-1129. [PMID: 39831444 DOI: 10.1039/d4fo04831h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The effectiveness of high-carbohydrate diets (HCD) on cognitive impairment is still being debated. To clarify the impact of HCD on the cognitive behavior of mice under low-pressure hypoxic conditions, we studied 24 mice in different environments while subjecting them to dietary intervention for 5 weeks, and conducting behavioral tests. Under low-pressure hypoxic conditions, HCD intervention reversed the decline in spatial learning and memory abilities in mice caused by hypoxia, ameliorated pathological brain damage, and restored the integrity of the intestinal mucosa. We also identified differences in the microbial community. Under low-pressure hypoxic conditions, the intestinal abundance of Parasutterella in mice decreased, the abundance of harmful bacteria such as Desulfovibrio increased, and apoptosis was more prevalent, possibly explaining the observed decreases in glutathione peroxidase activity and brain-derived neurotrophic factor (BDNF) expression in the brain. HCD intervention increased the intestinal abundance of Bifidobacterium in hypoxic mice, reduced the abundances of Desulfovibrio and Faecalibaculum, and played antioxidant roles by lowering malondialdehyde levels and increasing superoxide dismutase activity in the brain by metabolizing amino acids and lipids. HCD also upregulated hippocampal BDNF levels and downregulated caspase 3. Collectively, these results are important because they help explain how HCD intervention can reduce hypoxia-induced damage to brain function.
Collapse
Affiliation(s)
- Weixuan Shang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yali Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiqiang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingjin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing, 314000, China
| |
Collapse
|
4
|
Pisano F, Masmudi-Martín M, Andriani MS, Cid E, Kazemzadeh M, Pisanello M, Balena A, Collard L, Parras TJ, Bianco M, Baena P, Tantussi F, Grande M, Sileo L, Gentile F, De Angelis F, De Vittorio M, Menendez de la Prida L, Valiente M, Pisanello F. Vibrational fiber photometry: label-free and reporter-free minimally invasive Raman spectroscopy deep in the mouse brain. Nat Methods 2025; 22:371-379. [PMID: 39741190 DOI: 10.1038/s41592-024-02557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/31/2024] [Indexed: 01/02/2025]
Abstract
Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy. Using a tapered fiber probe as thin as 1 µm at its tip, we elucidate the cytoarchitecture of the mouse brain, monitor molecular alterations caused by traumatic brain injury, as well as detect markers of brain metastasis with high accuracy. We view our approach, which introduces a deep learning algorithm to suppress probe background, as a promising complement to the existing palette of tools for the optical interrogation of neural function, with application to fundamental and preclinical investigations of the brain and other organs.
Collapse
Affiliation(s)
- Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.
- Department of Physics and Astronomy, University of Padova, Padova, Italy.
| | | | - Maria Samuela Andriani
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | | | | | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, France
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- RAISE Ecosystem, Genoa, Italy
| | | | - Marco Bianco
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | | | - Francesco Tantussi
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genoa, Italy
| | - Marco Grande
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Bari, Italy
| | | | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Francesco De Angelis
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genoa, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
- RAISE Ecosystem, Genoa, Italy
| | | | | | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.
- RAISE Ecosystem, Genoa, Italy.
| |
Collapse
|
5
|
Li X, Zhu B, Dong N, Zhao Z, Cao J, Zhou L, Gao Z, Su B. Early Detection of High-Altitude Hypoxic Brain Injury by In Vivo Electrochemistry. Angew Chem Int Ed Engl 2025; 64:e202416395. [PMID: 39497570 DOI: 10.1002/anie.202416395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
High-altitude hypoxic brain injury (HHBI) is a kind of acute mountain sickness and the survival rate of patients with HHBI can be improved only if it is detected and treated at the early stage. However, limited by speediness and accuracy, it is still very difficult for most of current approaches to realize the early detection of HHBI. We propose herein a novel strategy for this goal based on spatiotemporal changes in the brain oxygen level. As revealed by in vivo electrochemistry, the characteristic changes of brain oxygen level under the high-altitude exposure are directly associated with the brain hypoxia status. Given brain hypoxia is the main pathogenesis of HHBI, the degree of HHBI can be diagnosed by the variation of brain oxygen, making the early detection of HHBI feasible. In addition, the risk of HHBI for mouse exposed to high-altitude hypoxia environments can be also prognosed days in advance.
