1
|
Huo Q, Meng T, Lu X, Li D. Multiphoton Excited Fluorescence Imaging over Metal-Organic Frameworks. Chembiochem 2025; 26:e202400782. [PMID: 39676052 DOI: 10.1002/cbic.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024]
Abstract
Multiphoton excited fluorescence (MPEF) imaging has emerged as a powerful tool for visualizing biological processes with high spatial and temporal resolution. Metal-organic frameworks (MOFs), a class of porous materials composed of metal ions or clusters coordinated with organic ligands, have recently gained attention for their unique optical properties and potential applications in MPEF imaging. This review provides a comprehensive overview of the design, synthesis, and applications of multiphoton excited fluorescence imaging using MOFs. We discuss the principles behind the fluorescence behavior of MOFs, explore strategies to enhance their photophysical properties, and showcase their applications in bioimaging. Additionally, we address the current challenges and future prospects in this rapidly evolving field, highlighting the potential of multiphoton excited fluorescence imaging by MOFs for advancing our understanding of complex biological processes.
Collapse
Affiliation(s)
- Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Tong Meng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Han CQ, Liu XY. Emission Library and Applications of 2,1,3-Benzothiadiazole and Its Derivative-Based Luminescent Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202416286. [PMID: 39305074 DOI: 10.1002/anie.202416286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 11/01/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive attention due to their promising applications in chemical sensing, energy transfer, solid-state-lighting and heterogeneous catalysis. Benefiting from the virtually unlimited emissive organic linkers and the intrinsic advantages of MOFs, significant progress has been made in constructing LMOFs with specific emission behaviors and outstanding performances. Among these reported organic linkers, 2,1,3-benzothiadiazole and its derivatives, as unique building units with tunable electron-withdrawing abilities, can be used to synthesize numerous emissive linkers with a donor-bridge-acceptor-bridge-donor type structure. These linkers were utilized to coordinate with different metal nodes, forming LMOFs with diverse underlying nets and optical properties. In this Minireview, 2,1,3-benzothiadiazole and its derivative-based organic linkers and their corresponding LMOFs are summarized with which an emission library is built between the linker structures and the emission behaviors of constructed LMOFs. In particular, the preparation of LMOFs with customized emission properties ranging from deep-blue to near-infrared and sizes from dozens to hundreds of nanometers is discussed in detail. The applications of these LMOFs, including chemical sensing, energy harvesting and transfer, and catalysis, are then highlighted. Key perspectives and challenges for the future development of LMOFs are also addressed.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Fang PH, Qu LL, Ma ZS, Han CQ, Li Z, Wang L, Zhou K, Li J, Liu XY. Full-Color Emissive Zirconium-Organic Frameworks Constructed via in Situ "One-Pot" Single-Site Modification for Tryptophan Detection and Energy Transfer. Angew Chem Int Ed Engl 2025; 64:e202414026. [PMID: 39291884 DOI: 10.1002/anie.202414026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive studies due to the unlimited species of emissive organic linkers and tunable structure of MOFs. However, the multiple-step organic synthesis is always a great challenge for the development of LMOFs. As an alternative strategy, in situ "one-pot" strategy, in which the generation of emissive organic linkers and sequential construction of LMOFs happen in one reaction condition, can avoid time-consuming pre-synthesis of organic linkers. In the present work, we demonstrate the successful utilization of in situ "one-pot" strategy to construct a series of LMOFs via the single-site modification between the reaction of aldehydes and o-phenylenediamine-based tetratopic carboxylic acid. The resultant MOFs possess csq topology with emission covering blue to near-infrared. The nanosized LMOFs exhibit excellent sensitivity and selectivity for tryptophan detection. In addition, two component-based LMOFs can also be prepared via the in situ "one-pot" strategy and used to study energy transfer. This work not only reports the construction of LMOFs with full-color emissions, which can be utilized for various applications, but also indicates that in situ "one-pot" strategy indeed is a useful and powerful method to complement the traditional MOFs construction method for preparing porous materials with tunable functionalities and properties.
