1
|
Ye J, Liang Q, Tan Q, Chai M, Cheng W, Fan M, Zhang Y, Zhan J, Wang Y, Wen J, Zhang Y, Zhao X, Zhang D. A bulged-type enzyme-free recognition strategy designed for single nucleotide polymorphisms integrating with label-free electrochemical biosensor. Biosens Bioelectron 2024; 263:116601. [PMID: 39053148 DOI: 10.1016/j.bios.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Compared to conventional nucleic acid detection methods, label-free single nucleotide polymorphism (SNP) detection presents challenging due to the necessity of discerning single base mismatches, especially in the field of enzyme-free detection. In this study, we introduce a novel bulged-type DNA duplex probe designed to significantly amplify single-base differences. This probe is integrated with programmable DNA-based nanostructures to develop a sensitive, label-free biosensor for nonenzymatic SNP detection. The duplex probe with one bulge could selectively identify wild-typed DNA (WT) and mutant-type DNA (MT) based on a competitive strand displacement reaction mechanism. The hyperbranched HCR (HHCR) by incorporating of hairpin DNA into the DNA tetrahedron and surface-tethering on the portable screen printing electrode (SPCE) significantly favor the formation of negatively charged DNA nanostructure. We harnessed strong repulsion of DNA nanostructure towards the electroactive [Fe(CN)₆]³⁻/⁴⁻ in combination with electrochemical technique to create a label-free biosensor. This simple, enzyme-free and label-free biosensor could detect MT with a detection limit of 56 aM, even in multiple sequence backgrounds. The study served as the proof-of-concept for the integration of enzyme-free competitive mechanism and label-free strategy, which can be extended as a powerful tool to various fields.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qi Liang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qianglong Tan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Mengyao Chai
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Wendai Cheng
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jie Zhan
- New Materials Computing Center, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Wang Q, Yu L, Peng Y, Sheng M, Jin Z, Zhang T, Huang J, Yang X. Electrochemiluminescence Biosensor Based on a Duplex-Specific Nuclease and Dual-Output Toehold-Mediated Strand Displacement Cascade Amplification Strategy for Sensitive Detection of MicroRNA-499. Anal Chem 2024; 96:15624-15630. [PMID: 39295453 DOI: 10.1021/acs.analchem.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The timely and accurate diagnosis of acute myocardial infarction (AMI) is of great significance to reduce mortality and morbidity associated with the condition. Herein, we developed an electrochemiluminescence (ECL) biosensor for the detection of the potential AMI biomarker microRNA-499 (miRNA-499), which was based on duplex-specific nuclease-assisted target recycling and dual-output toehold-mediated strand displacement (TMSD). First, miRNA-499 was converted into a large amount of single-stranded DNA through the DSN-assisted target recycling, which was further incubated with the DNA triple-stranded complex (S) to implement TMSD cycles. Thus, the Ru(bpy)32+-labeled signal strands were released and captured by the capture probe on the electrode surface, resulting in an intense ECL signal. Owing to the prominent cascade signal amplification, the constructed biosensor exhibited a good linear response to miRNA-499 within the range of 100 aM-100 pM with a detection limit of 69.99 aM. Furthermore, it demonstrated superior selectivity, stability, and reproducibility. In addition, the biosensor was successfully applied to detect miRNA-499 in real human serum samples, demonstrating its potential for nucleic acid detection in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiying Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Tingting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| |