Collapse
Affiliation(s)
- Xinru Li
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Boyu Zhu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Nuo Dong
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Ziyi Zhao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Jiayi Cao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052, Hangzhou, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, 310058, Hangzhou, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 310052, Hangzhou, China
| |
Collapse
|
6
|
Tan YY, Zhang DW, Yang C, Huang Y, Kang JY, Xu ZH, Wei YY, Ding ZX, Fei GH. ASIC1a regulates airway epithelial cell pyroptosis in acute lung injury by NLRP3-Caspase1-GSDMD pathway. Int Immunopharmacol 2024; 143:113623. [PMID: 39549550 DOI: 10.1016/j.intimp.2024.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Acidosis is the most common complication that seriously affects the prognosis of acute respiratory distress syndrome (ARDS). Acid-sensitive ion channel 1a (ASIC1a) is activated in acidic environments to regulate inflammatory process. However, the role of ASIC1a in ARDS is unclear. METHODS In this study, we examined the expression of ASIC1a in airway epithelial cells in an acidic environment. We then investigated whether blocking ASIC1a could inhibit pyroptosis of airway epithelial cells and the molecular mechanism. In the mouse acute lung injury (ALI) model, we observed the changes of lung histopathology, arterial blood gas and pyroptosis related indexes after ASIC1a inhibition. Bronchoalveolar lavage fluid (BALF) from patients with ARDS were collected to explore the expression level of ASIC1a in ARDS patients. RESULTS Inhibiting ASIC1a can reduce the airway epithelial cell pyroptosis induced by an extracellular acidic environment. ASIC1a can bind to PRKACA, and silencing ASIC1a and PRKACA can inhibit the occurrence of pyroptosis in airway epithelial cells. Compared with control group, arterial blood pH and PaO2 in ALI group were significantly reduced. The inflammation in the lungs is more intense, and the mRNA and protein of NLRP3, Caspase1 and GSDMD were increased, while ASIC1a specific blocker psalmotoxin-1 alleviated this phenomenon. The expression of ASIC1a in BALF of ARDS patients was significantly increased, especially in non-survival group. CONCLUSION Acidic micro-environment can induce the increased expression of ASIC1a, and inhibition of ASIC1a can alleviate the inflammation and airway epithelial cell pyroptosis in ARDS. ASIC1a may be a new target for the treatment of ARDS.
Collapse
Affiliation(s)
- Yuan-Yuan Tan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Chun Yang
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China; Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Zhong-Hua Xu
- Center for Scientific Research, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Zhen-Xing Ding
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China; Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China.
| |
Collapse
|
7
|
Wang R, Zhou L, Yang Y, Zhao F, Sun X, Liu X, Zou Z, Liang G. Spatially Quantitative Imaging of Enzyme Activity in a Living Cell. J Am Chem Soc 2024; 146:34870-34877. [PMID: 39655641 DOI: 10.1021/jacs.4c14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Enzyme activity plays a key role in cell heterogeneity. Its spatially quantitative imaging in a living cell not only directly displays but also helps people to understand cell heterogeneity. Current methods are hard to achieve due to the short intracellular retention or lack of internal reference of the imaging probes. Herein, we rationally designed a self-referenced Raman probe Val-Cit-Cys(StBu)-Pra-Gly-CBT (Yne-CBT) which takes an intracellular cathepsin B (CTSB)-initiated CBT-Cys click reaction to yield a long-retained cyclic dimer in cell. In the meantime, Raman signal changes of its two chemical bonds (C≡C and C≡N) after the reaction are used for self-referencing and quantitative Raman imaging of CTSB activity. In vitro experiments demonstrated that, with shell-isolated nanoparticle-enhanced Raman spectroscopy technique, 20 μM Yne-CBT was able to quantitatively detect CTSB activity with a limit of detection of 61.4 U L-1. Under a homemade microfluidic channel, Yne-CBT was successfully applied for spatially quantitative imaging CTSB activity in a living cell. Our strategy provides people with a facile method to directly and quantitatively display cell heterogeneity.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Zhou
