1
|
García-Cerezo P, Codesal MD, David AHG, Le Bras L, Abid S, Li X, Miguel D, Kazem-Rostami M, Champagne B, Campaña AG, Stoddart JF, Blanco V. Acid/Base-Responsive Circularly Polarized Luminescence Emitters with Configurationally Stable Nitrogen Stereogenic Centers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417326. [PMID: 40371460 DOI: 10.1002/adma.202417326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/08/2025] [Indexed: 05/16/2025]
Abstract
A way to prevent the fast configurational interconversion of tertiary amines is to invoke Tröger's base analogs, which display methano- or ethano-bridged diazocine cores fused to aromatic rings. These derivatives are configurationally stable, even in acidic media when their structures bear ethylene bridges. Here, a two- to three-step synthesis is presented of methano- and ethano-bridged Tröger's base analogs with two peripheral fluorophores, i.e., anthracene, pyrene, and 9,9-dimethylfluorene units. These compounds, possessing two nitrogen stereogenic centers, exhibit good circularly polarized luminescence (CPL) dissymmetry factors (|glum| up to 1.2 × 10-3) and brightnesses (BCPL up to 26.3 M-1 cm-1), as well as excellent fluorescence quantum yields, demonstrating the Tröger´s base core to be a convenient scaffold to prepare CPL emitters upon functionalization with simple achiral fluorophores. Furthermore, the configurationally stable ethano-bridged Tröger's base analogs are employed to modulate their CPL response, generating a CPL switch through their protonation/deprotonation by consecutive additions of acid and base. The reversibility of the switching process is demonstrated for two cycles without altering the CPL performance of the molecule. It is believed that this straightforward and efficient approach to building CPL emitters employing the Tröger's base core could lead to its incorporation in CPL-based sensors and materials.
Collapse
Affiliation(s)
- Pablo García-Cerezo
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - Marcos D Codesal
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Laboratoire MOLTECH-Anjou (UMR CNRS 6200), Université Angers, 2 Bd Lavoisier, Angers Cedex, 49045, France
| | - Laura Le Bras
- CNRS, Chrono-environnement (UMR 6249), Université Marie et Louis Pasteur, Besançon, F-25000, France
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, University of Wyoming, Laramie, WY, 82072, USA
| | - Delia Miguel
- Nanoscopy-UGR Laboratory. Physical Chemistry Department, UEQ, Faculty of Pharmacy, University of Granada, C. U. Cartuja, Granada, 18071, Spain
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Araceli G Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemistry, The University of Hong Kong, Hong Kong, SAR, 999077, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, Hangzhou, 311215, China
- Center for Regenerative Medicine and Department of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Victor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, Granada, 18071, Spain
| |
Collapse
|
2
|
Zheng F, Liu XL, Xing L, Jin JM, Ji S, Huo Y, Chen WC. Highly Efficient Circularly Polarized Luminescence Based on Center-Chiral Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2025:e202504057. [PMID: 40372158 DOI: 10.1002/anie.202504057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/16/2025]
Abstract
Achieving high-efficiency circularly polarized luminescence (CPL) in organic light-emitting diodes (OLEDs) presents a significant challenge, particularly for center-chiral systems, due to the inherent trade-off between high luminescence efficiency and large luminescence dissymmetry factors. In this work, we introduce a center-chiral frustrated Lewis pair (FLP) design to overcome this limitation. By integrating a stereogenic carbon center into a fluorene scaffold, we create a unique interaction between a boron-based multi-resonance (MR) thermally activated delayed fluorescence (TADF) Lewis acid and an arylamine Lewis base. This sterically hindered design prevents strong charge transfer while optimizing the alignment between electric and magnetic dipole moments for amplified CPL signals. Our OLEDs achieve impressive electroluminescence (EL) dissymmetry factors (|gEL|) of 6.64 × 10-3, external quantum efficiencies (EQEs) of up to 30.4%, and sub-30 nm spectral linewidths. These improvements yield a Figure of Merit (FoM = EQE × |gEL|) of 1.91 × 10-3, the highest reported for center-chiral CPL devices. These findings demonstrate the effectiveness of the center-chiral FLP design in overcoming the long-standing trade-off between polarization and efficiency in CPL devices.
Collapse
Affiliation(s)
- Fan Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xiao-Long Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Longjiang Xing
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
3
|
Shi C, Jin JM, Wang RJ, Chen WC, Sun CL, Ji S, Huo Y, Zhang HL. Highly Efficient Narrowband Circularly Polarized Luminescence from Discrete Supramolecular Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420611. [PMID: 40357861 DOI: 10.1002/adma.202420611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Achieving narrowband emission, high efficiency, and circularly polarized luminescence (CPL) in organic light-emitting diodes (OLEDs) remains a significant challenge. In this study, a discrete supramolecular dimerization strategy is presented to overcome this limitation. By incorporating a helical arylamine with a sterically demanding configuration into a multi-resonance narrowband emitter, the formation of a unique dimeric structure in the solid state is enabled. Unlike conventional multi-resonance emitters prone to aggregation-caused quenching and continuous stacking, the CPL emitters form discrete, well-separated dimers. This distinct supramolecular arrangement not only preserves high photoluminescence quantum yield and narrowband emission but also amplifies CPL signals by optimizing intermolecular electronic coupling. OLEDs incorporating these enantiomers at a 10 wt.% doping level exhibit outstanding performances, including a narrow full-width at half-maximum of 30 nm, maximum external quantum efficiencies (EQE) of 33.5% and 32.4%, and impressive electroluminescence dissymmetry factors (gEL) of +8.7 × 10-3 and -9.1 × 10-3, respectively. Remarkably, increasing the doping concentration to 20 wt.% further boosts the gEL values to +1.6 × 10-2 and -1.8 × 10-2. This enhancement leads to Figures of Merit (EQE × |gEL|) of 3.71 × 10-3 and 4.12 × 10-3, among the highest values for CPL devices.
Collapse
Affiliation(s)
- Chengxiang Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ru-Jia Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| |
Collapse
|
4
|
Wu X, Ni S, Wang CH, Zhu W, Chou PT. Comprehensive Review on the Structural Diversity and Versatility of Multi-Resonance Fluorescence Emitters: Advance, Challenges, and Prospects toward OLEDs. Chem Rev 2025. [PMID: 40344420 DOI: 10.1021/acs.chemrev.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Fluorescence emitters with a multiple-resonant (MR) effect have become a research hotspot. These MR emitters mainly consist of polycyclic aromatic hydrocarbons with boron/nitrogen, nitrogen/carbonyl, and indolocarbazole frameworks. The staggered arrangement of the highest occupied molecular orbital and the lowest unoccupied molecular orbital facilitates MR, resulting in smaller internal reorganization energy and a narrower emission bandwidth. Optimal charge separation suppresses the energy gap between singlet and triplet excited states, favoring thermally activated delayed fluorescence (TADF). These MR-TADF materials, due to color purity and high emission efficiency, are excellent candidates for organic light-emitting diodes. Nevertheless, significant challenges remain; in particular, the limitation imposed by the alternated core configuration hinders their diversity and versatility. Most existing MR-TADF materials are concentrated in the blue-green range, with only a few in red and near-infrared spectra. This review provides a timely and comprehensive screening of MR emitters from their pioneering work to the present. Our goal is to gain understandings of the MR-TADF structure-performance relationship from both basic and advanced perspectives. Special emphasis is placed on exploring the correlations between chemical structure, photophysical properties and electroluminescent performance in both depth and breadth with an aim to promote the future development of MR emitters.
