1
|
Xie D, Jia ZH, Zhang YL, Cai XL, Liu LN, Yang GW, Kang X, Zhang X, Zhang YY. Switchable Polymerization from Monomer Mixtures to Synthesize Oxygen-Rich Block Copolymers with Dual Recyclability and Degradability. Angew Chem Int Ed Engl 2025; 64:e202424856. [PMID: 39898518 DOI: 10.1002/anie.202424856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/04/2025]
Abstract
Switchable catalysis from monomer mixtures has been emerging as a powerful technique to synthesize various useful block copolymers, yet represents a significant challenge in polymer chemistry. Herein, we present the synthesis of well-defined polyacetal/polycarbonate block copolymers through switchable polymerization from mixtures of terminal epoxides, internal epoxides, o-phthalaldehyde (OPA) and CO2. The exclusive chemoselectivity of terminal epoxide or internal epoxide was achieved by controlling the reaction atmosphere. The dynamic equilibrium of acetal anion and alkoxy anion is the key to the successful switch from terminal epoxides/OPA copolymerization to internal epoxides/CO2 copolymerization. Computational studies elucidated the kinetic and thermodynamic preferences underlying this selective polymerization. The acid/base labile nature of the block copolymers enables their sequence-controlled chemical recycling/degradation. These novel polyacetal/polycarbonate block copolymers with facilely sequence-controlled polymerization/depolymerization capabilities will enable their further tailored applications and contribute to the development of a circular plastic economy.
Collapse
Affiliation(s)
- Di Xie
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi-Hua Jia
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yan-Li Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xin-Lei Cai
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Long-Nv Liu
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Guan-Wen Yang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xianming Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024; 124:12305-12380. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
3
|
Li X, Ma R, Gao X, Li H, Wang S, Song G. Harnessing Atomically Dispersed Cobalt for the Reductive Catalytic Fractionation of Lignocellulose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310202. [PMID: 38493491 PMCID: PMC11165530 DOI: 10.1002/advs.202310202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/01/2024] [Indexed: 03/19/2024]
Abstract
The reductive catalytic fractionation (RCF) of lignocellulose, considering lignin valorization at design time, has demonstrated the entire utilization of all lignocellulose components; however, such processes always require catalysts based on precious metals or high-loaded nonprecious metals. Herein, the study develops an ultra-low loaded, atomically dispersed cobalt catalyst, which displays an exceptional performance in the RCF of lignocellulose. An approximately theoretical maximum yield of phenolic monomers (48.3 wt.%) from lignin is realized, rivaling precious metal catalysts. High selectivity toward 4-propyl-substituted guaiacol/syringol facilitates their purification and follows syntheses of highly adhesive polyesters. Lignin nanoparticles (LNPs) are generated by simple treatment of the obtained phenolic dimers and oligomers. RCF-resulted carbohydrate pulp are more obedient to enzymatic hydrolysis. Experimental studies on lignin model compounds reveal the concerted cleavage of Cα-O and Cβ-O pathway for the rupture of β-O-4 structure. Overall, the approach involves valorizing products derived from lignin biopolymer, providing the opportunity for the comprehensive utilization of all components within lignocellulose.
Collapse
Affiliation(s)
- Xiancheng Li
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Rumin Ma
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Xueying Gao
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084China
| | - Helong Li
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Shuizhong Wang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Guoyong Song
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
4
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
5
|
Zhu Y, Tao Y. Stereoselective Ring-opening Polymerization of S-Carboxyanhydrides Using Salen Aluminum Catalysts: A Route to High-Isotactic Functionalized Polythioesters. Angew Chem Int Ed Engl 2024; 63:e202317305. [PMID: 38179725 DOI: 10.1002/anie.202317305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Polythioesters are important sustainable polymers with broad applications. The ring-opening polymerization (ROP) of S-Carboxyanhydrides (SCAs) can afford polythioesters with functional groups that are typically difficult to prepare by ROP of thiolactones. Typical methods involving organocatalysts, like dimethylaminopyridine (DMAP) and triethylamine (Et3 N), have been plagued by uncontrolled polymerization, including epimerization for most SCAs resulting in the loss of isotacticity. Here, we report the use of salen aluminum catalysts for the selective ROP of various SCAs without epimerization, affording functionalized polythioester with high molecular weight up to 37.6 kDa and the highest Pm value up to 0.99. Notably, the ROP of TlaSCA (SCA prepared from thiolactic acid) generates the first example of a isotactic crystalline poly(thiolactic acid), which exhibited a distinct Tm value of 152.6 °C. Effective ligand tailoring governs the binding affinity between the sulfide chain-end and the metal center, thereby maintaining the activity of organometallic catalysts and reducing the occurrence of epimerization reactions.
