1
|
Carrasco C, Martinet Q, Shen Z, Lintuvuori J, Palacci J, Aubret A. Characterization of Nonequilibrium Interactions of Catalytic Microswimmers Using Phoretically Responsive Nanotracers. ACS NANO 2025; 19:11133-11145. [PMID: 40069094 DOI: 10.1021/acsnano.4c18078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Catalytic microswimmers convert the chemical energy from fuel into motion. They sustain chemical gradients and fluid flows that propel them by phoresis. This leads to unconventional behavior and collective dynamics, such as self-organization into complex structures. Characterizing the nonequilibrium interactions of microswimmers is crucial for advancing our understanding of active systems. However, this remains a challenge owing to the importance of fluctuations at the microscale and the difficulty in disentangling the different contributions to the interactions. Here, we show a massive dependence of the nonequilibrium interactions on the shape of catalytic microswimmers. We perform tracking experiments at high throughput to map interactions between nanocolloidal tracers and dimeric microswimmers of various aspect ratios. Our method leverages dual tracers with differing phoretic mobilities to quantitatively disentangle phoretic motion from hydrodynamic advection. This approach is validated through experiments on single chemically active sites and on immobilized catalytic microswimmers. We further investigate the activity-driven interactions of free microswimmers and directly measure their phoretic interactions. When compared to standard models, our findings highlight the important role of osmotic flows for microswimmers near surfaces and reveal an enhanced contribution of hydrodynamic advection relative to phoretic motion as the size of the microswimmer increases. Our study provides robust measurements of the nonequilibrium interactions from catalytic microswimmers and lays the groundwork for a realistic description of active systems.
Collapse
Affiliation(s)
- Celso Carrasco
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | | | - Zaiyi Shen
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, No.5, Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Juho Lintuvuori
- CNRS-LOMA, UMR 5798, 351 cours de la Libération, F-33400 Talence, France
| | | | - Antoine Aubret
- CNRS-LOMA, UMR 5798, 351 cours de la Libération, F-33400 Talence, France
| |
Collapse
|
2
|
Jancik-Prochazkova A, Ariga K. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. RESEARCH (WASHINGTON, D.C.) 2025; 8:0624. [PMID: 39995898 PMCID: PMC11848434 DOI: 10.34133/research.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active "on-the-fly" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
3
|
Peng Y, Yasir Khan M, Gao Y, Wang W. Self-Generated Ions Modify the Pair Interaction and the Phase Separation of Chemically Active Colloids. Chem Asian J 2025; 20:e202400923. [PMID: 39533512 DOI: 10.1002/asia.202400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Chemically active colloids that release/consume ions are an important class of active matter, and exhibit interesting collective behaviors such as phase separation, swarming, and waves. Key to these behaviors is the pair-wise interactions mediated by the concentration gradient of self-generated ions. This interaction is often simplified as a pair-wise force decaying at 1/r2, where r is the interparticle distance. Here, we show that this simplification fails for isotropic and immotile active colloids with net ion production, such as Ag colloids in H2O2. Specifically, the production of ions on the surface of the Ag colloids increases the local ion concentration, c, and attenuates the pair-wise interaction force that scales with ∇c/c. As a result, the attractive force between an Ag colloid and its neighbor (active or passive) decays at 1/r or 1/r2 for small or large r, respectively. In a population, the attraction of a colloid by a growing cluster also scales with ∇c/c, so that medium-sized clusters grow fastest, and that the cluster coarsening slows with time. These results, supported by finite element and Brownian dynamic simulations, highlight the important role of self-generated ions in shaping the collective behavior of chemically active colloids.
