1
|
Zou H, Wang S, Han C, Hu M, Chu B, Zhou L. Helical Polymer-Containing Bottlebrush Polymers (BBPs): Design, Synthesis, and Perspectives. Macromol Rapid Commun 2025; 46:e2400985. [PMID: 39911003 DOI: 10.1002/marc.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Helical polymer-containing bottlebrush polymers (BBPs) are a special and fascinating type of polymer. They possess bottlebrush topology and contain helical polymers as main chains (MCs) or side chains (SCs), thereby presenting interesting and fantastic properties, such as chiral amplification, circularly polarized luminescence, photonic crystal, and so on. This review mainly focuses on BBPs containing helical polymers of polypeptides, polyacetylenes (PAs), and polyisocyanides (PIs). Detailed summarizations are severally given to BBPs with helical polypeptides as MCs and SCs. Meanwhile, BBPs comprising helical PAs as MCs are fully discussed. What's more, BBPs consisted of helical PIs as MCs and SCs are described separately. In addition, BBPs with other helical polymers are briefly introduced, too. The authors hope this review will motivate more interest in developing helical polymers with complex topologies and fascinating properties, and encourage further progress in functional chiral materials.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Shiqi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Chaofan Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Menghao Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui Province, 232001, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| |
Collapse
|
2
|
Pierini NG, Paiva WA, Durant OC, Dobbins AM, Wheeler BB, Currier ME, Vesenka J, Oldenhuis NJ. Generation of topologically defined linear and cyclic DNA bottle brush polymers via a graft-to approach. Polym Chem 2025:d5py00082c. [PMID: 40376451 PMCID: PMC12070894 DOI: 10.1039/d5py00082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025]
Abstract
Herein, we report a graft-to approach for synthesizing linear and circular double-stranded DNA (dsDNA) bottlebrush polymers (BBPs). Using a bioreactor, plasmid DNA (pDNA) serves as an inexpensive and abundant source of circular, biodegradable, and unimolecular polymers. pDNA is easily converted to the linear isoform through enzymatic restriction, providing access to polymeric backbones with distinct topological states. DNA is grafted with polyethylene glycol monomethyl ether chloroethylamines (mPEGCEA) to yield DNA BBPs. Importantly this PEGylation occurs rapidly under ambient conditions in aqueous buffer. By varying the molecular weight of mPEGCEA (M w = 750, 2000, 5000 Da) and the concentration relative to μmol of nucleotides, different brush arm densities and lengths were achieved with both linear and macrocyclic DNA backbones. Analysis of the DNA BBPs was achieved through agarose gel electrophoresis, which showed graft densities of up to ~68% and ~74% for linear and ring DNA respectively. The grafting process does not alter base pairing or circularity as determined using atomic force microscopy. Shear rheology was used to compare the mechanical response of 1% wt/wt solutions of the ring and linear DNA BBPs to their un-alkylated forms. Linear DNA BBPs exhibited a lower shear modulus versus linear DNA, which is expected due to the increased persistence length and decreased ability to interpenetrate associated with the attachment of polymer arms. However, the circular DNA BBPs exhibited a universally higher shear modulus versus the un-alkylated sample suggesting an increase in interchain interaction via addition of polymer arms. Finally, the increased steric encumbrance of the DNA BBPs slows enzymatic degradation, potentially providing a general method to increase stability of DNA constructs towards nuclease.