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yueyan Yang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Furong Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
8
|
Cutshaw G, Joshi N, Wen X, Quam E, Hassan N, Uthaman S, Waite J, Sarkar S, Singh B, Bardhan R. Metabolic Response to Small Molecule Therapy in Colorectal Cancer Tracked with Raman Spectroscopy and Metabolomics. Angew Chem Int Ed Engl 2024; 63:e202410919. [PMID: 38995663 PMCID: PMC11473224 DOI: 10.1002/anie.202410919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Despite numerous screening tools for colorectal cancer (CRC), 25 % of patients are diagnosed with advanced disease. Novel diagnostic technologies that are early, accurate, and rapid are imperative to assess the therapeutic efficacy of clinical drugs and identify new biomarkers of treatment response. Here Raman spectroscopy (RS) was used to track metabolic reprogramming in KRAS-mutant HCT116 and SW837 cells, and KRAS wild-type CC cells. RS combined with multivariate analysis methods distinguished nonresponsive, partially responsive, and responsive cells treated with cetuximab, a monoclonal antibody for EGFR inhibition, sotorasib, a clinically approved KRAS inhibitor, and various doses of trametinib, an inhibitor of the MAPK pathway. Cells treated with a combination of subtoxic doses of trametinib and BKM120, an inhibitor of the PI3K pathway, showed a synergistic response between the two pathways. Using a supervised machine learning regression model, we established a scoring methodology trained to a priori predict therapeutic response to new treatment combinations. RS metabolites were verified with mass spectrometry, and enrichment pathways were identified, including amino acid, purine, and nicotinate and nicotinamide metabolism that differentiated monotherapy from combination therapy. Our approach may ultimately be applicable to patient-derived primary cells and cultures of patient tumors to predict effective drugs for individualized care.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Neeraj Joshi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Elizabeth Quam
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Joshua Waite
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50012, USA
| | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50012, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
9
|
Zhang S, Mei Y, Liu J, Liu Z, Tian Y. Alkyne-tagged SERS nanoprobe for understanding Cu + and Cu 2+ conversion in cuproptosis processes. Nat Commun 2024; 15:3246. [PMID: 38622137 PMCID: PMC11018805 DOI: 10.1038/s41467-024-47549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Simultaneously quantifying mitochondrial Cu+ and Cu2+ levels is crucial for evaluating the molecular mechanisms of copper accumulation-involved pathological processes. Here, a series of molecules containing various diacetylene derivatives as Raman reporters are designed and synthesized, and the alkyne-tagged SERS probe is created for determination Cu+ and Cu2+ with high selectivity and sensitivity. The developed SERS probe generates well-separated distinguishable Raman fingerprint peaks with built-in corrections in the cellular silent region, resulting in accurate quantification of Cu+ and Cu2+. The present probe demonstrates high tempo-spatial resolution for real-time imaging and simultaneously quantifying mitochondrial Cu+ and Cu2+ with long-term stability benefiting from the probe assembly with designed Au-C≡C groups. Using this powerful tool, it is found that mitochondrial Cu+ and Cu2+ increase during ischemia are associated with breakdown of proteins containing copper as well as conversion of Cu+ and Cu2+. Meanwhile, we observe that parts of Cu+ and Cu2+ are transported out of neurons by ATPase. More importantly, cuproptosis in neurons is found including the oxidative stress process caused by the conversion of Cu+ to Cu2+, which dominates at the early stage (<9 h), and subsequent proteotoxic stress. Both oxidative and proteotoxic stresses contribute to neuronal death.
Collapse
Affiliation(s)
- Sihan Zhang
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Yuxiao Mei
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Jiaqi Liu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China
| | - Zhichao Liu
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China.
| | - Yang Tian
- State Key Laboratory of Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, China.