Collapse
Affiliation(s)
- Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
4
|
Wang J, Wu H, Zhu X, Zwolsman R, Hofstraat SRJ, Li Y, Luo Y, Joosten RRM, Friedrich H, Cao S, Abdelmohsen LKEA, Shao J, van Hest JCM. Ultrafast light-activated polymeric nanomotors. Nat Commun 2024; 15:4878. [PMID: 38849362 PMCID: PMC11161643 DOI: 10.1038/s41467-024-49217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Synthetic micro/nanomotors have been extensively exploited over the past decade to achieve active transportation. This interest is a result of their broad range of potential applications, from environmental remediation to nanomedicine. Nevertheless, it still remains a challenge to build a fast-moving biodegradable polymeric nanomotor. Here we present a light-propelled nanomotor by introducing gold nanoparticles (Au NP) onto biodegradable bowl-shaped polymersomes (stomatocytes) via electrostatic and hydrogen bond interactions. These biodegradable nanomotors show controllable motion and remarkable velocities of up to 125 μm s-1. This unique behavior is explained via a thorough three-dimensional characterization of the nanomotor, particularly the size and the spatial distribution of Au NP, with cryogenic transmission electron microscopy (cryo-TEM) and cryo-electron tomography (cryo-ET). Our in-depth quantitative 3D analysis reveals that the motile features of these nanomotors are caused by the nonuniform distribution of Au NPs on the outer surface of the stomatocyte along the z-axial direction. Their excellent motile features are exploited for active cargo delivery into living cells. This study provides a new approach to develop robust, biodegradable soft nanomotors with application potential in biomedicine.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Xiaowei Zhu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Stijn R J Hofstraat
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Rick R M Joosten
- Laboratory of Physical Chemistry, Department of Chemical Engineering & Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering & Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Cao D, Yan Z, Cui D, Khan MY, Duan S, Xie G, He Z, Xing DY, Wang W. A Conceptual Framework to Understand the Self-Assembly of Chemically Active Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10884-10894. [PMID: 38756056 DOI: 10.1021/acs.langmuir.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Colloids that generate chemicals, or "chemically active colloids", can interact with their neighbors and generate patterns via forces arising from such chemical gradients. Examples of such assemblies of chemically active colloids are abundant in the literature, but a unified theoretical framework is needed to rationalize the scattered results. Combining experiments, theory, Brownian dynamics, and finite element simulations, we present here a conceptual framework for understanding how immotile, yet chemically active, colloids assemble. This framework is based on the principle of ionic diffusiophoresis and diffusioosmosis and predicts that a chemically active colloid interacts with its neighbors through short- and long-range interactions that can be either repulsive or attractive, depending on the relative diffusivity of the released cations and anions, and the relative zeta potential of a colloidal particle and the planar surface on which it resides. As a result, 4 types of pairwise interactions arise, leading to 4 different types of colloidal assemblies with distinct patterns. Using short-range attraction and long-range attraction (SALR) systems as an example, we show quantitative agreement between the framework and experiments. The framework is then applied to rationalize a wide range of patterns assembled from chemically active colloids in the literature exhibiting other types of pairwise interactions. In addition, the framework can predict what the assembly looks like with minimal experimental information and help infer ionic diffusivity and zeta potential values in systems where these values are inaccessible. Our results represent a solid step toward building a complete theory for understanding and controlling chemically active colloids, from the molecular level to their mesoscopic superstructures and ultimately to the macroscopic properties of the assembled materials.
Collapse
Affiliation(s)
- Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Ding Yu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Feng K, Shen W, Chen L, Gong J, Palberg T, Qu J, Niu R. Weak Ion-Exchange Based Magnetic Swarm for Targeted Drug Delivery and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306798. [PMID: 38059804 DOI: 10.1002/smll.202306798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenqi Shen
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Thomas Palberg
- Institut für physics, Johannes Gutenberg-Universtät Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
7
|
Sun J, Wu J, Ju H. Effects of Size and Asymmetry on Catalase-Powered Silica Micro/nanomotors. Chem Asian J 2024; 19:e202300900. [PMID: 37990785 DOI: 10.1002/asia.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Enzyme-powered micro/nanomotors that can autonomously move in biological environment are attractive in the fields of biology and biomedicine. The fabrication of enzyme-powered micro/nanomotors normally focuses on constructing Janus structures of micro/nanomaterials, based on the intuition that the Janus coating of enzymes can generate driving force from asymmetric catalytic reactions. Here, in the fabrication of catalase-powered silica micro/nanomotors (C-MNMs), an archetypical model of enzyme-powered micro/nanomotors, we find the silica size rather than asymmetric coating of catalase determines the motion ability of C-MNMs. The effects of size and asymmetry have been investigated by a series of C-MNMs at various sizes (0.5, 2, 5 and 10 μm) and asymmetric levels (full-, half- and most-coated with catalase). The motion performance indicates that 500 nm and 2 μm C-MNMs show obvious increases (varying from 134% to 618%) of diffusion coefficient, but C-MNMs bigger than 5 μm have no self-propulsion behaviour at all, regardless of asymmetric levels. In addition, although asymmetry facilitates enhanced diffusion of C-MNMs, only 2 μm C-MNMs are sensitive to asymmetric level. This work elucidates the primary and secondary roles of size and asymmetry in the preparation of C-MNMs, paving the way to fabricate enzyme-powered micro/nanomotors with high motion performance in future.