Collapse
Affiliation(s)
- Nicholas G Pierini
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire 23 Academic Way Parsons Hall Durham NH 03824 USA
| | - Wynter A Paiva
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire 23 Academic Way Parsons Hall Durham NH 03824 USA
| | - Owen C Durant
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire 23 Academic Way Parsons Hall Durham NH 03824 USA
| | - Aubrianna M Dobbins
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire 23 Academic Way Parsons Hall Durham NH 03824 USA
| | - Ben B Wheeler
- School of Molecular and Physical Sciences, University of New England 11 Hills Beach Road Biddeford ME 04005 USA
| | - Matthew E Currier
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire 23 Academic Way Parsons Hall Durham NH 03824 USA
| | - James Vesenka
- School of Molecular and Physical Sciences, University of New England 11 Hills Beach Road Biddeford ME 04005 USA
| | - Nathan J Oldenhuis
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire 23 Academic Way Parsons Hall Durham NH 03824 USA
| |
Collapse
|
3
|
Zhong H, Zhao B, Deng J. Solvent-Dependent Chirality Transmission and Amplification from Cellulose Derivative to Achiral Helical Polymer for Achieving Full-Color and White Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202418463. [PMID: 39961774 DOI: 10.1002/anie.202418463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Cellulose derivatives represent a promising natural chiral platform for creating circularly polarized luminescence (CPL) materials owing to their excellent processability and structural diversity. However, achieving full-color and white CPL emissions based on cellulose derivatives remains challenging. The present work reports the first success in achieving full-color and white CPL emissions leveraging chirality transmission and amplification from cellulose derivative to achiral helical polymer. Importantly, such chirality transfer displays a dependence on the hydrogen bond accepting ability of solvent, making it effortless to precisely regulate chiral intensity by single or combined solvents. Moreover, the induced chirality in helical polymer is further transferred to the introduced racemic fluorescent dyes, resulting in full-color and white-light CPL emissions with a maximum luminescence dissymmetry factor (glum) and photoluminescence quantum yield (PLQY) up to 1.5×10-2 and 62.9 %, respectively. Further spatially separating the chiral and fluorescent components allows inversion of CPL handedness and precise modulation of CPL intensity. Notably, circularly polarized white organic light-emitting diodes and chiral logic gate with multiple information outputs are successfully developed. This work gives an impetus to construct cellulosic chiroptical materials, offering more insights into chirality transfer between biomacromolecules and synthetic helical polymers.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Qiu Y, Wei X, Lam JWY, Qiu Z, Tang BZ. Chiral Nanostructures from Artificial Helical Polymers: Recent Advances in Synthesis, Regulation, and Functions. ACS NANO 2025; 19:229-280. [PMID: 39754598 DOI: 10.1021/acsnano.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). This review mainly focuses on the formation of chiral nanostructures and the morphology regulation triggered by polymer chain length, concentration, solvent, temperature, photoirradiation, and chemical additives. In addition, the distinct chiral functions including chiral recognition, circularly polarized luminescence, drug release, cell imaging, and antibiosis are also discussed.
Collapse
Affiliation(s)
- Yuan Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Xilong Wei
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 230026, China
| |
Collapse
|
5
|
Wang X, Gao X, Zhong H, Yang K, Zhao B, Deng J. Three-Level Chirality Transfer and Amplification in Liquid Crystal Supramolecular Assembly for Achieving Full-Color and White Circularly Polarized Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412805. [PMID: 39487629 DOI: 10.1002/adma.202412805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Chiral liquid crystal supramolecular assembly provides an ideal strategy for constructing excellent circularly polarized luminescence (CPL) materials. However, the chirality transfer in chiral liquid crystals normally occurs at two levels from the configurational chirality to the supramolecular phase chirality. The more precise and more levels of chirality transmission are fascinating but remain challenging. The present work reports the first success of three-level chirality transfer and amplification from configurationally point chirality of small molecules to conformationally helical chirality of helical polymers and finally to supramolecular phase chirality of cholesteric liquid crystals composed of chiral nonfluorescent polymers (P46) and nematic liquid crystals. Noticeably, the helical twisting power of P46 is five-fold larger than its monomer. Full-color and white CPL with maximum luminescence dissymmetry factor up to 1.54 and photoluminescence quantum yield up to 63.8% are realized utilizing helical supramolecular assembly combined with selective reflection mechanism. Also significantly, the electrically stimuli-responsive CPL switching device as well as anti-counterfeiting security, information encryption, and chiral logic gate applications are developed. This study deepens the understanding of chirality transfer and amplification across different hierarchical levels.