Collapse
Affiliation(s)
- Xiugang Wu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Songqian Ni
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Chih-Hsing Wang
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Pi-Tai Chou
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Walia R, Fan X, Mei L, Guo W, Wang K, Adachi C, Chen X, Zhang X. Blocking Orbital π-Conjugation to Boost Spin-Orbit Coupling in Carbonyl-Embedded Polycyclic Heteroaromatic Emitters. Angew Chem Int Ed Engl 2025; 64:e202503371. [PMID: 40032616 PMCID: PMC12051818 DOI: 10.1002/anie.202503371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Both reducing singlet-triplet energy gaps (ΔES1T1) and enhancing spin-orbit couplings (SOCs) are key to improving reverse intersystem crossing rates (kRISC) in thermally activated delayed fluorescence (TADF) materials. While considerable efforts have focused on reducing ΔES1T1, investigations on SOCs remain limited. Here, blocking π-conjugation in carbonyl-embedded polycyclic heteroaromatic (PHA) molecules as potential approach to elevate ππ* excitation energy, allowing its hybridization with nπ* excitation, thereby increasing SOCs is proposed. Two proof-of-concept isomers, DNDK-1 and DNDK-2 are synthesized, with different orientations of carbonyl units. DNDK-1 adopts a heavily twisted structure that hinders π-conjugation, while DNDK-2 remains quasi-planar, maintaining stronger π-conjugation. Experimental measurements reveals stark differences in their photophysical properties, with DNDK-1 exhibiting faster kRISC and much higher electroluminescence efficiency. The ab-initio calculations elucidate that hindered conjugation in DNDK-1 elevates ππ* excitation energy, enabling nπ*-ππ* mixing, thus significantly boosting SOCs. In contrast, smooth π-conjugation in DNDK-2 leads to marginal nπ*-ππ* mixing. In addition, utilizing groups composed of meta-arranged carbonyl-Ar-carbonyl and meta-arranged N-Ar-N units emerges as another approach to block π-conjugation and enhance SOCs. This joint experimental and theoretical work provides promising pathways to enhance SOCs by blocking π-conjugation, offering crucial insights for designing carbonyl-embedded PHA emitters with larger SOCs.
Collapse
Affiliation(s)
- Rajat Walia
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
| | - Xiaochun Fan
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Center for Organic Photonics and Electronics Research (OPERA)Kyushu University15 Fukuoka819‐0395Japan
| | - Le Mei
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARP.R. China
| | - Weixiong Guo
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARP.R. China
| | - Kai Wang
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsuP.R. China
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA)Kyushu University15 Fukuoka819‐0395Japan
| | - Xian‐Kai Chen
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Center for Organic Photonics and Electronics Research (OPERA)Kyushu University15 Fukuoka819‐0395Japan
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsuP.R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsuP.R. China
| |
Collapse
|
6
|
Shu HX, Xu S, To WP, Cheng G, Che CM. Stable Pincer Gold(III)-TADF Emitters with Extended Donor-Acceptor Separation for Efficient Vacuum-Deposited OLEDs with Operational Lifetime (LT 95) up to 3831 h at 1000 cd m -2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502529. [PMID: 40285612 DOI: 10.1002/advs.202502529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Although gold-TADF (thermally activated delayed fluorescence) emitters have attractive prospects as next-generation practical OLED emitters, the performance of OLEDs utilizing gold(I)- and gold(III)-TADF emitters lags behind the requirements of practical applications, and device lifetime has become a bottleneck. Here, novel pincer gold(III)-TADF emitters that are easily fabricated with tunable donor and acceptor ligands are presented. These pincer gold(III)-TADF emitters exhibit an extended molecular π-distance along the transition dipole moment, resulting in a significant reduction in the electron exchange energy between the S1 and T1 excited states, thus narrowing the singlet-triplet energy gap (ΔEST). The combination of small ΔEST and heavy-atom (Au, S) effect greatly enhances spin-flip dynamics and produces efficient TADF (photoluminescence quantum yields up to 90%) with high radiative decay rate constants (kr up to 106 s-1), and short lifetimes (τ less than 1.2 µs) in thin films at room temperature. Vacuum-deposited OLEDs based on these gold(III)-TADF emitters demonstrate impressive stability, achieving i) a high maximum external quantum efficiency (EQEmax) of up to 22.2%, and ii) a record- long operational lifetime (LT95) of 3831 h at an initial luminance of 1000 cd m-2. This excellent durability makes the pincer gold(III)-TADF emitter a promising and competitive alternative to iridium and platinum emitters for practical OLED applications.
Collapse
Affiliation(s)
- Hui-Xing Shu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, P. R. China
| | - Shuo Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Wai-Pong To
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Gang Cheng
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
7
|
Han Z, Duan C, Dong XY, Si Y, Hu JH, Wang Y, Zhai SM, Lu T, Xu H, Zang SQ. Tightly bonded excitons in chiral metal clusters for luminescent brilliance. Nat Commun 2025; 16:1867. [PMID: 39984514 PMCID: PMC11845751 DOI: 10.1038/s41467-025-57209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Chiral metal clusters have promise for circularly polarized luminescent materials; however, the absence of a unified understanding of the emission mechanism causes challenges in designing high-efficiency lighting materials based on these clusters. These challenges primarily arise from their vast structural variability and intricate emissive states. In this study, we show the crucial roles of the exciton binding energy and electron‒phonon interactions in achieving high-efficiency phosphorescence. Through Cu doping in the Au4 clusters and changing ligand substituents, we increase the exciton binding energies and reduce the electron‒phonon interactions; this results in a maximum 1.3-fold increase in the radiative recombination rate, a maximum 241.1-fold decrease in the nonradiative recombination rate, and ultimately a phosphorescence quantum yield of over 96% and circularly polarized luminescence in metal cluster crystals. A solution-processed circularly polarized light-emitting diode prototype exhibits an external quantum efficiency of 15.51% in green and a maximum dissymmetry factor |gEL| of 7.6 × 10-3. Our findings highlight the significance of designing metal clusters with optimized exciton binding energies and electron‒phonon interactions for enhanced optoelectronic performance, including in circularly polarized optoelectronics.
Collapse
Affiliation(s)
- Zhen Han
- College of Chemistry, Zhengzhou University, Zhengzhou, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Chunbo Duan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, China.
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China.
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Si-Meng Zhai
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, China
| | - Hui Xu
- School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | | |
Collapse
|
8
|
Chen L, Zou P, Chen J, Xu L, Tang BZ, Zhao Z. Hyperfluorescence circularly polarized OLEDs consisting of chiral TADF sensitizers and achiral multi-resonance emitters. Nat Commun 2025; 16:1656. [PMID: 39952979 PMCID: PMC11829008 DOI: 10.1038/s41467-025-56923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Developing circularly polarized organic light-emitting diodes (CP-OLEDs) that simultaneously achieve narrow-spectrum emission and high electroluminescence (EL) efficiency remains a formidable challenge. This work prepares two pairs of efficient circularly polarized thermally activated delayed fluorescence (CP-TADF) materials, featuring high photoluminescence quantum yields, short delayed fluorescence lifetimes, good luminescence dissymmetry factors and large horizontal dipole ratios. They can function as emitters for efficient sky-blue CP-OLEDs, providing high maximum external quantum efficiencies (ηext,maxs) (33.8%) and good EL dissymmetry factors (gELs) (-2.64 × 10-3). More importantly, they can work as sensitizers for achiral multi-resonance (MR) TADF emitters, furnishing high-performance blue and green hyperfluorescence (HF) CP-OLEDs with intense narrow-spectrum CP-EL and good ηext,maxs (31.4%). Moreover, tandem HF CP-OLEDs are fabricated for the first time by employing CP-TADF sensitizers and achiral MR-TADF emitters, which radiate narrow-spectrum CP-EL with an extraordinary ηext,maxs (51.3%) and good gELs (4.87 × 10-3). The circularly polarized energy transfer as well as chirality-induced spin selectivity effect of CP-TADF sensitizers are considered to contribute greatly to the generation of efficient CP-EL from achiral MR-TADF emitters. This work not only explores efficient CP-TADF materials but also provides a facile approach to construct HF CP-OLEDs with achiral MR-TADF emitters.
Collapse
Affiliation(s)
- Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Sun Z, Tang H, Wang L, Cao D. Advances in Chiral Macrocycles: Molecular Design and Applications. Chemistry 2025; 31:e202404217. [PMID: 39673369 DOI: 10.1002/chem.202404217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Chiral macrocycles have recently emerged as promising materials for enantioselective recognition, asymmetric catalysis, and circularly polarized luminescence (CPL) due to their terminal-free structure, preorganized chiral cavities, and unique host-guest and self-assembly properties. This review summarizes recent advances in the design and synthesis of chiral macrocycles with central, axial, helical, and planar chirality, each imparting distinct structural and chiroptical characteristics. We highlight key strategies for constructing these macrocycles and their applications in optoelectronic and catalytic systems. Emphasis is placed on the balance between rigidity and flexibility in macrocycle design, essential for effective molecular recognition, adaptable catalysis, and CPL. We conclude with perspectives on future opportunities, anticipating ongoing developments in chiral macrocycle research.