Collapse
Affiliation(s)
- Jun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 xianlin Road, Nanjing, 210023, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 xianlin Road, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 xianlin Road, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Wu Z, Zheng Y, Lin L, Lin Y, Xie T, Lin J, Xing G, Lin JM. Fabrication and Performance of Bubble-Containing Multicompartmental Particles: Novel Self-Orienting Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306814. [PMID: 38126902 DOI: 10.1002/smll.202306814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Indexed: 12/23/2023]
Abstract
In this work, a class of bubble-containing multicompartmental particles with self-orienting capability is developed, where a single bubble is enclosed at the top of the super-segmented architecture. Such bubbles, driven by potential energy minimization, cause the particles to have a bubble-upward preferred orientation in liquid, enabling efficient decoding of their high-density signals in an interference-resistant manner. The particle preparation involves bubble encapsulation via the impact of a multicompartmental droplet on the liquid surface and overall stabilization via rational crosslinking. The conditions for obtaining these particles are systematically investigated. Methodological compatibility with materials is demonstrated by different hydrogel particles. Finally, by encapsulating cargoes of interest, these particles have found broad applications in actuators, multiplexed detection, barcodes, and multicellular systems.
Collapse
Affiliation(s)
- Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yajing Zheng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yongning Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Tianze Xie
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jiaxu Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Gaowa Xing
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Wang W. Open Questions of Chemically Powered Nano- and Micromotors. J Am Chem Soc 2023; 145:27185-27197. [PMID: 38063192 DOI: 10.1021/jacs.3c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
10
|
Kang E, Lee W, Lee H. Comprehensive Understanding of Self-Propelled Janus Pt/Fe 2O 3 Micromotor Dynamics: Impact of Size, Morphology, and Surface Structure. J Phys Chem Lett 2023; 14:9811-9818. [PMID: 37889127 DOI: 10.1021/acs.jpclett.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing use of plastics has led to the accumulation of plastic waste in the oceans, resulting in significant global environmental challenges associated with microplastic pollution. Micromotors, capable of capturing and removing microplastics from aquatic systems, have emerged as a promising solution to addressing this problem. This research aims to analyze the factors affecting the speed of micromotors, including size, morphology, and surface structure, while elucidating the underlying mechanisms governing micromotor propulsion to develop efficient and ecofriendly micromotors. In this study, we systematically manipulate various parameters by modifying the synthesis method of hematite-based micromotors, subsequently comparing their propulsion speeds and uncovering the precise role of these parameters in determining the micromotor performance. Furthermore, we shed light on the intricate interplay between drag force and propulsive force, demonstrating how these forces vary under different H2O2 conditions. These findings provide valuable insights into the design of efficient micromotors tailored for dynamic aquatic environments.
Collapse
Affiliation(s)
- Eunbi Kang
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wanhee Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
11
|
Urso M, Ussia M, Peng X, Oral CM, Pumera M. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Nat Commun 2023; 14:6969. [PMID: 37914692 PMCID: PMC10620202 DOI: 10.1038/s41467-023-42674-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO2/α-Fe2O3 microrobots, consisting of peanut-shaped α-Fe2O3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H2O2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots' active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Collapse
Affiliation(s)
- Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih Road 91, 40402, Taichung, Taiwan.