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Wang X, Yan W, Pang DW, Cai J. From synthesis to chiroptical activities: advancements in circularly polarized luminescent inorganic quantum dots. NANOSCALE 2024; 17:158-186. [PMID: 39574313 DOI: 10.1039/d4nr03600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Circularly polarized luminescence (CPL) in inorganic quantum dots (QDs) represents a burgeoning and dynamic research domain, offering immense potential across a spectrum of applications, including three-dimensional displays, optical data storage, asymmetric catalysis, and chiral sensing. However, the persistent trade-off between fluorescence brightness and the emission dissymmetry factor highlights the nascent stage of current research. This review delves into the synthesis methodologies of CPL QDs, providing an exhaustive analysis of existing approaches and the resulting material properties. It elucidates the critical factors influencing CPL characteristics, such as ligand types, interaction modes, and QD architectures. Furthermore, it synthesizes the theoretical frameworks underlying chirality and CPL generation, ranging from time-dependent density functional theory (TDDFT) to ab initio molecular dynamics (AIMD), thereby deepening the understanding of CPL mechanisms within QDs. The review culminates with a comprehensive exploration of potential applications, alongside a forward-looking perspective on the future trajectory of CPL QD research.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| | - Wenhui Yan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiarong Cai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
7
|
Song JL, Chen C, Li X, Jiang Y, Peng Z, Wang XQ, Yang HB, Wang W. Boosting the circularly polarized luminescence of pyrene-tiaraed pillararenes through mechanically locking. Nat Commun 2024; 15:10531. [PMID: 39627256 PMCID: PMC11615231 DOI: 10.1038/s41467-024-54961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Attributed to their unique dynamic planar chirality, pillar[n]arenes, particularly pillar[5]arenes, have evolved as promising platforms for diverse applications such as circularly polarized luminescence (CPL) emitters. However, due to the unit flipping and swing, the achievement of excellent CPL performances of pillar[5]arenes in solution state remains a formidable challenge. To deal with this key issue, a mechanically locking approach has been successfully developed, leading to boosted dissymmetry factor (glum) values of pyrene-tiaraed pillar[5]arenes up to 0.015 through the formation of corresponding [2]rotaxanes. More importantly, taking advantage of the stably locked co-conformers, these resultant [2]rotaxanes maintain excellent CPL performances in diverse solvents and wide range of concentrations, making them promising candidates for practical applications. According to this proof-of-concept study, we have not only successfully developed a powerful strategy for the rational design of chiral luminescent materials with desired CPL performances but also contributed a promising platform for the construction of smart chiral materials.
Collapse
Affiliation(s)
- Jing-Lin Song
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chao Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xue Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yefei Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhiyong Peng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xu-Qing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hai-Bo Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, China
| | - Wei Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Li SY, Duan BH, Liu N, Luo J, Chen Z, Wu ZQ. Helical Star-Shaped Bottlebrush Polymers: From Controlled Synthesis to Tunable Photoluminescence and Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:1396-1402. [PMID: 39377270 DOI: 10.1021/acsmacrolett.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The controlled synthesis of star-shaped bottlebrush polymers with tunable topologies is a challenge. However, such materials may exhibit distinct photoluminescence properties. Bottlebrush polymers have polymerization-induced emission (PIE) properties due to their aggregated side chains, and aggregation-induced emission (AIE) is also a unique luminescent property. In this work, we prepared a variety of highly active alkyne Pd catalysts and polymerized poly(L/D-lactic acid) macromonomers containing polymerizable phenylisocyanide groups as end groups to obtain a variety of topologically structured bottlebrush polymers with controllable molecular weights and narrow molecular weight distributions. Bottlebrush polymers with tetraphenyl ethylene (TPE) units as the core exhibit tunable photoluminescence and circularly polarized luminescence properties. We propose that such properties are due to the unique AIE characteristics of the TPE unit combined with the PIE characteristics of the bottlebrush polymer.