Collapse
Affiliation(s)
- Pu-Hao Fang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zhen-Sha Ma
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Li B, Yu X, Lu X, Sun X, Kai Y, Cheng L, Zhou H, Tian Y, Li D. Advancing Two-Photon Photodynamic Therapy Over NIR-II Excitable Conjugated Microporous Polymer with NIR-I Emission. Adv Healthc Mater 2025; 14:e2402274. [PMID: 39460477 DOI: 10.1002/adhm.202402274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/28/2024]
Abstract
The availability of second near-infrared (NIR-II) excitable two-photon photosensitizers with NIR-I emission for efficient photodynamic therapy (PDT) is limited by challenges in molecular design. In this study, a NIR-II light-excitable two-photon conjugated microporous polymer (Tph-Dbd) with emission in the NIR-I region is developed. The large conjugated system and delocalized electronic structures endow Tph-Dbd with a large two-photon absorption cross-section under NIR-II light excitation. Moreover, the efficient electron acceptor and donor units within the π-conjugated backbones result in NIR-I emission for high signal-to-background ratio imaging, as well as separated highest occupied molecular orbital and lowest unoccupied molecular orbital distributions for excellent singlet oxygen generation ability. The excellent NIR-II excitable two-photon absorption activity, NIR-I emission, good biocompatibility, and high photostability allow Tph-Dbd to be used for efficient in vitro fluorescence imaging guided PDT. Moreover, the impressive photothermal effect of Tph-Dbd can overcome the limitations of PDT in the treatment of hypoxic tumors. This study highlights a strategy for designing NIR-II excitable two-photon photosensitizers for advanced PDT.
Collapse
Affiliation(s)
- Bo Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yuanzhong Kai
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
5
|
Wang J, Zhao X, Zhu X, Wang S, Sun X, Zhang Q, Chen X, Wang A, Yang M, Zhou H. Modulating Aggregation and Deaggregation Based on Assembling Strategy to Switch on NIR-II Light-Excited Fluorescence for Self-Reporting Viability of Eliminating Cancer Cell. Anal Chem 2024; 96:19404-19413. [PMID: 39591395 DOI: 10.1021/acs.analchem.4c03788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The fabrication of self-reporting photosensitizers (PSs), enabling real-time evaluation of the extent of elimination of cancer cells, holds significant scientific importance in the photodynamic therapy (PDT) process. To address the intrinsic challenge of the short-wavelength light source, this work proposed an innovative approach of rational design second near-infrared (NIR-II, 1000-1700 nm) light-excited fluorescent PS systems (named HOEt-PI, Me-PI, and Et-PI, respectively) through modulating aggregation and deaggregation based on assembling strategy. Therein, the suitable interplanar distance of adjacent Et-PI linked with C-H···π interactions was an idea for relieving compact π···π packing for fluorescent imaging as well as elevating the spin-orbit coupling for reactive oxygen species (ROS) generation. With ROS continuously increasing, Et-PI underwent cell membrane-to-mitochondria migration, ultimately accumulated in nucleoli, symbolizing programmed cell death, thus distinguishing dead/live cells via three-photon fluorescence imaging (excited on 1250 nm) under photogeneration ROS. Meaningfully, the three-photon fluorescence of Et-PI was triggered by RNA of nucleoli, for which the higher signal-to-noise ratio and in-depth fluorescence imaging observed cancer cellular viability. Collectively, the proposed findings presented a constructing strategy for NIR-II light-mediated self-reporting PS for guiding the PDT of deep cancerous tissue in the future.
Collapse
Affiliation(s)
- Junjun Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xuan Zhao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiong Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xingxing Chen
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Aidong Wang
- Key Laboratory of Drug Design, Huangshan University, Huangshan 245021, P. R. China
| | - Mingdi Yang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
6
|
Gong L, Chen L, Lin Q, Wang L, Zhang Z, Ye Y, Chen B. Nanoscale Metal-Organic Frameworks as a Photoluminescent Platform for Bioimaging and Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402641. [PMID: 39011737 DOI: 10.1002/smll.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The tracking of nanomedicines in their concentration and location inside living systems has a pivotal effect on the understanding of the biological processes, early-stage diagnosis, and therapeutic monitoring of diseases. Nanoscale metal-organic frameworks (nano MOFs) possess high surface areas, definite structure, regulated optical properties, rich functionalized sites, and good biocompatibility that allow them to excel in a wide range of biomedical applications. Controllable syntheses and functionalization endow nano MOFs with better properties as imaging agents and sensing units for the diagnosis and treatment of diseases. This minireview summarizes the tunable synthesis strategies of nano MOFs with controllable size, shape, and regulated luminescent performance, and pinpoints their recent advanced applications as optical elements in bioimaging and biosensing. The current limitations and future development directions of nano MOF-contained materials in bioimaging and biosensing applications are also discussed, aiming to expand the biological applications of nano MOF-based nanomedicine and facilitate their production or clinical translation.