Collapse
Affiliation(s)
- Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
You H, Zhuo C, Yan S, Wang E, Cao H, Liu S, Wang X. CO 2 Deprotection-Mediated Switchable Polymerization for Precise Construction of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shuo Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
7
|
Wang X, Tong R. Facile Tandem Copolymerization of O-Carboxyanhydrides and Epoxides to Synthesize Functionalized Poly(ester- b-carbonates). J Am Chem Soc 2022; 144:20687-20698. [DOI: 10.1021/jacs.2c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia24061, United States
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia24061, United States
| |
Collapse
|
8
|
Wang J, Zhu Y, Li M, Wang Y, Wang X, Tao Y. Tug‐of‐War between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐Opening Copolymerizations. Angew Chem Int Ed Engl 2022; 61:e202208525. [DOI: 10.1002/anie.202208525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jianqun Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
9
|
Jia Y, Sun Z, Hu C, Pang X. Switchable Polymerization: A Practicable Strategy to Produce Biodegradable Block Copolymers with Diverse Properties. Chempluschem 2022; 87:e202200220. [PMID: 36071346 DOI: 10.1002/cplu.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Indexed: 11/11/2022]
Abstract
With the global demand for sustainable development, there has been an increasing interest in using natural biomass as raw resources to produce sustainable polymers as an alternative to petroleum-based polymers. Because monocomponent biodegradable polymers are often insufficient in performance, copolymers with well-engineered block structures are synthesized to reach wide tunability. Switchable polymerization is such a practical strategy to produce biodegradable block copolymers with diverse performance. This review focus on the performance of block copolymers bearing biodegradable polymer segments produced by diverse switchable polymerization. We highlight two main segments that are critical for biodegradable block copolymers, i. e., polyester and polycarbonate, summarize the multiple characters of materials from switchable polymerization such as antibacterial, shape memory, adhesives, etc. The state-of-the-art research on biodegradable block copolymers, as well as an outlook on the preparation and application of novel materials, are presented.
Collapse
Affiliation(s)
- Yifan Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
10
|
Wang J, Zhu Y, Li M, Wang Y, Wang X, Tao Y. Tug‐of‐war between Two Distinct Catalytic Sites Enables Fast and Selective Ring‐opening Copolymerizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianqun Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Yinuo Zhu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Maosheng Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Yanchao Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Xianhong Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials CHINA
| | - Youhua Tao
- Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences Key Laboratory of Polymer Ecomaterials 5625 Renmin StreetChangchun中国 130022 Changchun CHINA
| |
Collapse
|
11
|
Liang J, Ye S, Wang S, Wang S, Han D, Huang S, Huang Z, Liu W, Xiao M, Sun L, Meng Y. Biodegradable Copolymers from CO 2, Epoxides, and Anhydrides Catalyzed by Organoborane/Tertiary Amine Pairs: High Selectivity and Productivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaxin Liang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuxian Ye
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Siyuan Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongmei Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiheng Huang
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Liu
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Rupf S, Pröhm P, Plajer AJ. Lithium achieves sequence selective ring-opening terpolymerisation (ROTERP) of ternary monomer mixtures. Chem Sci 2022; 13:6355-6365. [PMID: 35733883 PMCID: PMC9159086 DOI: 10.1039/d2sc01776h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Heteroatom-containing degradable polymers have strong potential as sustainable replacements for petrochemically derived materials. However, to accelerate and broaden their uptake greater structural diversity and new synthetic methodologies are required. Here we report a sequence selective ring-opening terpolymerisation (ROTERP), in which three monomers (A, B, C) are selectively enchained into an (ABA'C) n sequence by a simple lithium catalyst. Degradable poly(ester-alt-ester-alt-trithiocarbonate)s are obtained in a M n range from 2.35 to 111.20 kDa which are not easily accessible via other polymerisation methodologies. The choice of alkali metal is key to achieve high activity and to control the terpolymer sequence. ROTERP is mechanistically compatible with ring-opening polymerisation (ROP) allowing switchable catalysis for blockpolymer synthesis. The ROTERP demonstrated in this study could be the first example of an entirely new family of sequence selective terpolymerisations.
Collapse
Affiliation(s)
- Susanne Rupf
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Patrick Pröhm
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Alex J Plajer
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| |
Collapse
|