Collapse
Affiliation(s)
- Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Luo
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi, Hefei, Anhui 230022, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
9
|
Xiao Y, Shi A, Yang G, Yu Y, Nie Q, Qi S, Xiang C, Zhang T. Induced Circularly Polarized Luminescence From 0D Quantum Dots by 2D Chiral Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404913. [PMID: 39235369 DOI: 10.1002/smll.202404913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Materials with circularly polarized luminescence (CPL) exhibit great application potential in biological scenes such as cell imaging, optical probes, etc. However, most developed materials are non-aqueous and toxic, which seriously restricts their compatibility with the life systems. Thus, it is necessary to explore a water-based CPL system with high biocompatibility so that to promote the biologic application process. Herein, a facile and efficient route to achieve the CPL properties of a functional aqueous solution is demonstrated by the combination of 0D quantum dots (QDs) and 2D chiral nanosheets. Benefited by the specific absorption ability of nanosheets for left/right-handed CPL, the QDs adsorbed onto the surface of nanosheets through hydrogen bond interactions showed apparent CPL features. In addition, this system has a good extensibility as the CPL property can be effectively regulated by changing the kind of emissive QDs. More importantly, this water-based nano-composite with facile fabrication process (one-step mixing) is suitable for the real applications, which is undoubtedly beneficial for the further progress of functional CPL materials.
Collapse
Affiliation(s)
- Yuqi Xiao
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Yang Yu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, P. R. China
| | - Quan Nie
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Qi
- Institute of Biomedical Engineering, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315336, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
10
|
Jin W, Nagao M, Kumon Y, Matsumoto H, Hoshino Y, Miura Y. Effects of Cyclic Glycopolymers Molecular Mobility on their Interactions with Lectins. Chempluschem 2024; 89:e202400136. [PMID: 38535777 DOI: 10.1002/cplu.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Cyclic polymers, which are found in the field of biopolymers, exhibit unique physical properties such as suppressed molecular mobility. Considering thermodynamics, the suppressed molecular mobility of cyclic polymers is expected to prevent unfavorable entropy loss in molecular interactions. In this study, we synthesized cyclic glycopolymers carrying galactose units and investigated the effects of their molecular mobility on the interactions with a lectin (peanut agglutinin). The synthesized cyclic glycopolymers exhibited delayed elution time on size exclusion chromatography and a short spin-spin relaxation time, indicating typical characteristics of cyclic polymers, including smaller hydrodynamic size and suppressed molecular mobility. The hemagglutination inhibition assay revealed that the cyclic glycopolymers exhibited weakened interactions with peanut agglutinin compared to the linear counterparts, attributable to the suppressed molecular mobility. Although the results are contrary to our expectations, the impact of polymer topology on molecular recognition remains intriguing, particularly in the context of protein repellent activity in the biomedical field.
Collapse
Affiliation(s)
- Wenkang Jin
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yusuke Kumon
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
11
|
Zhou C, Chang W, Liu L, Li J. Recent Progress in Circularly Polarized Luminescent Materials Based on Cyclodextrins. Polymers (Basel) 2024; 16:2140. [PMID: 39125166 PMCID: PMC11313814 DOI: 10.3390/polym16152140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Circularly polarized luminescence (CPL) materials have been widely used in the fields of bioimaging, optoelectronic devices, and optical communications. The supramolecular interaction, involving harnessing non-covalent interactions between host and guest molecules to control their arrangements and assemblies, represents an advanced approach for facilitating the development of CPL materials and finely constructing and tuning the desired CPL properties. Cyclodextrins (CDs) are cyclic natural polysaccharides, which have also been ubiquitous in various fields such as molecular recognition, drug encapsulation, and catalyst separation. By adjusting the interactions between CDs and guest molecules precisely, composite materials with CPL properties can be facilely generated. This review aims to outline the design strategies and performance of CD-based CPL materials comprehensively and provides a detailed illustration of the interactions between host and guest molecules.
Collapse
Affiliation(s)
- Chengkai Zhou
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China; (C.Z.); (W.C.)