Collapse
Affiliation(s)
- Zhihong Sun
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
10
|
Wang Y, Zhao WL, Gao Z, Qu C, Li X, Jiang Y, Hu L, Wang XQ, Li M, Wang W, Chen CF, Yang HB. Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2025; 64:e202417458. [PMID: 39379791 DOI: 10.1002/anie.202417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6×10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit a narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6 %, and CPEL with |gEL| of 2.1×10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiwen Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yefei Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
11
|
Nishimoto E, Ikai T, Shinokubo H, Fukui N. Synthesis and Properties of Donor-Acceptor-Type Cyclobisbiphenylenecarbonyls. Chemistry 2024:e202404194. [PMID: 39739760 DOI: 10.1002/chem.202404194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
The scalable synthesis of figure-eight π-systems is challenging for the conventional bottom-up approach. We have recently reported that the oxidative inner-bond cleavage of commercially available dibenzo[g,p]chrysene efficiently furnishes a figure-eight π-acceptor, cyclobisbiphenylenecarbonyl (CBBC), in large quantity. Furthermore, its donor-acceptor-type derivative with four N-carbazolyl substituents at the meta-positions of the carbonyl groups exhibited thermally activated delayed fluorescence (TADF) and circularly polarized luminescence (CPL) with a high |gCPL| value of 1.0×10-2. Herein, we synthesized nine donor-acceptor-type CBBC derivatives by changing the donor substituents and their positions. Compared to previously reported carbazole-substituted CBBC, tetramethylcarbazole- and 9,10-dihydro-9,9-dimethylacridine-substituted derivatives exhibited enhanced emission quantum yields and accelerated reverse intersystem crossing. The functionalization of the para-positions of the carbonyl groups resulted in better tunability of emission colors rather than meta-functionalization, whose color variation ranges from light blue to red. The incorporation of bulky substituents at the meta-positions of the carbonyl groups induced the conformational change to a distorted ring structure. Investigation of the substituent effect on the chiroptical properties revealed that the introduction of less bulky donor units such as carbazole at the meta-positions of the carbonyl groups is effective in achieving high |gCPL| values.
Collapse
Affiliation(s)
- Emiko Nishimoto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
12
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
13
|
Imayoshi A, Fujio S, Nagaya Y, Sakai M, Terazawa A, Sakura M, Okada K, Kimoto T, Mori T, Imai Y, Hada M, Tsubaki K. Inversion of circularly polarized luminescence by electric current flow during transition. Phys Chem Chem Phys 2024; 27:77-82. [PMID: 39569563 DOI: 10.1039/d4cp02968b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The development of chiral compounds exhibiting circularly polarized luminescence (CPL) has advanced remarkably in recent years. Designing CPL-active compounds requires an understanding of the electric transition dipole moment (μ) and the magnetic transition dipole moment (m) in the excited state. However, while the direction and magnitude of μ can, to some extent, be visually inferred from chemical structures, m remains elusive, posing challenges for direct predictions based on structural information. This study utilized binaphthol, a prominent chiral scaffold, and achieved CPL-sign inversion by strategically varying the substitution positions of phenylethynyl (PE) groups on the binaphthyl backbone, while maintaining consistent axial chirality. Theoretical investigation revealed that the substitution position of PE groups significantly affects the orientation of m in the excited state, leading to CPL-sign inversion. Furthermore, we propose that this CPL-sign inversion results from a reversal in the rotation of instantaneous current flow during the S1 → S0 transition, which in turn alters the orientation of m. The current flow can be predicted from the chemical structure, allowing anticipation of the properties of m and, consequently, the characteristics of CPL. This insight provides a new perspective in designing CPL-active compounds, particularly for C2-symmetric molecules where the S1 → S0 transition predominantly involves LUMO → HOMO transitions. If μ represents the directionality of electron movement during transitions, i.e., the "difference" in electron locations before and after transitions, then m could be represented as the "path" of electron movement based on the current flow during the transition.
Collapse
Affiliation(s)
- Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Shinya Fujio
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Yuuki Nagaya
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Misato Sakai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Atsushi Terazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Misa Sakura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Keita Okada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takahiro Kimoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahiko Hada
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
14
|
Yang WW, Ren ZH, Feng J, Lv ZB, Cheng X, Zhang J, Du D, Chi C, Shen JJ. A Deep-Red Emissive Sulfur-Doped Double [7]Helicene Photosensitizer: Synthesis, Structure and Chiral Optical Properties. Angew Chem Int Ed Engl 2024; 63:e202412681. [PMID: 39115363 DOI: 10.1002/anie.202412681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 10/26/2024]
Abstract
Doping of polycyclic conjugated hydrocarbons (PCHs) with sulfur atoms is becoming more and more important as a means of creating unique functional materials. Recently, thiophene-containing multiple helicenes have garnered enormous attention due to their intriguing electronic and (chir)optical properties compared with carbohelicenes. However, the efficient synthesis of thiopyran-containing multiple helicenes and the underlying sulfur doping mechanisms are rather unexplored. Herein, the synthesis and structural analysis of a thiopyran-containing double [7]helicene 3 are reported. X-ray crystallographic analysis reveals 3 and its dication with C2-symmetric propeller-shape structures and compact interactions in the solid state. 3 exhibits deep-red to near-infrared (NIR) fluorescence emission. Tunable aromaticity of the central benzene ring and thiopyran rings is found by chemical oxidation, which is further confirmed by nucleus-independent chemical shift (NICS), anisotropy of the induced current density (ACID) and harmonic oscillator model of aromaticity (HOMA) analysis. Furthermore, the chiral and photosensitizing characters of 3 are investigated. The excellent deep-red to NIR fluorescence, circularly polarized luminescence (CPL) and photosensitizing activities suggest that 3 can be used as an outstanding photosensitizer in photodynamic therapy (PDT) and bioimaging, especially paving the way for future CPL-PDT and CPL-bio-probe applications.
Collapse
Affiliation(s)
- Wen-Wen Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zi-Heng Ren
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jiao Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zhi-Bang Lv
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xingwen Cheng
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jianming Zhang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jun-Jian Shen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| |
Collapse
|
15
|
Tan KK, Guo WC, Zhao WL, Li M, Chen CF. Self-Assembled Chiral Polymers Exhibiting Amplified Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024; 63:e202412283. [PMID: 39011879 DOI: 10.1002/anie.202412283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Circularly polarized electroluminescence (CPEL) is highly promising in realm of 3D display and optical data storage. However, designing a groundbreaking chiral material with high comprehensive CPEL performance remains a formidable challenge. In this work, a pair of chiral polymers with self-assembled behavior is designed by integrating a chiral BN-moiety into polyfluorene backbone, named R-PBN and S-PBN, respectively. The chiral polymers show narrowband emission centered at 490 nm with full-width half maximum (FWHM) of 29 nm and high photoluminescence quantum yield (PLQY) of 79 %. After thermal annealing treatment, the chiral polymers undergo self-assembly, exhibiting amplified circularly polarized luminescence (CPL) with asymmetry factor (|glum|) of up to 0.11. Moreover, the solution-processed nondoped CP-OLEDs based on the chiral polymers as emitting layers exhibit maximum external quantum efficiency (EQEmax) of 9.8 %, intense CPEL activities with |gEL| of up to 0.07, and small FWHM of 36 nm, simultaneously. This represents the first case of self-assembled chiral polymers that combines high EQE, large gEL value and narrowband emission.