Collapse
Affiliation(s)
- Lingshan Gong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Lixiang Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Quanjie Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362046, P. R. China
| | - Lihua Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| |
Collapse
|
7
|
Chu JP, Fang PH, Zhang ZQ, Liu XY. Nanosized Zirconium-Organic Frameworks with Redox Behaviors for the Switchable Detection of Hypochlorous Acid and Ascorbic Acid. Inorg Chem 2024; 63:20276-20280. [PMID: 39404041 DOI: 10.1021/acs.inorgchem.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Luminescent metal-organic frameworks (LMOFs) exhibit promising applications as chemical sensors, especially for organic-linker-based LMOFs due to their unlimited structures and pre- and postfunctionality. However, it is still a challenge to introduce specific functional groups into LMOFs as reaction sites for sensing. Herein, a new luminescent zirconium-based metal-organic framework (Zr-MOF), HIAM-4009L, is reported with csq underlying net. By integrating the hydroquinone moiety into the skeleton of the organic linker via the reaction between o-diamine and aldehydes, nanosized HIAM-4009L exhibits reversible emission responses toward hypochlorous acid (HClO) and l-ascorbic acid (vitamin C, Vc) due to the switchable hydroquinone/quinone reaction. This nano-MOF can be used as a reaction-based chemical sensor for HClO and Vc detection with high selectivity and sensitivity. The present work not only provides nanosized MOFs for the reversible detection of HClO and Vc but also sheds light on the rational design of LMOFs with specific functional groups using an o-diamine- and aldehyde-based reaction.
Collapse
Affiliation(s)
- Jin-Peng Chu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Pu-Hao Fang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Zhi-Qiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
8
|
Wen C, Li RS, Guan Y, Chang X, Li N. A Two-Photon-Active Zr-Based Metal-Organic Framework-Based Orthogonal Nanoprobe for Recognition of Cellular Senescence. Anal Chem 2024; 96:16170-16178. [PMID: 39358945 DOI: 10.1021/acs.analchem.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A luminescent nanoprobe capable of orthogonal sensing of two independent events is highly significant for unbiased disease-related detection such as the detection of senescent cells. Moreover, it is invaluable that the nanoprobe possesses a two-photon excitable characteristic that is highly suitable for imaging living cells and tissues. Herein, we present a two-photon-excitable multiluminescent orthogonal-sensing nanoprobe (OS nanoprobe) capable of detecting both pH elevation and β-galactosidase (β-gal) overexpression in senescent cells. In the design, Zr-based dual-emissive metal-organic frameworks prepared from two mixed amino linkers, referred to as NH2-MU, were used as the component for the ratiometric sensing of pH; additionally, fluorogenic resorufin-β-d-galactopyranoside, linked to the NH2-MU framework, enables β-gal detection. In the OS nanoprobe, the signals for pH and β-gal sensing remain independent while maintaining high colocalization. The two-photon excitable organic linkers of NH2-MU impart the OS nanoprobe with a bioimaging capability, allowing for the differentiation of senescent human foreskin fibroblast (HFF) cells from younger HFF cells or LacZ positive cells with the 800 nm laser excitation. This study marks the first instance of achieving the multiplexed orthogonal fluorescent sensing of cellular senescence using a two-photon excitation strategy, suggesting the potential of using versatile metal-organic framework (MOFs)-based fluorophores to realize the orthogonal multiplexing of disease-related biomarkers through multiphoton excitation.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
9
|
Lu X, Yu X, Li B, Sun X, Cheng L, Kai Y, Zhou H, Tian Y, Li D. Harnessing Metal-Organic Frameworks for NIR-II Light-Driven Multiphoton Photocatalytic Water Splitting in Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405643. [PMID: 39119878 PMCID: PMC11481200 DOI: 10.1002/advs.202405643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The construction of near-infrared (NIR) light-activated hydrogen-producing materials that enable the controlled generation and high-concentration release of hydrogen molecules in deep tumor tissues and enhance the effects of hydrogen therapy holds significant scientific importance. To address the key technical challenge of low-efficiency oxidation-reduction reactions for narrow-bandgap photocatalytic materials, this work proposes an innovative approach for the controllable fabrication of multiphoton photocatalytic materials to overcome the limitations imposed by traditional near-infrared photocatalysts with "narrow-bandgap" constraints. Herein, an NIR-responsive multiphoton photocatalyst, ZrTc-Co, is developed by utilizing a post-synthetic coordination modification strategy to introduce hydrogenation active site CoII into a multiphoton responsive MOF (ZrTc). The results reveal that with the introduction of the CoII site, electron-hole recombination can be efficiently suppressed, thus promoting the efficiency of hydrogen evolution reaction. In addition, the integration of CoII can effectively enhance charge transfer and improve static hyperpolarizability, which endows ZrTc-Co with excellent multiphoton absorption. Moreover, hyaluronic acid modification endows ZrTc-Co with cancer cell-specific targeting characteristics, laying the foundation for tumor-specific elimination. Collectively, the proposed findings present a strategy for constructing NIR-II light-mediated hydrogen therapeutic agents for deep tumor elimination.