Collapse
|
3
|
Xu J, Li Y, Wang F, Yang H, Huang KJ, Cai R, Tan W. A Smartphone-Mediated "All-In-One" Biosensing Chip for Visual and Value-Assisted Detection. Anal Chem 2024; 96:15780-15788. [PMID: 39303167 DOI: 10.1021/acs.analchem.4c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Wang W, Yang Y, Chen Z, Wang X, Zhang GL, He T, Tong L, Tang B. Simultaneous Detection of Aldehyde Metabolites by Light-Assisted Ambient Ionization Mass Spectrometry. Anal Chem 2024; 96:787-793. [PMID: 38170819 DOI: 10.1021/acs.analchem.3c04124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the clinic, small-molecule metabolites (SMMs) in blood are highly convincing indicators for disease diagnosis, such as cancer. However, challenges still exist for detection of SMMs due to their low concentration and complicated components in blood. In this work, we report the design of a novel "selenium signature" nanoprobe (Se nanoprobe) for efficient identification of multiple aldehyde metabolites in blood. This Se nanoprobe consists of magnetic nanoparticles that can enrich aldehyde metabolites from a complex environment, functionalized with photosensitive "selenium signature" hydrazide molecules that can react with aldehyde metabolites. Upon irradiation with UV, the aldehyde derivatives can be released from the Se nanoprobe and further sprayed by mass spectrometry through ambient ionization (AIMS). By quantifying the selenium isotope distribution (MS/MS) from the derivatization product, accurate detection of several aldehyde metabolites, including valeraldehyde (Val), heptaldehyde (Hep), 2-furaldehyde (2-Fur), 10-undecenal aldehyde (10-Und), and benzaldehyde (Ben), is realized. This strategy reveals a new solution for quick and accurate cancer diagnosis in the clinic.
Collapse
Affiliation(s)
- Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaoxiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Guang-Lu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Tairan He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Wang H, Yang B, Tang H, Ding S, Liu G. Hairpin DNA-based electrochemical amplification strategy for miRNA sensing by using single gold nanoelectrodes. Analyst 2023; 148:5636-5641. [PMID: 37846736 DOI: 10.1039/d3an01551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A new sensor has been developed to detect miRNA-15 using nanoelectrodes and a hairpin DNA-based electrochemical amplification technique. By utilizing a complex DNA cylinder connected with hairpin DNA1, the sensor is able to absorb more methylene blue (MB) than simple double-stranded DNA. Another hairpin DNA2 is modified on an Au nanoelectrode surface and, when miRNA-15 is introduced, it triggers a chain reaction. This reaction unlocks two hairpins alternatively to polymerize into a complex structure that attaches more MB. The miRNA-15 is then replaced by DNA1 due to strand displacement reactions and continues to react with the next DNA2 to achieve circular amplification. The electrochemical signal from MB oxidation has a linear relationship with the miRNA-15 concentrations, making it possible to detect miRNA-15. Moreover, this method can be readily adapted for the detection of various other miRNA species. The newly devised nanosensor holds promising applications for the in vivo detection of miRNA-15 within biological systems, which is achieved by leveraging the advantageous characteristics of nanoelectrodes, including their low resistance-capacitance time constant, rapid mass transfer kinetics, and small diameter.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Sufang Ding
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| | - Gen Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P R China.