Collapse
Affiliation(s)
- Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| |
Collapse
|
16
|
Zhuang W, Hung FF, Che CM, Liu J. Nonalternant B,N-Embedded Helical Nanographenes Containing Azepines: Programmable Synthesis, Responsive Chiroptical Properties and Spontaneous Resolution into a Single-Handed Helix. Angew Chem Int Ed Engl 2024; 63:e202406497. [PMID: 39031496 DOI: 10.1002/anie.202406497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Heteroatom-embedded helical nanographenes (NGs) constitute an important and appealing class of intrinsically chiral materials. In this work, a series of B,N-embedded helical NGs (BN-HNGs) bearing azepines was synthesized via stepwise regioselective cyclodehydrogenation. First, the phenyl- or nitrogen-bridged dimers were efficiently clipped into highly congested model compounds 1 and 2. Later, the controllable Scholl reactions of the tetraphenyl-tethered precursor generated 1, 7 or 8 new C-C bonds, thereby establishing a robust method for the preparation of nonalternant BN-HNGs with up to 31 fused rings. The helical bilayer nature was unambiguously verified by X-ray diffraction analysis. The helical chirality was transferred to the stereogenic boron centers upon fluoride coordination, with a concave-concave structure to comply with the bilayer skeleton. Notably, the largest nonalternant BN-HNG (6) spontaneously resolved into a homochiral 41 helix structure as a molecular spiral staircase during crystallization via conglomerate formation at the single-crystal scale. The large twisted C2-symmetric π-surface and the dynamic chiral skeleton induced by curved azepines might have synergistic effects on self-recognition of enantiomers of 6 to achieve the intriguing spontaneous resolution behavior. The chiroptical properties of the enantiomer of 6 were further investigated, revealing that 6 had a strong chiroptical response in the visible range (400-700 nm).
Collapse
Affiliation(s)
- Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518005, P.R. China
| |
Collapse
|
17
|
Wang Y, Lv ZY, Chen ZX, Xing S, Huo ZZ, Hong XF, Yuan L, Li W, Zheng YX. Multiple-resonance thermally activated delayed fluorescence materials based on phosphorus central chirality for efficient circularly polarized electroluminescence. MATERIALS HORIZONS 2024; 11:4722-4729. [PMID: 38990337 DOI: 10.1039/d4mh00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Circularly polarized organic light-emitting diodes (CP-OLEDs) hold great potential for naked-eye 3D displays, necessitating efficient chiral luminescent materials with an optimal CP luminescence (CPL) dissymmetry factor (g). Herein, we present the first chiral multiple resonance thermally activated delayed fluorescence (MR-TADF) materials containing a phosphorus chiral center by incorporating 5-phenylbenzo[b]phosphindole-5-oxide into the para-position of two MR-TADF cores. The compounds, NBOPO and NBNPO, exhibit photoluminescence peaks at 462 and 498 nm with narrow full-width at half-maximum values of 25 and 24 nm in toluene, respectively. Notably, (R/S)-NBOPO and (R/S)-NBNPO enantiomers display high quantum yields of 87% and 93% and symmetric CPL with |gPL| factors of 1.18 × 10-3 and 4.30 × 10-3, respectively, in doped films. Moreover, the corresponding CP-OLEDs show impressive external quantum efficiencies of 16.4% and 28.3%, along with symmetric CP electroluminescence spectra with |gEL| values of 7.0 × 10-4 and 1.4 × 10-3, respectively.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zi-Yi Lv
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zi-Xuan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Shuai Xing
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhong-Zhong Huo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xian-Fang Hong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Wei Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
18
|
Wang J, Chen D, Moreno-Naranjo JM, Zinna F, Frédéric L, Cordes DB, McKay AP, Fuchter MJ, Zhang X, Zysman-Colman E. Helically chiral multiresonant thermally activated delayed fluorescent emitters and their use in hyperfluorescent organic light-emitting diodes. Chem Sci 2024; 15:d4sc03478c. [PMID: 39328198 PMCID: PMC11420764 DOI: 10.1039/d4sc03478c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Chiral multiresonant thermally activated delayed fluorescence (MR-TADF) materials show great potential as emitters in circularly polarized (CP) organic light-emitting diodes (CP-OLEDs) owing to their bright and narrowband CP emission. Here, two new chiral MR-TADF emitters tBuPh-BN and DPA-tBuPh-BN possessing intrinsically helical chirality have been synthesized and studied. The large steric interactions between the tert-butylphenyl groups not only induce the helical chirality but also provide a notable configurational stability to the enantiomers. Racemic mixtures of tBuPh-BN and DPA-tBuPh-BN show narrowband emission at 490 and 477 nm with full-width at half maximum (FWHM) of 25 and 28 nm and photoluminescence quantum yields, Φ PL, of 85 and 54% in toluene. The separated enantiomers of tBuPh-BN and DPA-tBuPh-BN show symmetric circularly polarized luminescence (CPL) with respective dissymmetry factors |g PL| values of 1.5 × 10-3 and 0.9 × 10-3. The hyperfluorescence organic light-emitting diodes (HF-OLEDs) with tBuPh-BN and DPA-tBuPh-BN acting as terminal emitters and 2,3,4,5,6-penta-(9H-carbazol-9-yl)benzonitrile (5CzBN) as their assistant dopant exhibited, respectively, maximum external quantum efficiencies (EQEmax) of 20.9 and 15.9% at 492 and 480 nm with FWHM of 34 and 38 nm. This work demonstrates a strategy for developing intrinsically helically chiral MR-TADF emitters possessing significant configurational stability, which can be used in HF-OLEDs.
Collapse
Affiliation(s)
- Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 1334 463808 +44 1334 463826
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 1334 463808 +44 1334 463826
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Juan Manuel Moreno-Naranjo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus London W12 0BZ UK
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa 56124 Pisa Italy
| | - Lucas Frédéric
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - David B Cordes
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 1334 463808 +44 1334 463826
| | - Aidan P McKay
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 1334 463808 +44 1334 463826
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus London W12 0BZ UK
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 1334 463808 +44 1334 463826
| |
Collapse
|
19
|
Guo CH, Zhang Y, Zhao WL, Tan KK, Feng L, Duan L, Chen CF, Li M. Chiral Co-Assembly with Narrowband Multi-Resonance Characteristics for High-Performance Circularly Polarized Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406550. [PMID: 39054732 DOI: 10.1002/adma.202406550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A promising kind of ternary chiral co-assemblies with high PLQY, large dissymmetry factor (glum), and narrowband multi-resonance characteristics are achieved by codoped-thermal annealing treatments of achiral luminescent polymer F8BT, chiral inducers R/S-5011, and achiral FRET acceptor DBN-ICZ. The optimized co-assemblies (F8BT)0.9-(R/S-5011)0.1-(DBN-ICZ)0.005 display narrowband yellow emission with full-width half maximum (FWHM) of 37 nm, PLQY of 79%, and intense CPL signals with |glum| of up to 0.26. Meaningfully, solution-processed CP-OLEDs by using those ternary chiral co-assemblies as emitting layer are successfully fabricated, which display yellow circularly polarized electroluminescence (CPEL) with EQEmax of 4.6% and gEL of up to 0.16. The corresponding Q-factor could reach up to 7.36 × 10-3, which is the highest of all the reported CP-OLEDs. Moreover, the devices also exhibit excellent comprehensive device performance with low Von of 7.0 V, high Lmax of about 25 000 cd m-2, extremely low efficiency roll-off with EQE of 4.3% at 10 000 cd m-2, as well as narrowband EL with FWHM of only 39 nm. The proposed ternary co-assembly strategy in fabricating CP-OLED provides the possibility to achieve high comprehensive device performance such as balancing high EQE and large gEL value, as well as narrowband emission, high brightness and low efficiency roll-off simultaneously.
Collapse
Affiliation(s)
- Chen-Hao Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
20
|
Huang T, Yuan L, Lu X, Qu Y, Qu C, Xu Y, Zheng YX, Wang Y. Efficient circularly polarized multiple resonance thermally activated delayed fluorescence from B,N-embedded hetero[8]helicene enantiomers. Chem Sci 2024:d4sc03854a. [PMID: 39246366 PMCID: PMC11376137 DOI: 10.1039/d4sc03854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Helicene-based circularly polarized multiple resonance thermally activated delayed fluorescence (CP-MR-TADF) materials are promising for ultra-high-definition and 3D displays, but most of them encounter potential problems such as easy racemization during the thermal deposition process, low luminous efficiency, and low luminescence dissymmetry factor (g lum), making the development of efficient circularly polarized organic light-emitting diodes (CP-OLEDs) a significant challenge. Here, we report a pair of CP-MR-TADF enantiomers with high-order B,N-embedded hetero[8]helicene, (P/M)-BN-TP-ICz, by fusing two MR chromophores, DtCzB and indolo[3,2,1-jk]carbazole (ICz). BN-TP-ICz exhibits green emission in toluene with a peak of 531 nm and a full-width at half-maximum (FWHM) of 36 nm. The optimized CP-OLEDs with enantiomers (P/M)-BN-TP-ICz exhibit green emission with peaks of 540 nm, FWHMs of 38 nm and Commission Internationale de L'Eclairage coordinates of (0.33, 0.65). Moreover, they showcase maximum external quantum efficiencies (EQEs) of 32.0%, with g ELs of +6.49 × 10-4 and -7.74 × 10-4 for devices based on (P)-BN-TP-ICz- and (M)-BN-TP-ICz, respectively.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Xueying Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yupei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Jihua Laboratory 28 Huandao Nan Road Foshan 528200 Guangdong Province P. R. China
| |
Collapse
|
21
|
Zhang K, Zhou Z, Liu D, Chen Y, Zhang S, Pan J, Qiao X, Ma D, Su S, Zhu W, Liu Y. Boosting External Quantum Efficiency to 12.0 % of an Ultraviolet OLED by Engineering the Horizontal Dipole Orientation of a Hot Exciton Emitter. Angew Chem Int Ed Engl 2024; 63:e202407502. [PMID: 38721850 DOI: 10.1002/anie.202407502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 06/27/2024]
Abstract
Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (ϕPL: 72 %, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92 %), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0 %. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.