- National Engineering Research Center of Pesticide, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Yu JX, Duan BH, Chen Z, Liu N, Wu ZQ. Polymers with Circularly Polarized Luminescent Properties: Design, Synthesis, and Prospects. Chempluschem 2024; 89:e202300481. [PMID: 37955194 DOI: 10.1002/cplu.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Chiral materials with circularly polarized luminescence (CPL) have garnered significant attention owing to their distinctive luminescent properties and wide array of applications. CPL enables the selective emission of left and right circularly polarized light. The fluorescence quantum yield and dissymmetry factor play pivotal roles in the generation of CPL. Helical polymers exhibit immense promise as CPL materials due to their inherent chirality, structural versatility, modifiability, and capacity to incorporate diverse chromophores. This Review provides a brief review of the synthesis of CPL materials based on helical polymers. The CPL can be realized by aggregation-induced CPL of non-emissive helical polymers, and helices bearing chromophores on the pendants and on the chain end. Furthermore, future challenges and potential applications of CPL materials are summarized and discussed.
Collapse
Affiliation(s)
- Jia-Xin Yu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bing-Hui Duan
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zheng Chen
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Zong-Quan Wu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
13
|
Ma C, Wang H, Sun R, Liao X, Han H, Xie M. Polyacetylene-Based Asymmetric Bicyclic Polymer by Blocking-Cyclization Technique. Macromol Rapid Commun 2024; 45:e2300628. [PMID: 38227809 DOI: 10.1002/marc.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Indexed: 01/18/2024]
Abstract
A rare asymmetric bicyclic polymer containing different length of conjugated polyacetylene segments is synthesized by metathesis cyclopolymerization-mediated blocking-cyclization technique. The size of each single ring differs from each other, and the unique cyclic polymer topology is controlled by adjusting the feed ratio of monofunctional monomer to catalyst. The topological difference between linear and bicyclic polymers is confirmed by several techniques, and the visualized morphology of asymmetric bicyclic polymer is directly observed without tedious post-modification process. The photoelectric and thermal properties of polymers are investigated. This work expands the pathway for the derivation of cyclic polymers, and such unique topological structure enriches the diversity of cyclic polymer classes.
Collapse
Affiliation(s)
- Cuihong Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hao Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Yoshida S, Morikawa S, Ueda K, Kaneko K, Hanasaki T, Akagi K. Helicity Control of Circularly Polarized Luminescence from Aromatic Conjugated Copolymers and Their Mixture Using Reversibly Photoinvertible Chiral Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3991-4002. [PMID: 38183275 DOI: 10.1021/acsami.3c15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
We synthesized cyclic chiral compounds [(R)/(S)-D2s] by linking a photoresponsive bisbenzothienylethene (BTE) moiety with an axially chiral binaphthyl moiety. Chiral nematic liquid crystals (N*-LCs) were prepared by adding chiral compounds as dopants to host N-LCs. These N*-LCs exhibited reversible chirality inversion upon photoisomerization between the open and closed forms of the BTE moiety. Here, the mechanism underlying chirality inversion in photoresponsive N*-LCs was investigated by comparing the helical twisting powers (HTPs) of (R)-D2s with those of analogous compounds. It was found that the helical inversion of N*-LCs containing (R)-D2s is governed by a delicate balance between two types of opposite helicity, i.e., the right-handed helicity of the inherently chiral binaphthyl moiety and the left-handed helicity of the BTE moiety bearing intramolecularly induced chirality. Namely, (R)-D2s induced chirality of the BTE moiety, which is attributed to intramolecular chirality transfer from the axially chiral binaphthyl moiety to the BTE moiety. Thus, (R)-D2s are chiral compounds with double chirality consisting of an intrinsically chiral moiety and an intramolecularly induced chiral moiety. Photocontrol of the helical senses and reversible photoinversion of the N*-LCs are achieved by utilizing UV and visible light irradiation and the steric effects of the substituents at the binaphthyl rings in (R)-D2s. In addition, photocontrol of the induced circularly polarized luminescence (CPL) was achieved using the photoinvertible N*-LC. The achiral aromatic conjugated copolymers that exhibited red, green, and blue fluorescence were dissolved and mixed in the present N*-LC, and they exhibited left- and right-handed white CPL with large dissymmetry factors (|glum|) ranging from 0.2 to 1.0. The CPLs were reversibly photoswitched due to photoisomerization between the open and PSS forms of the chiral compounds through UV and visible light irradiation.
