1
|
Yuan B, Yang J, Li L, Zhang J, Wang H. Infinite Organic Solid-Solution Semiconductors with Continuous Evolution in Film Morphology, Crystalline Lattice and Electrical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410159. [PMID: 39822049 DOI: 10.1002/smll.202410159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Constructing a solid solution is an effective strategy for regulating the properties of composite organic semiconductors. However, there presents significant challenges in fabrication and understanding of organic solid-solution semiconductors. In this study, infinite solid-solution semiconductors are successfully achieved by integrating rod-like organic molecules, thereby overcoming the limitations of current organic composite semiconductors. Within these solid solutions, one type of molecule are incorporated into the crystalline lattice of another through random substitution. The continuous evolution in film morphology, crystalline lattice parameters and physical properties are observed as component ratios vary, accompanying with changes in the growth behavior of films. Molecular-level intercalation is evidenced by Davydov splitting, photoluminescence spectroscopy, and optical absorption analyses. Moreover, the continuous variation in ionization potential is demonstrated through organic Schottky diodes. This advancement in organic solid solutions can not only satisfy diverse requirements for device fabrication but also facilitate novel designs in device architecture.
Collapse
Affiliation(s)
- Beibei Yuan
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Junliang Yang
- State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China
| | - Liqiang Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Haibo Wang
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
3
|
Jiang JH, Zhao S, Zhang JX, Lv ZJ, Song J, Sun Y, Liao LS, Wang XD. Scalable Synthesis of Organic Core/Shell Architectures toward Dual-Wavelength Optical Waveguides. NANO LETTERS 2024. [PMID: 39373283 DOI: 10.1021/acs.nanolett.4c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organic core/shell heterostructures have undergone rapid progress in materials chemistry owing to the integration of a wide array of unique properties. Nonetheless, the intricate challenge of regulating homogeneous nucleation and phase separation processes in excessively analogous cocrystal structures presents a formidable barrier to expanding the synthesis strategy for organic core/shell heterostructures. Herein, we successfully achieved a phase separation growth process facilitated by the organic alloy interface layer through a dynamic visualization to capture the intricate morphological evolution. By finely regulating the nucleation process, homogeneous self-assembly induced by high chemical and structural compatibility is circumvented, enabling the formation of organic core/shell heterostructures. Notably, this core/shell architecture boasts dual-wavelength emission at 496 and 696 nm, accompanied by an optical loss coefficient of 0.092 dB per micrometer. This methodology shows potential for extending to the scalable design of other conformational cocrystal heterostructure systems, thereby offering valuable insights into the realm of organic photonics.
Collapse
Affiliation(s)
- Jia-Hao Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, PR China
| | - Shuai Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jia-Xuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhao-Ji Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Song
- School of Microelectronics, Shanghai University, Shanghai, 201800, PR China
| | - Yanqiu Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, PR China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau, SAR, PR China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
4
|
Wang W, Gong J, Zhao J, Zhang H, Wen W, Zhao Z, Li YJ, Wang J, Huang CZ, Gao PF. Integration of Wallach's Rule into Intermolecular Charge Transfer: A Visual Strategy for Chiral Purification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403249. [PMID: 39013078 PMCID: PMC11425254 DOI: 10.1002/advs.202403249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Exploring the molecular packing and interaction between chiral molecules, no matter single enantiomer or racemates, is important for recognition and resolution of chiral drugs. However, sensitive and non-destructive analysis methods are lacking. Herein, an intermolecular-charge transfer (ICT) based spectroscopy is reported to reveal the differences in interaction between the achiral acceptor 1,2,4,5-tetracyanobenzene (TCNB) and the chiral donors, including S, R, and racemic naproxen (S/R/rac-NAP). In this process, S-NAP+TCNB and R-NAP+TCNB display a narrower band gap attributed to the newly formed ICT state. In contrast, the mixed rac-NAP and TCNB exhibit almost no significant change due to the strong affinity between the stereoisomers according to the Wallach's rule. Thus, S/R-NAP can be easily distinguished from rac-NAP based on significantly different optical behavior. The single crystal analysis, infrared spectroscopy, fluorescence spectroscopy, and theoretical calculation of naproxen confirm the importance of carboxyl for this differentiation in molecular packing and interaction. In addition, the esterification derivatization of naproxen achieves the manipulation of the intermolecular interaction model of racemates from the absolute Wallach's rule to a coexisting form of Wallach's rule and ICT. Further, visualized chiral purification of naproxen by the simple cocrystallization method is achieved through the collaboration of ICT and Wallach's rule.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Jianye Gong