| |
Collapse
|
10
|
Zhang Z, Liu Z, Wu P, Guo X, Luo X, Yang Y, Chen J, Tian Y. A High-Density Raman Photometry for Tracking and Quantifying of AchE Activity in The Brain of Freely Moving Animals with Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301004. [PMID: 37635166 PMCID: PMC10582456 DOI: 10.1002/advs.202301004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/22/2023] [Indexed: 08/29/2023]
Abstract
A high-density Raman photometry based on a dual-recognition strategy is created for accurately quantifying acetylcholinesterase (AchE) activity in 24 brain regions of free-moving animals with network. A series of 5-ethynyl-1,2,3,3-tetramethyl-based molecules with different conjugated structures and substitute groups are designed and synthesized for specific recognition of AchE by Raman spectroscopy. After systematically evaluating the recognition ability toward AchE, 2-(4-((4-(dimethylamino)benzoyl)oxy)styryl)-5-ethynyl-1,3,3-trimethyl-3H-indol-1-ium (ET-5) is finally optimized for AchE determination, which shows the highest selectivity, the greatest sensitivity, and the fastest response time among the investigated seven molecules. More interestingly, using the developed probe for AchE with high accuracy and sensitivity, the optimized AchE regulated by nitric oxide (NO) is discovered for promoting the neurogenesis of neural stem cells (NSCs). Benefiting from the high-density photometry, it is found that the activity and distribution of AchE varied in 24 brain regions, and the levels of AchE activity in 24 brain regions of Alzheimer's mice (AD) are lower than those of normal mice. It is the first time that a functional network of AchE in 24 brain regions is established. It is also found that the loss of AchE functional network in AD mice is restored and reconstructed by the controlled release of AchE regulated by NO.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
| | - Peicong Wu
- State Key Laboratory of Precision SpectroscopyEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry and Key Laboratory for Molecular Enzymology and Engineering of the Ministry of EducationCollege of Life ScienceJilin UniversityQianjin Road 2699Changchun130012P.R. China
| | - Xiao Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
| | - Youjun Yang
- State Key Laboratory of Bioreactor EngineeringShanghai Key Laboratory of Chemical BiologySchool of PharmacyEast China University of Science and TechnologyMeilong Road 130Shanghai200237P.R. China
| | - Jinquan Chen
- State Key Laboratory of Precision SpectroscopyEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
- State Key Laboratory of Precision SpectroscopyEast China Normal UniversityDongchuan Road 500Shanghai200241P.R. China
| |
Collapse
|
11
|
Feng E, Zheng T, He X, Chen J, Gu Q, He X, Hu F, Li J, Tian Y. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Angew Chem Int Ed Engl 2023; 62:e202309249. [PMID: 37555368 DOI: 10.1002/anie.202309249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Semiconductors demonstrate great potentials as chemical mechanism-based surface-enhanced Raman scattering (SERS) substrates in determination of biological species in complex living systems with high selectivity. However, low sensitivity is the bottleneck for their practical applications, compared with that of noble metal-based Raman enhancement ascribed to electromagnetic mechanism. Herein, a novel Cu2 O nanoarray with free carrier density of 1.78×1021 cm-3 comparable to that of noble metals was self-assembled, creating a record in enhancement factor (EF) of 3.19×1010 among semiconductor substrates. The significant EF was mainly attributed to plasmon-induced hot electron transfer (PIHET) in semiconductor which was never reported before. This Cu2 O nanoarray was subsequently developed as a highly sensitive and selective SERS chip for non-enzyme and amplification-free SARS-CoV-2 RNA quantification with a detection limit down to 60 copies/mL within 5 min. This unique Cu2 O nanoarray demonstrated the significant Raman enhancement through PIHET process, enabling rapid and sensitive point-of-care testing of emerging virus variants.
Collapse
Affiliation(s)
- Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Qingyi Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062, Shanghai, China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| |
Collapse
|
12
|
Liu Y, Liu Z, Zhou Y, Tian Y. Implantable Electrochemical Sensors for Brain Research. JACS AU 2023; 3:1572-1582. [PMID: 37388703 PMCID: PMC10301805 DOI: 10.1021/jacsau.3c00200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Implantable electrochemical sensors provide reliable tools for in vivo brain research. Recent advances in electrode surface design and high-precision fabrication of devices led to significant developments in selectivity, reversibility, quantitative detection, stability, and compatibility of other methods, which enabled electrochemical sensors to provide molecular-scale research tools for dissecting the mechanisms of the brain. In this Perspective, we summarize the contribution of these advances to brain research and provide an outlook on the development of the next generation of electrochemical sensors for the brain.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Zhichao Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yi Zhou
- School
of Basic Medical Sciences, Chengdu University
of Traditional Chinese Medicine, Sichuan 611137, People’s Republic of China
| | - Yang Tian
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|
13
|
Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:138-157. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
14
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
15
|