Collapse
Affiliation(s)
- Satoru Yoshida
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Santa Morikawa
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kenta Ueda
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kosuke Kaneko
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tomonori Hanasaki
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kazuo Akagi
- Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
15
|
Lu X, Zhang X, Zhang C, Zhang X. Cyclic Polyesters with Closed-Loop Recyclability from A New Chemically Reversible Alternating Copolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306072. [PMID: 38037295 PMCID: PMC10811513 DOI: 10.1002/advs.202306072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Polyesters with both cyclic topology and chemical recyclability are attractive. Here, the alternating copolymerization of cyclic anhydride and o-phthalaldehyde to synthesize a series of cyclic and recyclable polyesters are reported for the first time. Besides readily available monomers, the copolymerization is carried out at 25 °C, uses common Lewis/Brønsted acids as catalysts, and achieves high yields within 1 h. The resulting polyesters possess well-defined alternating sequences, high-purity cyclic topology, and tunable structures using distinct two monomer sets. Of interest, the copolymerization manifests obvious chemical reversibility as revealed by kinetic and thermodynamic studies, making the unprecedented polyesters easy to recycle to their distinct two monomers in a closed loop at high temperatures. This work furnishes a facile and efficient method to synthesize cyclic polyesters with closed-loop recyclability.
Collapse
Affiliation(s)
- Xiaoxian Lu
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
16
|
Zong L, Kan L, Yuan C, He Y, Zhang W, Qiao X, Zhang X, Liu M, Shi G, Pang X. Chiral Confined Unimolecular Micelles for Controlled In Situ Fabrication of Optically Active Hybrid Nanostructures. J Phys Chem Lett 2023; 14:10361-10368. [PMID: 37948649 DOI: 10.1021/acs.jpclett.3c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Functional nanomaterials made by chiral induction have attracted extensive attention because of their intriguing characteristics and potential applications. However, the precise and controllable fabrication of chiral nanomaterials still remains challenging but is highly desired. In this study, chiral unimolecular micelles with different molecular weights and chiroptical activities were prepared by photoinduced atom transfer radical polymerization (photoATRP). Through nanoconfined growth, the chiral plasmonic nanoparticle assemblies with predesigned size and morphology were prepared using chiral unimolecular micelles as nanoreactors. The controllability over chiral assemblies and the size effect on chiroptical properties were also investigated. Furthermore, chiral complexes with absorption asymmetry and circularly polarized luminescence (glum = 4.25 × 10-4) were easily constructed via mixing of organic fluorescent molecules and chiral templates based on intermolecular hydrogen bonds. Such results indicated that our unimolecular-micelle-based templates enable the controllable preparation of both inorganic and organic chiral nanostructures with tailored dimensions, sizes, compositions, and optical activities.
Collapse
Affiliation(s)
- Lingxin Zong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Longwang Kan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chenrong Yuan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering; Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Duan BH, Yu JX, Gao RT, Li SY, Liu N, Wu ZQ. Controlled synthesis of cyclic helical polyisocyanides and bottlebrush polymers using a cyclic alkyne-Pd(II) catalyst. Chem Commun (Camb) 2023; 59:13002-13005. [PMID: 37830293 DOI: 10.1039/d3cc04095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cyclic polymers have very unique structure and properties, and thus have drawn intense research attention. However, controlled synthesis of cyclic polymers with predictable molar mass and narrow distribution is still a challenging task. In this study, we developed a novel cyclic catalyst that initiates the ring-expansion polymerisation of isocyanides, producing a series of cyclic helical polymers with predictable molecular weight and low dispersity. Interestingly, the ring-expansion polymerization of the isocyanide macromonomers gives well-defined cyclic bottlebrush polymers. The cyclic topology was demonstrated using transmission electron microscopy.
Collapse
Affiliation(s)
- Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jia-Xin Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China.