- College of Chemistry and Chemical EngineeringInner Mongolia Key Laboratory of Fine Organic SynthesisInner Mongolia UniversityHohhot010021China
| | - Jiaqiang Zhao
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Hao Zhang
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Wei Wen
- Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of TechnologyGuangzhou510640China
| | - Yan Jie Li
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Jianguo Wang
- College of Chemistry and Chemical EngineeringInner Mongolia Key Laboratory of Fine Organic SynthesisInner Mongolia UniversityHohhot010021China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| | - Peng Fei Gao
- Key Laboratory of Biomedical AnalyticsChongqing Science and Technology BureauCollege of Pharmaceutical SciencesSouthwest UniversityChongqing400715China
| |
Collapse
|
5
|
Wang W, Chen Z, Gao Y, Chen C, Jiao Y, Zhang S. Spheroid models to elaborate the broken symmetry and equivalent volume of molecules in crystalline phase. Phys Rev E 2024; 109:064603. [PMID: 39020901 DOI: 10.1103/physreve.109.064603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/19/2024] [Indexed: 07/20/2024]
Abstract
Dense packing of particles has provided powerful models to elaborate the important structural features of matter in various systems such as liquid, glassy, and crystalline phases. The simplest sphere packing models can represent and capture salient properties of the building blocks for covalent, metallic, and ionic crystals; it, however, becomes insufficient to reflect the broken symmetry of the commonly anisotropic molecules in molecular crystals. Here, we develop spheroid models with a minimal degree of anisotropy, which serve as a simple geometrical representation for a rich spectrum of molecules-including both isotropic and anisotropic, convex and concave ones-in crystalline phases. Our models are determined via an inverse packing approach: Given a molecular crystal, an optimal spheroid model is constructed using a contact diagram, which depicts the packing relationship between neighboring molecules within the crystal. The spheroid models are capable of accurately capturing the broken symmetry and characterizing the equivalent volume of molecules in the crystalline phases. Moreover, our model retrieves such molecular information from low-quality x-ray diffraction data with poorly resolved structures, and by using soft spheroids, it can also describe the packing behavior in cocrystals.
Collapse
|
6
|
Zhao Q, Zhu S, Peng J. Unraveling the Co-Crystallization-Charge Transport Relation in Conjugated Polymer Blends via Meniscus-Assisted Solution-Shearing. Macromol Rapid Commun 2023; 44:e2200622. [PMID: 36103725 DOI: 10.1002/marc.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Indexed: 01/26/2023]
Abstract
The ability to craft the co-crystallization in conjugated polymer blends represents an important endeavor for the enhancement of charge transport. However, simple and efficient approaches to co-crystallization have yet to be realized. Herein, for the first time, a robust meniscus-assisted solution-shearing (MASS) strategy is reported to achieve co-crystallization in the poly(2,5-bis(3-hexylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C6) and poly(2,5-bis(3-decylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C10) blended films, and correlate this co-crystalline structure to the charge transport properties. The as-cast PBTTT-C6/PBTTT-C10 blends exhibit co-crystalline or phase-separated structures influenced by their molecular weights. Interestingly, confined-shearing of the initial phase-separated blended solution to MASS produces the formation of their co-crystallization. The co-crystallization kinetics accompanied by the chain packing change and optical properties are scrutinized. Finally, the resulting organic field-effect transistors (OFETs) signify the cocrystal-facilitated charge transport in the blends. Conceptually, this efficient MASS strategy in rendering the co-crystallization in conjugated polymer blends can be readily extended to other conjugated polymer blends of interest for a variety of device applications.
Collapse
Affiliation(s)
- Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shuyin Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|