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Han X, Chen Z, Liu Y, Song B, Zhang H, Dong B. Light Driven ZnO/AuNP Micro/Nanomotor with Controlled Rotation and Phototaxis. ChemistrySelect 2023. [DOI: 10.1002/slct.202203888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoxia Han
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Zongchen Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Yingying Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Bo Song
- Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Hui Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| | - Bin Dong
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
13
|
Ghellab SE, Zhang X, Yang Y, Wang S, Basharat M, Zhou X, Lei L, Zhou Y, Wang Y, Fang H, Gao Y. Cell-Mimic Directional Cargo Transportation in a Visible-Light-Activated Colloidal Motor/Lipid Tube System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204260. [PMID: 36424173 DOI: 10.1002/smll.202204260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Active tether and transportation of cargoes on cytoskeletal highway enabled by molecular motors is key for accurate delivery of vesicles and organelles in the complex intracellular environment. Here, a hybrid system composed of colloidal motors and self-assembled lipid tubes is designed to mimic the subcellular traffic system in living cells. The colloidal motors, composed of gold-coated hematite, display light-activated self-propulsion tunable by the light intensity and the concentration of hydrogen peroxide fuel. Importantly, the motors show light-switchable binding with lipid cargoes and attachment to the lipid tubes, whereby the latter act as the motor highways. Upon assembly, the colloidal motor/lipid tube system demonstrates directional delivery of lipid vesicles, emulating intracellular transportation. The assembly and function of the hybrid system are rationalized by a cooperative action of light-triggered electrophoretic and hydrodynamic effects, supported by finite element analysis. A synthetic analog of the biological protein motor/cytoskeletal filament system is realized for the manipulation and delivery of different matter at the microscale, which is expected to be a promising platform for various applications in materials science, nanotechnology, microfluidics, and synthetic biology.
Collapse
Affiliation(s)
- Salah Eddine Ghellab
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinyuan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yicheng Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shuo Wang
- Julong College, Shenzhen Technology University, Shenzhen, 518118, China
| | - Majid Basharat
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Xuemao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Lijie Lei
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Hui Fang
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, College of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
14
|
Peng X, Urso M, Balvan J, Masarik M, Pumera M. Self-Propelled Magnetic Dendrite-Shaped Microrobots for Photodynamic Prostate Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202213505. [PMID: 36177686 DOI: 10.1002/anie.202213505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/10/2022]
Abstract
Photocatalytic micromotors that exhibit wireless and controllable motion by light have been extensively explored for cancer treatment by photodynamic therapy (PDT). However, overexpressed glutathione (GSH) in the tumor microenvironment can down-regulate the reactive oxygen species (ROS) level for cancer therapy. Herein, we present dendrite-shaped light-powered hematite microrobots as an effective GSH depletion agent for PDT of prostate cancer cells. These hematite microrobots can display negative phototactic motion under light irradiation and flexible actuation in a defined path controlled by an external magnetic field. Non-contact transportation of micro-sized cells can be achieved by manipulating the microrobot's motion. In addition, the biocompatible microrobots induce GSH depletion and greatly enhance PDT performance. The proposed dendrite-shaped hematite microrobots contribute to developing dual light/magnetic field-powered micromachines for the biomedical field.
Collapse
Affiliation(s)
- Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, 61300, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, 40402, Taichung, Taiwan.,Faculty of Electrical Engineering and Computer Science, VSB, Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
15
|
Shah ZH, Wu B, Das S. Multistimuli-responsive microrobots: A comprehensive review. Front Robot AI 2022; 9:1027415. [PMID: 36420129 PMCID: PMC9676497 DOI: 10.3389/frobt.2022.1027415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Untethered robots of the size of a few microns have attracted increasing attention for the potential to transform many aspects of manufacturing, medicine, health care, and bioengineering. Previously impenetrable environments have become available for high-resolution in situ and in vivo manipulations as the size of the untethered robots goes down to the microscale. Nevertheless, the independent navigation of several robots at the microscale is challenging as they cannot have onboard transducers, batteries, and control like other multi-agent systems, due to the size limitations. Therefore, various unconventional propulsion mechanisms have been explored to power motion at the nanoscale. Moreover, a variety of combinations of actuation methods has also been extensively studied to tackle different issues. In this survey, we present a thorough review of the recent developments of various dedicated ways to actuate and control multistimuli-enabled microrobots. We have also discussed existing challenges and evolving concepts associated with each technique.