Collapse
Affiliation(s)
- Xin Lu
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Bo Li
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - YuanZhong Kai
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information TechnologyFaculty of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringSchool of Life SciencesKey Laboratory of Structure and Functional Regulation of Hybrid MaterialsMinistry of EducationAnhui UniversityHefei230601P. R. China
| |
Collapse
|
10
|
Meng YR, Xu MJ, Li SF, Li BC, Zhang G, Su J. Enhancing Two-Photon Excited Fluorescence of Metal-Organic Framework Single Crystals through Modulation of Inorganic Nodes. Inorg Chem 2024. [PMID: 39250883 DOI: 10.1021/acs.inorgchem.4c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Regulation of the two-photon excited fluorescence (TPEF) emission intensity and wavelength of metal-organic framework (MOF) crystals with similar constitutions presents a significant challenge. In this study, two MOFs, Zn-BTPPA and Cd3-BTPPA, were constructed using tetrakis(1,1'-biphenyl-4-carboxylic acid)-1,4-benzenediamine (H4BTPPA) as the organic ligand and mononuclear Zn and trinuclear Cd3 inorganic nodes, respectively. The incorporation of H4BTPPA within the MOF structures enables effective TPEF emission in both Zn-BTPPA and Cd3-BTPPA. The TPEF results show that Zn-BTPPA and Cd3-BTPPA exhibited strong emissions at 523 and 463 nm, respectively, when excited with a 780 nm laser. Moreover, Zn-BTPPA and Cd3-BTPPA exhibited much higher two-photon absorption cross sections, approximately 4.9 and 5.2 times higher than that of the reported dinuclear MOF, Cd2-BTPPA, with a similar composition, respectively. With different inorganic nodes, the stacking of chromophores, π···π interactions, and ligand geometry were found to correlate with the enhanced TPEF in Cd3-BTPPA and the blue-shifted TPEF in Zn-BTPPA. This work serves as an inspiration for designing efficient TPEF MOF materials based on the structure-property relationship.
Collapse
Affiliation(s)
- Ya-Ru Meng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Min-Jie Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Bo-Cong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Qiao Y, Tang X, Qiuju X, Zhang G. Enzyme-loaded manganese-porphyrin metal-organic nanoframeworks for oxygen-evolving photodynamic therapy of hypoxic cells. Heliyon 2024; 10:e33902. [PMID: 39071555 PMCID: PMC11282992 DOI: 10.1016/j.heliyon.2024.e33902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Photodynamic therapy (PDT) is attracting great attention for cancer treatments, while its therapeutic efficacy is limited by unsatisfactory photosensitizers and hypoxic tumor microenvironment (TME). To address these problems, we have developed catalase-loaded manganese-porphyrin frameworks (CAT@MnPFs) for catalytically-assisted PDT of cancer cells. CAT@MnPFs were constructed by the assembly of Mn2+ ions and PpIX into MnPFs and the subsequent loading of catalase. Under 650 nm light irradiation, the porphyrin (Protoporphyrin IX) within the structure of CAT@MnPFs can convert oxygen (O2) into singlet oxygen (1O2), showing the photodynamic effect. Importantly, the loaded catalase can decompose hydrogen peroxide (H2O2) into O2 with a huge elevation of O2 level (13.22 mg L-1) in 600 s, thus promoting 1O2 generation via PDT. As a result, CAT@MnPFs combined with 650 nm light can effectively ablate cancer cells due to the catalase-assisted oxygen-evolving PDT, showing a high therapeutic efficacy. Meanwhile, after the incubation with CAT@MnPFs, unobvious damage can be found in normal and red blood cells. Thus, the obtained CAT@MnPFs integrate the advantage of photosensitizers and catalase for oxygen-evolving PDT, which can provide some insight for treating hypoxic cells.