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
18
|
Song X, Zhu X, Wu S, Chen W, Tian W, Liu M. Chiroptical switching in the azobenzene-based self-locked [1]rotaxane by solvent and photoirradiation. Chirality 2023; 35:692-699. [PMID: 37013339 DOI: 10.1002/chir.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Because of its dynamic reversible nature and simple regulation properties, rotaxane systems provided a good route for the construction of responsive supramolecular chiral materials. Here, we covalently encapsulate the photo-responsive guest molecule azobenzene (Azo) in a chiral macrocycle β-cyclodextrin (β-CD) to prepare self-locked chiral [1]rotaxane [Azo-CD]. On this basis, the self-adaptive conformation of [Azo-CD] was manipulated by solvent and photoirradiation; meanwhile, dual orthogonal regulation of the [1]rotaxane chiroptical switching could also be realized.
Collapse
Affiliation(s)
- Xin Song
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, China
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Shengfu Wu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wenzhuo Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Sorensen CC, Bhat V, Bello AY, Leibfarth FA. Mechanistic Insights into the Stereoselective Cationic Polymerization of N-Vinylcarbazole. ACS Catal 2023; 13:12163-12172. [PMID: 38469177 PMCID: PMC10927002 DOI: 10.1021/acscatal.3c02165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The synthesis of stereoregular polymers through ionic mechanisms using asymmetric ion-pairing (AIP) catalysis is emerging as an effective strategy to achieve differentiated material properties from readily available building blocks. Stereoselective cationic polymerization in particular is primed for advancement using AIP by leveraging the breadth of Brønsted and Lewis acid small-molecule catalysis literature; however, mechanistic studies that address polymer-specific phenomena are scarce and, as a result, the lack of mechanistic understanding has limited catalyst design. In a recent study, we demonstrated the only example of a stereoselective and helix-sense-selective cationic vinyl polymerization of N-vinylcarbazole using chiral scandium-bis(oxazoline) Lewis acids. To better understand the mechanism of this highly stereoselective polymerization and elicit design principles for future advances, we present a combined experimental and computational study into the relevant factors that determine tacticity and helicity control. Key mechanistic experiments suggest two competing elementary steps-chain-end conformation equilibration and propagation-whose relative rates can be influenced by monomer concentration, isotope effects, and catalyst design to tune tacticity. In contrast, helicity is influenced by complex relationships between the stereoselectivity of the first monomer propagation and a time-dependent initiator-catalyst mixing time. The more complete understanding of stereoselective cationic polymerization through AIP developed herein provides insights into polymer-specific mechanisms for stereocontrol, which we believe will motivate continued catalyst discovery and development for stereoselective vinyl polymerization.
Collapse
Affiliation(s)
- Cole C Sorensen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Vittal Bhat
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Anthony Y Bello
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Wang X, Zhao B, Deng J. Liquid Crystals Doped with Chiral Fluorescent Polymer: Multi-Color Circularly Polarized Fluorescence and Room-Temperature Phosphorescence with High Dissymmetry Factor and Anti-Counterfeiting Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304405. [PMID: 37505074 DOI: 10.1002/adma.202304405] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Chiral nematic liquid crystals (N*-LCs) can tremendously amplify circularly polarized luminescence (CPL) signals. Doped emissive N*-LCs have been substantially explored. However, their CPL performances still need to be improved, mainly due to the unsatisfying helical twisting power (HTP) of commonly used chiral fluorescent dopants. Chiral fluorescent helical polymers (CFHPs) have outstanding optical activity and CPL performance. The present contribution reports the first success in constructing emissive N*-LCs by doping CFHP into nematic liquid crystals (5CB, N-LCs). The helical assembly structures of N*-LCs effectively amplify the CPL signals of the CFHP. Owing to the high HTP of CFHP, the selective reflection band of N*-LC can be adjusted to fully cover its emission band. A nearly pure CPL with a dissymmetry factor (glum ) up to -1.87 is realized at 9 wt% doping concentration. Taking advantage of the selective reflection mechanism, multi-color CPL-active N*-LCs with high glum are fabricated via further adding achiral fluorophores. Also noticeably, circularly polarized room-temperature phosphorescence with glum up to -1.57 is achieved. Anti-counterfeiting application is demonstrated by exploiting multi-mode optical characteristics of the created N*-LCs. The established strategy for constructing emissive N*-LCs provides a platform for future exploring of CPL-active N*-LCs.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