Collapse
Affiliation(s)
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
16
|
Li J, He X, Jiang H, Xing Y, Fu B, Hu C. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36027-36037. [PMID: 35916408 DOI: 10.1021/acsami.2c08464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advances in the versatile design and synthesis of nanomaterials have imparted diverse functionalities to Janus micromotors as autonomous vehicles. However, a significant challenge remains in maneuvering Janus micromotors by following desired trajectories for on-demand motility and intelligent control due to the inherent rotational Brownian motion. Here, we present the enhanced and robust directional propulsion of light-activated Fe3O4@TiO2/Pt Janus micromotors by magnetic spinning and the Magnus effect. Once exposed to a low-intensity rotating magnetic field, the micromotors become physically actuated, and their rotational Brownian diffusion is quenched by the magnetic rotation. Photocatalytic propulsion can be triggered by unidirectional irradiation based on a self-electrophoretic mechanism. Thus, a transverse Magnus force can be generated due to the rotational motion and ballistic motion (photocatalytic propulsion) of the micromotors. Both the self-electrophoretic propulsion and the Magnus force are periodically changed due to the magnetic rotation, which results in an overall directed motion moving toward a trajectory with a deflection angle from the direction of incident light with enhanced speed, maneuverability, and steering robustness. Our study illustrates the admirable directional motion capabilities of light-driven Janus micromotors based on magnetic spinning and the Magnus effect, which unfolds a new paradigm for addressing the limitations of directionality control in the current asymmetric micromotors.
Collapse
Affiliation(s)
- Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Xing
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Lyu X, Chen J, Liu J, Peng Y, Duan S, Ma X, Wang W. Reversing a Platinum Micromotor by Introducing Platinum Oxide. Angew Chem Int Ed Engl 2022; 61:e202201018. [PMID: 35366368 DOI: 10.1002/anie.202201018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Understanding and controlling the swimming direction of a synthetic nano- and micromotor holds fundamental and applied significance. Here, we focus on platinum-containing Janus colloids that catalytically decompose H2 O2 into O2 , an archetypical model of chemical micromotor. We discover that platinum oxides (primarily PtO) are produced on Pt films sputter-coated in O2 plasma, and PtO reverses the motor possibly by self-electrophoresis. Using this knowledge, micromotors moving in either direction were fabricated by intentionally introducing or removing PtO. These findings challenge the conventional wisdom that a Pt micromotor is powered by Pt alone, and open up new avenues for controlling the swimming directions of a micro- and nanomachine.
Collapse
Affiliation(s)
- Xianglong Lyu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.,Current address: Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Jingyuan Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.,Current address: Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Shifang Duan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
18
|
Chen X, Xu Y, Zhou C, Lou K, Peng Y, Zhang HP, Wang W. Unraveling the physiochemical nature of colloidal motion waves among silver colloids. SCIENCE ADVANCES 2022; 8:eabn9130. [PMID: 35613263 PMCID: PMC9132452 DOI: 10.1126/sciadv.abn9130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Traveling waves are common in biological and synthetic systems, including the recent discovery that silver (Ag) colloids form traveling motion waves in H2O2 and under light. Here, we show that this colloidal motion wave is a heterogeneous excitable system. The Ag colloids generate traveling chemical waves via reaction-diffusion, and either self-propel through self-diffusiophoresis ("ballistic waves") or are advected by diffusio-osmotic flows from gradients of neutral molecules ("swarming waves"). Key results include the experimental observation of traveling waves of OH- with pH-sensitive fluorescent dyes and a Rogers-McCulloch model that qualitatively and quantitatively reproduces the key features of colloidal waves. These results are a step forward in elucidating the Ag-H2O2-light oscillatory system at individual and collective levels. In addition, they pave the way for using colloidal waves either as a platform for studying nonlinear phenomena, or as a tool for colloidal transport and for information transmission in microrobot ensembles.
Collapse
Affiliation(s)
- Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yankai Xu
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Zhou
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co. Ltd., Guangzhou 511458, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - H. P. Zhang
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author. (W.W.); (H.P.Z.)
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Corresponding author. (W.W.); (H.P.Z.)
| |
Collapse
|
19
|
Lyu X, Chen J, Liu J, Peng Y, Duan S, Ma X, Wang W. Reversing A Platinum Micromotor by Introducing Platinum Oxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xianglong Lyu
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Jingyuan Chen
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Jiayu Liu
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Yixin Peng
- Harbin Institute of Technology Shenzhen School of Computer Science and Technology School of Materials Science and Engineering CHINA
| | - Shifang Duan
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Xing Ma
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Wei Wang
- Harbin Institute of Technology (Shenzhen) Xili University Town, HIT Campus Shenzhen CHINA
| |
Collapse
|