Collapse
Affiliation(s)
- Kai Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhongxin Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yichao Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shiyue Zhang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jie Pan
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Xianfeng Qiao
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - ShiJian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Liu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
22
|
Ge C, Shang W, Chen Z, Liu J, Tang H, Wu Y, He S, Liu M, Li H. Self-Assembled Pure Covalent Tubes Exhibiting Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202408056. [PMID: 38758007 DOI: 10.1002/anie.202408056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Here, we successfully synthesized four structurally analogous, self-assembled chiral molecular tubes with relatively high yields. This achievement involved the condensation of six equivalents of enantiomerically pure trans-cyclohexane-1,2-diamine (trans-CHDA) and three equivalents of the corresponding tetraformyl precursor. Each precursor was equipped with a luminescent linker terminated by two m-phthalaldehyde units. Even though these tetraformyl precursors are barely soluble in almost all organic solvents, the molecular tubes are highly soluble in nonpolar solvents such as chloroform, allowing us to fully characterize them in solution. The stereo-chirality of the chiral bisamino building blocks endows the frameworks of molecular tubes with planar chirality. As a consequence, all of these molecular tubes exhibit circularly polarized luminescence (CPL) with relatively large dissymmetry values |glum| up to 7×10-3, providing an efficient method for synthesizing CPL-active materials.
Collapse
Affiliation(s)
- Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Weili Shang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024, China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yating Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Siyu He
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| |
Collapse
|
23
|
You J, Yin C, Wang S, Wang X, Jin K, Wang Y, Wang J, Liu L, Zhang J, Zhang J. Responsive circularly polarized ultralong room temperature phosphorescence materials with easy-to-scale and chiral-sensing performance. Nat Commun 2024; 15:7149. [PMID: 39168981 PMCID: PMC11339387 DOI: 10.1038/s41467-024-51203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Circularly polarized room temperature phosphorescence materials represent a state-of-the-art frontier of optical materials and exhibit promising applications in various fields. Herein, we fabricate a series of full-color circularly polarized room temperature phosphorescence materials, based on anionic cellulose derivatives and achiral luminophores. The ionic achiral substituents promote the spontaneous formation of chiral helical structure of cellulose derivatives via the electrostatic repulsion effect. There are multiple interactions between anionic cellulose derivatives and the doped luminophores, thus the chirality is transferred to luminophores and the non-radiative transition is inhibited. The resultant materials can be easily processed into large-scale film and flexible 3D objects with repeatable folding and curling properties. In addition, their phosphorescence performance shows to be excitation-dependence, time-dependence, visible-light excitation, and multi-responsiveness to humidity, temperature as well as pH value. Importantly, they recognize many enantiomers in an instrument-free visual mode, including amino acids, hydroxyl acids, organic phosphate and hydrobenzoin. These results provide insights into design of advanced optical materials which can be applied in multilevel information handling and chiral sensing.
Collapse
Affiliation(s)
- Jingxuan You
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunchun Yin
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Sihuan Wang
- National Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, 430200, China
| | - Xi Wang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunfeng Jin
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Yirong Wang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Wang
- National Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, 430200, China
| | - Lei Liu
- National Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, 430200, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.
| |
Collapse
|
24
|
Yuan L, Xu JW, Yan ZP, Yang YF, Mao D, Hu JJ, Ni HX, Li CH, Zuo JL, Zheng YX. Tetraborated Intrinsically Axial Chiral Multi-resonance Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2024; 63:e202407277. [PMID: 38780892 DOI: 10.1002/anie.202407277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission with a maximum at 458/459 nm with a full width at half maximum of 27 nm, photoluminescence quantum yields of 90 %/91 %, and dissymmetry factors (|gPL|) of 6.8×10-4/8.5×10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with an external quantum efficiency of 30.1 % and |gEL| factors of 1.2×10-3.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Wei Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | | - Yi-Fan Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dan Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Jun Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Xiu Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
25
|
Moreno-Naranjo JM, Furlan F, Wang J, Ryan STJ, Matulaitis T, Xu Z, Zhang Q, Minion L, Di Girolamo M, Jávorfi T, Siligardi G, Wade J, Gasparini N, Zysman-Colman E, Fuchter MJ. Enhancing Circularly Polarized Electroluminescence through Energy Transfer within a Chiral Polymer Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402194. [PMID: 38865650 DOI: 10.1002/adma.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Organic light-emitting diodes (OLEDs) that are able to emit high levels of circularly polarized (CP) light hold significant promise in numerous future technologies. Such devices require chiral emissive materials to enable CP electroluminescence. However, the vast majority of current OLED emitter classes, including the state-of-the-art triplet-harvesting thermally activated delayed fluorescence (TADF) materials, produce very low levels of CP electroluminescence. Here a host-guest strategy that allows for energy transfer between a chiral polymer host and a representative chiral TADF emitter is showcased. Such a mechanism results in a large amplification of the circular polarization of the emitter. As such, this study presents a promising avenue to further boost the performance of circularly polarized organic light-emitting diode devices, enabling their further development and eventual commercialization.
Collapse
Affiliation(s)
- Juan Manuel Moreno-Naranjo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Francesco Furlan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Seán Timothy James Ryan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Zhiyu Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Qianyi Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Louis Minion
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Marta Di Girolamo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Tamás Jávorfi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jessica Wade
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Nicola Gasparini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Matthew John Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
- Centre for Processable Electronics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
26
|
Wu W, Yao W, Zuo L, Li X, Yang X, Liu Y, Tang Z. Flexible Full-Inorganic Ultrathin Films with Stable Circularly Polarized Luminescence Covering the Visible to Near-Infrared Region. Chemphyschem 2024; 25:e202400138. [PMID: 38507137 DOI: 10.1002/cphc.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Circularly polarized luminescence (CPL) materials hold significant value in various fields, including information storage, secure communication, three-dimensional displays, biological detection, and optoelectronic devices. Using the Langmuir-Schaeffer (LS) assembly technique, we successfully construct a series of large-area flexible optical ultrathin films. Impressively, the inorganic assembled ultrathin films exhibit excellent CPL optical activity covering the visible to near-infrared (NIR) region, with the luminescence asymmetry factor glum ranging from 0.59 to 0.72. Moreover, such ultrathin films also display outstanding mechanical flexibility, the optical activity of which even after 240 bending cycles shows almost no difference compared to the unbent samples. Owing to the ultra-broadband optical activity and ultra-stable optical activity of such full-inorganic assembled materials on flexible substrates, coupled with their excellent processability and outstanding mechanical flexibility, we anticipate they will find use in many fields such as communication technology and flexible optoelectronics.