21
|
Ma S, Zhao B, Deng J. Helical Polymer Working as a Chirality Amplifier to Generate and Modulate Multicolor Circularly Polarized Luminescence in Small Molecular Fluorophore/Polymer Composite Films. ACS CENTRAL SCIENCE 2023; 9:1409-1418. [PMID: 37521789 PMCID: PMC10375879 DOI: 10.1021/acscentsci.3c00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 08/01/2023]
Abstract
In-depth studies of chirality and circularly polarized luminescence (CPL) have become indispensable in the process of learning human nature. Small molecules with CPL activity are one of the research hotspots. However, the CPL properties of such materials are generally not satisfying. Here, we synthesized a series of chiral small molecular fluorophores that cannot demonstrate CPL emission themselves. By introducing an optically inactive helical polymer, chirality transfer and chirality amplification efficiently occur, thereby generating intense CPL emission. Through combining different chiralized fluorophores, multicolor CPL-active films with emission wavelength centered at 463, 525, and 556 nm were fabricated, with the maximum luminescence dissymmetry factor (glum) being up to -0.028. Then, benefiting from the strong CPL emission and appropriate energy donor-acceptor system, we further established a circularly polarized fluorescence-energy transfer (CPF-ET) strategy in which the CPL-active films work as a donor emitting circularly polarized fluorescence to excite an achiral fluorophore (Nile red) as the acceptor, producing red CPL with glum of up to -0.011 at around 605 nm.
Collapse
|
22
|
Ma S, Ma H, Yang K, Tan Z, Zhao B, Deng J. Intense Circularly Polarized Fluorescence and Room-Temperature Phosphorescence in Carbon Dots/Chiral Helical Polymer Composite Films. ACS NANO 2023; 17:6912-6921. [PMID: 37000903 DOI: 10.1021/acsnano.3c00713] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chiral carbon dots (C-dots) with a circularly polarized fluorescence (CPF) property have attracted tremendous attention due to their significant applications in chiral optoelectronics and theranostics. However, constructing circularly polarized room-temperature phosphorescent (CPRTP) C-dots remains a great challenge. Herein, a strategy is established to achieve efficient CPF and CPRTP emissions in C-dots/chiral helical polymer bilayer composite film. Taking advantage of the chiral filter effect of chiral helical polymer, intense CPF and CPRTP emissions with large dissymmetric factors up to 1.4 × 10-1 and 1.2 × 10-2 are respectively obtained, even though there is only a simple interface contact between the C-dots layer and the chiral helical polymer layer. More importantly, white-color CPF emission and multiple information display and encryption are further realized based on the prepared chiral luminescent composite films.
Collapse
Affiliation(s)
- Shuo Ma
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huanyu Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
24
|
Lee H, Kim C. Synthesis of air‐stable poly(benzonorbornadiene)s via ring‐opening metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Huijin Lee
- Department of Chemistry Chungbuk National University Cheongju South Korea
| | - Cheoljae Kim
- Department of Chemistry Chungbuk National University Cheongju South Korea
| |
Collapse
|
25
|
Wang Q, Liu Y, Gao R, Wu Z. Selective synthesis of helical polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qian Wang
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Yu‐Qi Liu
- College of Materials and Chemical Engineering West Anhui University Lu'an China
| | - Run‐Tan Gao
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| | - Zong‐Quan Wu
- School of Chemistry, State Key Laboratoy of Supramolecular Structures and Materials Jilin University Changchun China
| |
Collapse
|
26
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022; 61:e202210604. [DOI: 10.1002/anie.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Shang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Cui
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Kaiang Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weili Shang
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Yuqian Jiang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Jie Cui
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Kaiang Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Tiesheng Li
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|