| |
Collapse
|
6
|
Hartung J, McCann N, Doe E, Hayth H, Benkato K, Johnson MB, Viard M, Afonin KA, Khisamutdinov EF. Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25300-25312. [PMID: 37204867 PMCID: PMC10331730 DOI: 10.1021/acsami.3c01604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce a toehold-mediated strand displacement strategy for regulated shape-switching of nucleic acid nanoparticles (NANPs) enabling their sequential transformation from triangular to hexagonal architectures at isothermal conditions. The successful shape transitions were confirmed by electrophoretic mobility shift assays, atomic force microscopy, and dynamic light scattering. Furthermore, implementation of split fluorogenic aptamers allowed for monitoring the individual transitions in real time. Three distinct RNA aptamers─malachite green (MG), broccoli, and mango─were embedded within NANPs as reporter domains to confirm shape transitions. While MG "lights up" within the square, pentagonal, and hexagonal constructs, the broccoli is activated only upon formation of pentagon and hexagon NANPs, and mango reports only the presence of hexagons. Moreover, the designed RNA fluorogenic platform can be employed to construct a logic gate that performs an AND operation with three single-stranded RNA inputs by implementing a non-sequential polygon transformation approach. Importantly, the polygonal scaffolds displayed promising potential as drug delivery agents and biosensors. All polygons exhibited effective cellular internalization followed by specific gene silencing when decorated with fluorophores and RNAi inducers. This work offers a new perspective for the design of toehold-mediated shape-switching nanodevices to activate different light-up aptamers for the development of biosensors, logic gates, and therapeutic devices in the nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Jordan Hartung
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Nathan McCann
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Kheiria Benkato
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - M Brittany Johnson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
- Basic Science Program, Leidos Biomedical Research Inc. National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
7
|
Xie J, Jiang H, Zhao Y, Zhong M, Jin X, Zhu Z, Baolin Li, Guo J, Zhang L, Liu J. Aptamer-based DNA-catalyzed amplification strategy for sensitive fluorescence resonance energy transfer detection of Acinetobacter baumannii. Talanta 2023; 255:124212. [PMID: 36566558 DOI: 10.1016/j.talanta.2022.124212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a common pathogen that causes hospital-acquired infections and is resistant to a wide variety of antibiotics. Consequently, the rapid and highly sensitive detection of A. baumannii is required during the early stages of infection. Therefore, we developed a DNA-catalyzed amplification mechanism based on aptamers, combined with a novel fluorescence resonance energy transfer (FRET) method based on graphene oxide (GO), for the detection of A. baumannii. In the presence of A. baumannii, an aptamer bound to A. baumannii, releasing the template strand, which triggered an entropy-driven catalysis (EDC) reaction. One EDC product was then used as the catalyst for catalytic hairpin assembly (CHA) on a GO nanosheet. Finally, the GO released a huge amount of FAM-labeled DNA duplices, which could be detected with FRET. This strategy circumvented the extraction of nucleic acids and was easy to execute, with a detection time of ≤1.5 h. The detection of A. baumannii with this method ranges from 5 cfu/mL to 1 × 105 cfu/mL, with a detection limit of 1.1 cfu/mL. The method was sufficiently sensitive and specific to detect A. baumannii rapidly in cerebrospinal fluid. In summary, our strategy provides a new option for the early detection and point-of-care testing (POCT) of A. baumannii infections, allowing their earlier and more precise treatment.
Collapse
Affiliation(s)
- Jingling Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Hui Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Yuanqing Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Min Zhong
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Xinrui Jin
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Zixin Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Jinglan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Limei Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
8
|
Zhang W, Li S, Zhou A, Li M. Chemical Cyclic Amplification: Hydroxylamine Boosts the Fenton Reaction for Versatile and Scalable Biosensing. Anal Chem 2023; 95:1764-1770. [PMID: 36576311 DOI: 10.1021/acs.analchem.2c05181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleic acid detection is undoubtedly one of the most important research fields to meet the medical needs of genetic disease diagnosis, cancer treatment, and infectious disease prevention. However, the practical detection methods based on biological amplification are complex and time-consuming and require highly trained operators. Herein, we report a simple, rapid, and sensitive method for the nucleic acid assay by fluorescence or naked eye using chemical cyclic amplification. The addition of hydroxylamine (HA) during the Fenton reaction can continuously generate hydroxyl radicals (•OH) via Fe3+/Fe2+ cycle, termed as "hydroxylamine boosts