Collapse
Affiliation(s)
- Wenxuan Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenyan Yao
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lulu Zuo
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinwei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xuekang Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yaling Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
27
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
28
|
Tauchi D, Kanno K, Hasegawa M, Mazaki Y, Tsubaki K, Sugiura KI, Shiga T, Mori S, Nishikawa H. Aggregation-induced enhanced fluorescence emission of chiral Zn(II) complexes coordinated by Schiff-base type binaphthyl ligands. Dalton Trans 2024; 53:8926-8933. [PMID: 38687172 DOI: 10.1039/d4dt00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A pair of novel chiral Zn(II) complexes coordinated by Schiff-base type ligands derived from BINOL (1,1'-bi-2-naphthol), R-/S-Zn, were synthesized. X-ray crystallography revealed the presence of two crystallographically independent complexes; one has a distorted trigonal-bipyramidal structure coordinated by two binaphthyl ligands and one disordered methanol molecule (molecule A), while the other has a distorted tetrahedral structure coordinated by two binaphthyl ligands (molecule B). Numerous CH⋯π and CH⋯O interactions were identified, contributing to the formation of a 3-dimensional rigid network structure. Both R-/S-Zn exhibited fluorescence in both CH2Cl2 solutions and powder samples, with the photoluminescence quantum yields (PLQYs) of powder samples being twice as large as those in solutions, indicating aggregation-induced enhanced emission (AIEE). The AIEE properties were attributed to the restraint of the molecular motion arising from the 3-dimensional intermolecular interactions. CD and CPL spectra were observed for R-/S-Zn in both solutions and powders. The dissymmetry factors, gabs and gCPL values, were within the order of 10-3 to 10-4 magnitudes, comparable to those reported for chiral Zn(II) complexes in previous studies.
Collapse
Affiliation(s)
- Daiki Tauchi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Katsuya Kanno
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Yasuhiro Mazaki
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Ken-Ichi Sugiura
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takuya Shiga
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Seiji Mori
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| | - Hiroyuki Nishikawa
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.
| |
Collapse
|
29
|
Zhang T, Zhang Y, He Z, Yang T, Hu X, Zhu T, Zhang Y, Tang Y, Jiao J. Recent Advances of Chiral Isolated and Small Organic Molecules: Structure and Properties for Circularly Polarized Luminescence. Chem Asian J 2024; 19:e202400049. [PMID: 38450996 DOI: 10.1002/asia.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
This paper explores recent advancements in the field of circularly polarized luminescence (CPL) exhibited by small and isolated organic molecules. The development and application of small CPL molecule are systematically reviewed through eight different chiral skeleton sections. Investigating the intricate interplay between molecular structure and CPL properties, the paper aims at providing and enlighting novel strategies for CPL-based applications.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yue Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhiyuan He
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Tingjun Yang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xu Hu
- School of Chemistry and Chemical Engineering at, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Tengfei Zhu
- Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
30
|
Guo WC, Zhao WL, Tan KK, Li M, Chen CF. B,N-Embedded Hetero[9]helicene Toward Highly Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024; 63:e202401835. [PMID: 38380835 DOI: 10.1002/anie.202401835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The intrinsic helical π-conjugated skeleton makes helicenes highly promising for circularly polarized electroluminescence (CPEL). Generally, carbon helicenes undergo low external quantum efficiency (EQE), while the incorporation of a multi-resonance thermally activated delayed fluorescence (MR-TADF) BN structure has led to an improvement. However, the reported B,N-embedded helicenes all show low electroluminescence dissymmetry factors (gEL), typically around 1×10-3. Therefore, the development of B,N-embedded helicenes with both a high EQE and gEL value is crucial for achieving highly efficient CPEL. Herein, a facile approach to synthesize B,N-embedded hetero[9]helicenes, BN[9]H, is presented. BN[9]H shows a bright photoluminescence with a maximum at 578 nm with a high luminescence dissymmetry factor (|glum|) up to 5.8×10-3, attributed to its inherited MR-TADF property and intrinsic helical skeleton. Furthermore, circularly polarized OLED devices incorporating BN[9]H as an emitter show a maximum EQE of 35.5 %, a small full width at half-maximum of 48 nm, and, more importantly, a high |gEL| value of 6.2×10-3. The Q-factor (|EQE×gEL|) of CP-OLEDs is determined to be 2.2×10-3, which is the highest among helicene analogues. This work provides a new approach for the synthesis of higher helicenes and paves a new way for the construction of highly efficient CPEL materials.
Collapse
Affiliation(s)
- Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| |
Collapse
|
31
|
Yin X, Huang H, Li N, Li W, Mo X, Huang M, Chen G, Miao J, Yang C. Integration of fine-tuned chiral donor with hybrid long/short-range charge-transfer for high-performance circularly polarized electroluminescence. MATERIALS HORIZONS 2024; 11:1752-1759. [PMID: 38291904 DOI: 10.1039/d3mh02146g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The synergistic integration of a fine-tuned chiral donor with a hybrid long/short-range charge-transfer mechanism offers an accessible pathway to construct highly efficient circularly polarized emitters. Consequently, a notable dissymmetry factor of 1.6 × 10-3, concomitantly with a record-setting maximum external quantum efficiency of 37.4%, is synchronously realized within a single embodiment.
Collapse
Affiliation(s)
- Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Haoxin Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Wendi Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xuechao Mo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
32
|
Jiang A, Cui H, Zhang L, Cao C, Dai H, Lu C, Ge C, Lu H, Wu ZG. Functionalization of the Octahydro-Binaphthol Skeleton: A Universal Strategy for Directly Constructing D-A Type Axially Chiral Biphenyl Luminescent Molecules. J Org Chem 2024; 89:3605-3611. [PMID: 38364322 DOI: 10.1021/acs.joc.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
D-A type axially chiral biphenyl luminescent molecules are directly constructed through ingenious functionalization of the octahydro-binaphthol skeleton without optical resolution. The circularly polarized organic light-emitting diodes based on them display remarkable circularly polarized electroluminescence emission, a high luminance of >10 000 cd m-2, a maximum external quantum efficiency of 6.6%, and an extremely low-efficiency roll-off. This work provides a universal strategy for developing efficient and diverse axially chiral biphenyl emitters.
Collapse
Affiliation(s)
- Aiwei Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Li Zhang
- Nantong Cellulose Fibers Company, Ltd., Nantong, Jiangsu 226007, P. R. China
| | - Chenhui Cao
- Anhui Sholon New Material Technology Company, Ltd., Chuzhou, Anhui 239500, P. R. China
| | - Hong Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaowu Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Cunwang Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
33
|
Lai X, Zhong Q, Xiao C, Cowling SJ, Duan P, Bruce DW, Zhu W, Wang Y. Liquid-crystalline circularly polarised fluorescent emitters with a high luminescence dissymmetry factor. Chem Commun (Camb) 2024; 60:2026-2029. [PMID: 38288509 DOI: 10.1039/d3cc06000d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chiral liquid-crystalline emitters based on 9,9-dimethyl-10-(4-(phenylsulfonyl)phenyl)-9,10-dihydroacridine and a functionalised binaphthol show smectic liquid crystal phases and circularly polarised blue fluorescence with a high luminescence dissymmetry factor |glum| of 0.13. Solution-processable organic light-emitting diodes (OLEDs) based on the enantiomers were explored.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Qihang Zhong
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Chen Xiao
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Stephen J Cowling
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Duncan W Bruce
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Weiguo Zhu
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Yafei Wang
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
34
|
Karak P, Moitra T, Banerjee A, Ruud K, Chakrabarti S. Accidental triplet harvesting in donor-acceptor dyads with low spin-orbit coupling. Phys Chem Chem Phys 2024; 26:5344-5355. [PMID: 38268441 DOI: 10.1039/d3cp04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We present an accidental mechanism for efficient intersystem crossing (ISC) between singlet and triplet states with low spin-orbit coupling (SOC) in molecules having donor-acceptor (D-A) moieties separated by a Sigma bond. Our study shows that SOC between the lowest singlet excited state and the higher-lying triplet states, together with nuclear motion-driven coupling of this triplet state with lower-lying triplet states during the free rotation about a Sigma bond, is one of the possible ways to achieve the experimentally observed ISC rate for a class of D-A type photoredox catalysts. This mechanism is found to be the dominant contributor to the ISC process with the corresponding rate reaching a maximum at a dihedral angle in the range of 72°-78° between the D-A moieties of 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine and other molecules included in the study. We have further demonstrated that the same mechanism is operative in a specific spirobis[anthracene]dione molecule, where the D and A moieties are interlocked near to the optimal dihedral angle, indicating the plausible effectiveness of the proposed mechanism. The present finding is expected to have implications in strategies for the synthesis of new generations of triplet-harvesting organic molecules.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata - 700009, West Bengal, India.
| | - Torsha Moitra
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Ambar Banerjee
- Department of Physics and Astronomy, X-ray Photon Science, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway.