Liu Y, Liu Z, Tian Y. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain. Acc Chem Res 2022; 55:2821-2832. [PMID: 36074539 DOI: 10.1021/acs.accounts.2c00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of in vivo analytical tools and methods for recording electrical signals and accurately quantifying chemical signals is a key issue for a comprehensive understanding of brain events. The electrophysiological microelectrode was invented to monitor electrical signals in free-moving brains. On the other hand, electrochemical assays with excellent spatiotemporal resolution provide an effect way to monitor chemical signals in vivo. Unfortunately, the in vivo electrochemical biosensors still have three limitations. First, many biological species such as reactive oxygen species (ROS) and neurotransmitters demonstrate large overpotentials at conventional electrodes. Thus, it is hard to convert the chemical/electrochemical signals of these molecules into electric signals. Second, the interfacial properties of the recognition molecules assembled onto the electrode surfaces have a great influence on the transmission of electric charge through the interface and the stability of the modified recognition molecules. Meanwhile, the surface of biosensors implanted in the brain is easily absorbed by many proteins present in the brain, resulting in the loss of signals. Finally, activities in the brain including neuron discharges and electrophysiological signals may be affected by electrochemical measurements due to the application of extra potentials and/or currents.This Account presents a deep view of the fundamental design principles and solutions in response to the above challenges for developing in vivo biosensors with high performance while meeting the growing requirements, including high selectivity, long-time stability, and simultaneously monitoring electrical and chemical signals. We aim to highlight the basic criteria based on a double-recognition strategy for the selective biosensing of ROS, H2S, and HnS through the rational design of specific recognition molecules followed by electrochemical oxidation or reduction. Recent developments in designing functionalized surfaces through a systematic investigation of self-assembly with Au-S bonds, Au-Se bonds, and Au≡C bonds for facilitating electrochemical properties as well as improving the stability are summarized. More importantly, this Account highlights the novel methodologies for simultaneously monitoring electrical and chemical signals ascribed to the dynamic changes in K+, Na+, and Ca2+ and pH values in vivo. Additionally, SERS-based photophysiological microarray probes have been developed for quantitatively tracking chemical changes in the live brain together with recording electrophysiological signals.The design principles and novel strategies presented in this Account can be extended to the real-time tracking of electrical signals and the accurate quantification of more chemical signals such as amino acids, neurotransmitters, and proteins to understand the brain events. The final part also outlines potential future directions in constructing high-density microarrays, eventually enabling the large-scale dynamic recording of the chemical expression of multineuronal signals across the whole brain. There is still room to develop a multifiber microarray which can be coupled with photometric methods to record chemical signals both inside and outside neurons in the live brains of freely moving animals to understand physiological processes and screen drugs.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
16
|
ASIC1a induces mitochondrial apoptotic responses in acute lung injury. Eur J Pharmacol 2022; 934:175296. [PMID: 36162458 DOI: 10.1016/j.ejphar.2022.175296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
AIM This study aimed to investigate the promoting effect of acid-sensing ion channel 1a (ASIC1a) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its mechanisms. METHODS In this experiment, the ALI rat model was induced by intratracheal injection of LPS, and the ASIC1a specific blocker psalmotoxin-1 (PcTx-1) was injected into the tail vein before LPS administration once. Western blot, immunofluorescence, immunohistochemistry and real-time PCR methods were used to detect ASIC1a and apoptosis-related proteins expressions in lung tissue and RLE-6TN rat type II alveolar epithelial cells. Confocal Laser Scanning Microscopy was used to detect Ca2+ fluorescence intensity in RLE-6TN cells. RESULTS PcTx-1 pretreatment not only inhibited the pathological changes of LPS-induced ALI in lung tissue, but also inhibited lung dysfunction. PcTx-1 also reduced the increased levels of the apoptosis-related proteins B-cell lymphoma-2-associated X (Bax) and cleaved cysteinyl aspartate specific proteinase 3 (Cleaved caspase-3) and increased the decreased level of B-cell lymphoma-2 (Bcl-2) in the lung tissue of the model group. LPS-induced changes in mitochondrial membrane potential and calcium influx in alveolar epithelial cells were also reversed by PcTx-1. CONCLUSION ASIC1a induces an apoptotic response in ALI through mitochondrial apoptosis.
Collapse
|
17
|
Mei Y, Liu Z, Liu M, Gong J, He X, Zhang QW, Tian Y. Two-photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase-A in neurons. Chem Commun (Camb) 2022; 58:6657-6660. [PMID: 35593312 DOI: 10.1039/d2cc01909d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we designed and developed a single two-photon ratiometric fluorescence probe (TMF2P) for selective and accurate determination of mitochondrial MAO-A in live neurons. It was discovered that the increases in MAO-A levels under oxidative stress resulted in an elevated influx of Ca2+ flow into mitochondria through the transient receptor potential melastatin 2 (TRPM2) channels.
Collapse
Affiliation(s)
- Yuxiao Mei
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Zhichao Liu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Meijun Liu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Jiacheng Gong
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Xiao He
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Qi-Wei Zhang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|