the Fenton reaction (Fenton-HA system)". Meanwhile, the reducing substances, such as terephthalic acid or o-phenylenediamine, react with •OH to generate oxidized substances that can be recognized by the naked eye or detected by fluorescence so as to realize the detection of Fe3+. The concentration of Fe3+ has a good linear relationship with fluorescence intensity in the range of 0.1 to 100 nM, and the limit of detection is calculated to be 0.03 nM (S/N = 3). Subsequently, Fe was introduced into the nucleic acid hybridization system after the Fe source was transformed into Fe3+, and the nucleic acids were indirectly determined by this method. This Fenton-HA system was used for sensing HIV-DNA and miRNA-21 to verify the validity of this method in nucleic acid detection. The detection limits were as low as 2.5 pM for HIV-DNA and 3 pM for miRNA-21. We believe that our work has unlocked an efficient signal amplification strategy, which is expected to develop a new generation of highly sensitive chemical biosensors.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| | - Shuzhen Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| | - Ani Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| | - Maoguo Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, China
| |
Collapse
|
9
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
10
|
Li T, Xing W, Yu F, Xue Z, Yang X, Zou G, Zhu Y. Pathogen Identification: Ultrasensitive Nucleic Acid Detection via a Dynamic DNA Nanosystem-Integrated Ratiometric Electrochemical Sensing Strategy. Anal Chem 2022; 94:17725-17732. [PMID: 36472242 DOI: 10.1021/acs.analchem.2c04736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sensitively determining trace nucleic acid is of great significance for pathogen identification. Herein, a dynamic DNA nanosystem-integrated ratiometric electrochemical biosensor was proposed to determine human immunodeficiency virus-associated DNA fragment (HIV-DNA) with high sensitivity and selectivity. The dynamic DNA nanosystem was composed of a target recycling unit and a multipedal DNA walker unit. Both of them could be driven by a toehold-mediated strand displacement reaction, enabling an enzyme-free and isothermal amplification strategy for nucleic acid determination. The target recycling unit could selectively recognize HIV-DNA and activate the multipedal DNA walker unit to roll on the electrode surface, which would lead to bidirectional signal variation for ratiometric readout with cascade signal amplification. Benefiting from the synergistic effect of the dynamic DNA nanosystem and the ratiometric output mode, the ultrasensitive detection of HIV-DNA was achieved in a wide linear range of 6 orders of magnitude with a limit of detection of 36.71 aM. The actual usability of the proposed sensor was also verified in complex biological samples with acceptable performance. This dynamic DNA nanosystem-integrated ratiometric sensing strategy might be promising in the development of reliable point-of-care diagnostic devices for highly sensitive and selective pathogen identification.
Collapse
Affiliation(s)
- Tao Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Wei Xing
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan250001, China
| | - Fengshan Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Ziwei Xue
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Xingdong Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| | - Ye Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen518000, China
| |
Collapse
|
11
|
Lin Q, Han G, Fang X, Chen H, Weng W, Kong J. Programmable Analysis of MicroRNAs by Thermus thermophilus Argonaute-Assisted Exponential Isothermal Amplification for Multiplex Detection (TEAM). Anal Chem 2022; 94:11290-11297. [PMID: 35894425 DOI: 10.1021/acs.analchem.2c01945] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The simultaneous analysis of the levels of multiple microRNAs (miRNAs) is critical to the early diagnosis of cancer. However, this analysis is challenging because of the low concentrations of miRNAs and their high sequence homology. Here, we report a general and programmable diagnostic strategy for miRNA analysis: Thermus thermophilus Argonaute (TtAgo)-assisted exponential isothermal amplification for multiplex detection (TEAM). This system combines exponential isothermal amplification (EXPAR), for target amplification, with programmable TtAgo cleavage, for the generation of the reporting signal. The TEAM assay achieved attomolar sensitivity with a rapid turnaround time (30-35 min). Because of the single-nucleotide precision of TtAgo, the system demonstrated robust multiplex capability in the simultaneous detection of four miRNA targets and the classification of let-7 family members. The TEAM assay was superior in differentiating colorectal cancer patients from healthy individuals relative to the conventional EXPAR and reverse transcription polymerase chain reaction (RT-PCR) methods. This tunable and scalable approach is a powerful nucleic acid analysis tool that holds promise in scientific and clinical applications.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Guobin Han
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xueen Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Hui Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090 Shanghai, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| |
Collapse
|