- Norwegian Defence Research Establishment, P.O.Box 25, 2027 Kjeller, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata - 700009, West Bengal, India.
| |
Collapse
|
35
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
36
|
Meng G, Zhou J, Han XS, Zhao W, Zhang Y, Li M, Chen CF, Zhang D, Duan L. B-N Covalent Bond Embedded Double Hetero-[n]helicenes for Pure Red Narrowband Circularly Polarized Electroluminescence with High Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307420. [PMID: 37697624 DOI: 10.1002/adma.202307420] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Indexed: 09/13/2023]
Abstract
Chiral B/N embedded multi-resonance (MR) emitters open a new paradigm of circularly polarized (CP) organic light-emitting diodes (OLEDs) owing to their unique narrowband spectra. However, pure-red CP-MR emitters and devices remain exclusive in literature. Herein, by introducing a B-N covalent bond to lower the electron-withdrawing ability of the para-positioned B-π-B motif, the first pair of pure-red double hetero-[n]helicenes (n = 6 and 7) CP-MR emitter peaking 617 nm with a small full-width at half-maximum of 38 nm and a high photoluminescence quantum yield of ≈100% in toluene is developed. The intense mirror-image CP light produced by the enantiomers is characterized by high photoluminescence dissymmetry factors (gPL ) of +1.40/-1.41 × 10-3 from their stable helicenes configuration. The corresponding devices using these enantiomers afford impressive CP electroluminescence dissymmetry factors (gEL ) of +1.91/-1.77 × 10-3 , maximum external quantum efficiencies of 36.6%/34.4% and Commission Internationale de I'Éclairage coordinates of (0.67, 0.33), exactly satisfying the red-color requirement specified by National Television Standards Committee (NTSC) standard. Notably a remarkable long LT95 (operational time to 95% of the initial luminance) of ≈400 h at an initial brightness of 10,000 cd m-2 is also observed for the same device, representing the most stable CP-OLED up to date.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xu-Shuang Han
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenlong Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
37
|
Uceda RG, Cruz CM, Míguez-Lago S, de Cienfuegos LÁ, Longhi G, Pelta DA, Novoa P, Mota AJ, Cuerva JM, Miguel D. Can Magnetic Dipole Transition Moment Be Engineered? Angew Chem Int Ed Engl 2024; 63:e202316696. [PMID: 38051776 DOI: 10.1002/anie.202316696] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The development of chiral compounds with enhanced chiroptical properties is an important challenge to improve device applications. To that end, an optimization of the electric and magnetic dipole transition moments of the molecule is necessary. Nevertheless, the relationship between chemical structure and such quantum mechanical properties is not always clear. That is the case of magnetic dipole transition moment (m) for which no general trends for its optimization have been suggested. In this work we propose a general rationalization for improving the magnitude of m in different families of chiral compounds. Performing a clustering analysis of hundreds of transitions, we have been able to identify a single group in which |m| value is maximized along the helix axis. More interestingly, we have found an accurate linear relationship (up to R2 =0.994) between the maximum value of this parameter and the area of the inner cavity of the helix, thus resembling classical behavior of solenoids. This research provides a tool for the rationalized synthesis of compounds with improved chiroptical responses.
Collapse
Affiliation(s)
- Rafael G Uceda
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Carlos M Cruz
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Sandra Míguez-Lago
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - David A Pelta
- Departamento de Ciencias de la Computación e Inteligencia Artificial, UGR C/Periodista Daniel Saucedo Aranda S/N, 18071, Granada, Spain
| | - Pavel Novoa
- Departamento de Ciencias de la Computación e Inteligencia Artificial, UGR C/Periodista Daniel Saucedo Aranda S/N, 18071, Granada, Spain
| | - Antonio J Mota
- Departamento de Química Inorgánica, UEQ, UGR, Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Facultad de Ciencias C. U. Fuentenueva, 18071, Granada, Spain
| | - Delia Miguel
- Departamento de Fisicoquímica, UEQ, UGR, Facultad de Farmacia Avda. Profesor Clavera S/N, 18071, Granada, Spain
| |
Collapse
|
38
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
39
|
Wang Q, Yuan L, Qu C, Huang T, Song X, Xu Y, Zheng YX, Wang Y. Constructing Highly Efficient Circularly Polarized Multiple-Resonance Thermally Activated Delayed Fluorescence Materials with Intrinsically Helical Chirality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305125. [PMID: 37461260 DOI: 10.1002/adma.202305125] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023]
Abstract
Advanced circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials synergize the advantages of circularly polarized luminescence (CPL), narrowband emission, and the TADF characteristic, which can be fabricated into highly efficient circularly polarized organic light-emitting diodes (CP-OLEDs) with high color purity, directly facing the urgent market strategic demand of ultrahigh-definition and 3D displays. In this work, based on an edge-topology molecular-engineering (ETME) strategy, a pair of high-performance CP-MR-TADF enantiomers, (P and M)-BN-Py, is developed, which merges the intrinsically helical chirality into the MR framework. The optimized CP-OLEDs with (P and M)-BN-Py emitters and the newly developed ambipolar transport host PhCbBCz exhibit pure green emission with sharp peaks of 532 nm, full-width at half-maximum (FWHM) of 37 nm, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.29, 0.68). Importantly, they achieve remarkable maximum external quantum efficiencies (EQEs) of 30.6% and 29.2%, and clear circularly polarized electroluminescence (CPEL) signals with electroluminescence dissymmetry factors (gEL s) of -4.37 × 10-4 and +4.35 × 10-4 for (P)-BN-Py and (M)-BN-Py, respectively.
Collapse
Affiliation(s)
- Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxian Song
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| |
Collapse
|
40
|
Wang X, Zhao B, Deng J. Liquid Crystals Doped with Chiral Fluorescent Polymer: Multi-Color Circularly Polarized Fluorescence and Room-Temperature Phosphorescence with High Dissymmetry Factor and Anti-Counterfeiting Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304405. [PMID: 37505074 DOI: 10.1002/adma.202304405] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Chiral nematic liquid crystals (N*-LCs) can tremendously amplify circularly polarized luminescence (CPL) signals. Doped emissive N*-LCs have been substantially explored. However, their CPL performances still need to be improved, mainly due to the unsatisfying helical twisting power (HTP) of commonly used chiral fluorescent dopants. Chiral fluorescent helical polymers (CFHPs) have outstanding optical activity and CPL performance. The present contribution reports the first success in constructing emissive N*-LCs by doping CFHP into nematic liquid crystals (5CB, N-LCs). The helical assembly structures of N*-LCs effectively amplify the CPL signals of the CFHP. Owing to the high HTP of CFHP, the selective reflection band of N*-LC can be adjusted to fully cover its emission band. A nearly pure CPL with a dissymmetry factor (glum ) up to -1.87 is realized at 9 wt% doping concentration. Taking advantage of the selective reflection mechanism, multi-color CPL-active N*-LCs with high glum are fabricated via further adding achiral fluorophores. Also noticeably, circularly polarized room-temperature phosphorescence with glum up to -1.57 is achieved. Anti-counterfeiting application is demonstrated by exploiting multi-mode optical characteristics of the created N*-LCs. The established strategy for constructing emissive N*-LCs provides a platform for future exploring of CPL-active N*-LCs.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
41
|
Xu L, Liu H, Peng X, Shen P, Zhong Tang B, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
42
|
Hei X, Teat SJ, Li M, Bonite M, Li J. Solution-Processable Copper Halide Based Hybrid Materials Consisting of Cationic Ligands with Different Coordination Modes. Inorg Chem 2023; 62:3660-3668. [PMID: 36780701 DOI: 10.1021/acs.inorgchem.2c04547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Using cationic ligands containing both aromatic and aliphatic coordination sites, we have synthesized and structurally characterized five new CuX-based hybrid materials consisting of anionic inorganic motifs that also form coordinate bonds with the cationic organic ligands. As a result of the unique bonding nature at the inorganic/organic interfaces, these compounds demonstrate strong resistance toward heat and can be readily processed in solution. They emit light in the visible region ranging from cyan to yellow color, with the highest photoluminescence quantum yield (PLQY) reaching 71%. The influence of the different coordination modes of the ligands on their emission behavior was investigated employing both experimental and theoretical methods, which have provided insight in understanding structure-property relationships in these materials and guidelines for tuning and enhancing their chemical and physical properties.
Collapse
Affiliation(s)
- Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Megan Bonite
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
43
|
Xu Y, Wang Q, Song X, Wang Y, Li C. New Fields, New Opportunities and New Challenges: Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Materials. Chemistry 2023; 29:e202203414. [PMID: 36585378 DOI: 10.1002/chem.202203414] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Circularly polarized luminescence (CPL) materials that concurrently exhibit high efficiency and narrowband emission are extremely promising applications in 3D and wide color gamut display. By merging the CPL optical property and multiple resonance (MR) induced thermally activated delayed fluorescence (TADF) characteristic into one molecule, a new strategy, namely CP-MR-TADF, is proposed to generate organic emitters with CPL activity, TADF and narrowband emission. High-performance red, green and blue CP-MR-TADF emitters have been developed following this strategy. Herein, the present status and progress of CP-MR-TADF materials in the field of organic light-emitting diodes (OLEDs) is summarized. Finally, for this rapidly growing new research field, the future opportunities are forecasted and the present challenges are discussed.
Collapse
Affiliation(s)
- Yincai Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qingyang Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoxian Song
- Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province, P. R. China.,Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| | - Yue Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| | - Chenglong Li
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Chongqing Research Institute, Jilin University, Chongqing, 401123, P. R. China
| |
Collapse
|
44
|
Xu L, Liu H, Peng X, Shen P, Tang BZ, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202300492. [PMID: 36825493 DOI: 10.1002/anie.202300492] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Circularly polarized electroluminescence (CP-EL) is generally produced in organic light-emitting diodes (OLEDs) based on special CP luminescent (CPL) materials, while common achiral luminescent materials are rarely considered to be capable of direct producing CP-EL. Herein, near ultraviolet CPL materials with high photoluminescence quantum yields and good CPL dissymmetry factors are developed, which can induce blue to red CPL for various achiral luminescent materials. Strong near ultraviolet CP-EL with the best external quantum efficiencies (ηext s) of 9.0 % and small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials can generate intense CP-EL, with high dissymmetry factors and outstanding ηext s (30.8 %), demonstrating a simple and universal avenue towards efficient CP-EL.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
45
|
Zhang F, Rauch F, Swain A, Marder TB, Ravat P. Efficient Narrowband Circularly Polarized Light Emitters Based on 1,4-B,N-embedded Rigid Donor-Acceptor Helicenes. Angew Chem Int Ed Engl 2023; 62:e202218965. [PMID: 36799716 DOI: 10.1002/anie.202218965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Narrow-band emission is essential for applicable circularly polarized luminescence (CPL) active materials in ultrahigh-definition CP-OLEDs. One of the most promising classes of CPL active molecules, helicenes, however, typically exhibit broad emission with a large Stokes shift. We present, herein, a design strategy capitalizing on intramolecular donor-acceptor interactions between nitrogen and boron atoms to address this issue. 1,4-B,N-embedded configurationally stable single- and double helicenes were synthesized straightforwardly. Both helicenes show unprecedentedly narrow fluorescence and CPL bands (full width at half maximum between 17-28 nm, 0.07-0.13 eV) along with high fluorescence quantum yields (72-85 %). Quantum chemical calculations revealed that the relative localization of the natural transition orbitals, mainly on the rigid core of the molecule, and small values of root-mean-square displacements between S0 and S1 state geometries, contribute to the narrower emission.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Florian Rauch
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
46
|
Yang X, Jin X, Zheng A, Duan P. Dual Band-Edge Enhancing Overall Performance of Upconverted Near-Infrared Circularly Polarized Luminescence for Anticounterfeiting. ACS NANO 2023; 17:2661-2668. [PMID: 36648200 DOI: 10.1021/acsnano.2c10646] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Circularly polarized luminescence (CPL) is one of the critical chiroptical properties for chiral nanomaterials, which exhibit wide potential applications in many research fields. However, it remains a big challenge for real application, limited by their small luminescence dissymmetry factor or low emission intensity. Here, an upconverted near-infrared circularly polarized luminescence (UC-NIR-CPL) system is constructed based on the chiroptical property of chiral liquid crystals, embedding with the lanthanide-doped upconversion nanoparticles. More importantly, a strategy for improving the overall performance of UC-NIR-CPL was proposed and realized by taking advantage of the "dual-band-edge enhancement effect", wherein the glum value was amplified, while the NIR emission intensity showed dual enhancement and the threshold of excitation was decreased. Based on the improved overall performance of the UC-NIR-CPL, which can be used as a distinctive covert light, a kind of photonic barcode with multiple encryptions was realized. These findings will upgrade the level of information encryption through improving the overall performance of CPL-active materials.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Anyi Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| |
Collapse
|
47
|
Zhang Y, Li Y, Quan Y, Ye S, Cheng Y. Remarkable White Circularly Polarized Electroluminescence Based on Chiral Co-assembled Helix Nanofiber Emitters. Angew Chem Int Ed Engl 2023; 62:e202214424. [PMID: 36331071 DOI: 10.1002/anie.202214424] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/06/2022]
Abstract
White circularly polarized organic light-emitting diodes (CP-WOLEDs) are of great significance in potential lighting sources and full-color 3D displays. However, High-performance white CP-EL sources are almost unexplored. We have constructed full-color CP-EL devices based on chiral co-assemblies by using three achiral conjugated pyrene-based dyes (BP, w-WP and c-WP) doped with chiral binaphthyl-based enantiomers (S-/R-M) as the EMLs through an intermolecular chirality induction mechanism. (S-/R-M)0.2 -(c-WP)0.8 films exhibit regular helix nanofibers under annealing treatment and emit strong white CPL. Significantly, remarkable CP-WOLEDs based on (S-/R-M)0.2 -(c-WP)0.8 were achieved with |gEL | values as high as 6.2×10-2 and an excellent CRI of 98 at the CIE coordinates of (0.33, 0.33). These are the highest gEL and CRI values of reported CP-WOLEDs to date. This is the first achievement of CP-WOLEDs based on chiral co-assembled helix nanofiber emitters, and provides a valuable strategy with which to develop white CP-EL for future practical applications.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yupeng Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shanghui Ye
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 210023, Nanjing, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
48
|
Cao X, Pan K, Miao J, Lv X, Huang Z, Ni F, Yin X, Wei Y, Yang C. Manipulating Exciton Dynamics toward Simultaneous High-Efficiency Narrowband Electroluminescence and Photon Upconversion by a Selenium-Incorporated Multiresonance Delayed Fluorescence Emitter. J Am Chem Soc 2022; 144:22976-22984. [DOI: 10.1021/jacs.2c09543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu241000, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
49
|
Li J, Li Z, Liu H, Gong H, Zhang J, Yao Y, Guo Q. Organic molecules with inverted singlet-triplet gaps. Front Chem 2022; 10:999856. [PMID: 36092667 PMCID: PMC9448862 DOI: 10.3389/fchem.2022.999856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
According to Hund's multiplicity rule, the energy of the lowest excited triplet state (T1) is always lower than that of the lowest excited singlet state (S1) in organic molecules, resulting in a positive singlet-triplet energy gap (ΔE ST). Therefore, the up-converted reverse intersystem crossing (RISC) from T1 to S1 is an endothermic process, which may lead to the quenching of long-lived triplet excitons in electroluminescence, and subsequently the reduction of device efficiency. Interestingly, organic molecules with inverted singlet-triplet (INVEST) gaps in violation of Hund's multiplicity rule have recently come into the limelight. The unique feature has attracted extensive attention in the fields of organic optoelectronics and photocatalysis over the past few years. For an INVEST molecule possessing a higher T1 with respect to S1, namely a negative ΔE ST, the down-converted RISC from T1 to S1 does not require thermal activation, which is possibly conducive to solving the problems of fast efficiency roll-off and short lifetime of organic light-emitting devices. By virtue of this property, INVEST molecules are recently regarded as a new generation of organic light-emitting materials. In this review, we briefly summarized the significant progress of INVEST molecules in both theoretical calculations and experimental studies, and put forward suggestions and expectations for future research.
Collapse
Affiliation(s)
- Jie Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Zhi Li
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Hui Liu
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Heqi Gong
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Jincheng Zhang
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Yali Yao
- School of Physics and Engineering Technology, Chengdu Normal University, Chengdu, China
| | - Qiang Guo
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, China
| |
Collapse
|