Collapse
Affiliation(s)
- Yang Qiao
- Department of Hematology and Oncology, Wenzhou Medical University affiliated Huangyan Hospital, The First People's Hospital of Taizhou, People's Republic of China
| | - Xiaowan Tang
- Department of Hematology and Oncology, Wenzhou Medical University affiliated Huangyan Hospital, The First People's Hospital of Taizhou, People's Republic of China
| | - Xu Qiuju
- The Third Affiliated Hospital of Harbin Medical University, 150 Haping Rd, Harbin, Heilongjiang Province, People's Republic of China
| | - Guangwen Zhang
- Department of Hematology and Oncology, Wenzhou Medical University affiliated Huangyan Hospital, The First People's Hospital of Taizhou, People's Republic of China
| |
Collapse
|
12
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
13
|
Peng T, Han CQ, Xia HL, Zhou K, Zhang J, Si J, Wang L, Miao J, Guo FA, Wang H, Qu LL, Xu G, Li J, Liu XY. Reticular chemistry guided precise construction of zirconium-pentacarboxylate frameworks with 5-connected Zr 6 clusters. Chem Sci 2024; 15:3174-3181. [PMID: 38425507 PMCID: PMC10901486 DOI: 10.1039/d3sc05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr6 clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology. Based on a thorough structural analysis of (4,4)-connected lvt-type Zr-tetracarboxylate frameworks and a judicious linker design, we have obtained the first example of a Zr-pentacarboxylate framework featuring unprecedented 5-connected organic linkers and 5-connected Zr6 clusters. Compared with HIAM-4040, a larger Stokes shift is achieved in HIAM-4040-OH via hydroxyl group induced excited-state intramolecular proton transfer (ESIPT). HIAM-4040-OH exhibits high chemical and thermal stability and is used for HClO detection in aqueous solution with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Tianyou Peng
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
- College of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
| | - Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jincheng Si
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jiafeng Miao
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Fu-An Guo
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Guozhong Xu
- College of Chemical Engineering, University of Science and Technology Liaoning Anshan 114051 P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road Piscataway New Jersey 08854 USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| |
Collapse
|
14
|
Sortino R, Cunquero M, Castro-Olvera G, Gelabert R, Moreno M, Riefolo F, Matera C, Fernàndez-Castillo N, Agnetta L, Decker M, Lluch JM, Hernando J, Loza-Alvarez P, Gorostiza P. Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo. Angew Chem Int Ed Engl 2023; 62:e202311181. [PMID: 37823736 DOI: 10.1002/anie.202311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.
Collapse
Affiliation(s)
- Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
| | - Marina Cunquero
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Gustavo Castro-Olvera
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Miquel Moreno
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, 08025, Barcelona, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Current address: Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Noèlia Fernàndez-Castillo
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Biomedicina de la, Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950, Esplugues de Llobregat, Spain
| | - Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Ludwig Maximilian University of Würzburg, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Ludwig Maximilian University of Würzburg, 97074, Würzburg, Germany
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, 08193, Bellaterra, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
15
|
Xia HL, Zhang J, Si J, Wang H, Zhou K, Wang L, Li J, Sun W, Qu L, Li J, Liu XY. Size- and Emission-Controlled Synthesis of Full-Color Luminescent Metal-Organic Frameworks for Tryptophan Detection. Angew Chem Int Ed Engl 2023; 62:e202308506. [PMID: 37416970 DOI: 10.1002/anie.202308506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
The development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2 -substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.
Collapse
Affiliation(s)
- Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, People's Republic of China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, People's Republic of China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
16
|
Yu S, Xu K, Wang Z, Zhang Z, Zhang Z. Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Front Bioeng Biotechnol 2023; 11:1190654. [PMID: 37234479 PMCID: PMC10206306 DOI: 10.3389/fbioe.2023.1190654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022. Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace. Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020-2022) and hydrogen peroxide (2020-2022). Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.
Collapse
Affiliation(s)
- Sanyang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kaihao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Li J, Li B, Yao X, Duan W, Zhang W, Tian Y, Li D. In Situ Coordination and Confinement of Two-Photon Active Unit Within Metal–Organic Frameworks for High-Order Multiphoton-Excited Fluorescent Performance. Inorg Chem 2022; 61:19282-19288. [DOI: 10.1021/acs.inorgchem.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiaqi Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xin Yao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Wenyao Duan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wen Zhang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
18
|
Zhao Y, Jiang X, Liu X, Liu X, Liu Z, Liu X. Application of photo-responsive metal-organic framework in cancer therapy and bioimaging. Front Bioeng Biotechnol 2022; 10:1031986. [PMID: 36338113 PMCID: PMC9633982 DOI: 10.3389/fbioe.2022.1031986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metal-organic frameworks (MOFs) are a class of hybrid porous crystalline materials that are assembled with metal ions/clusters and organic linkers. The fungibility of organic ligands and metal centers endow MOFs that are easy to design and synthesize. Based on their unique structure, multifarious MOFs with diverse functionalities have recently been widely applied in various research areas. Particularly striking is the application of photo-responsive MOFs in biological sensing and imaging. Notably, the photoelectronic properties make photo-responsive MOFs an ideal platform for cancer phototherapy. Moreover, ultrahigh porosities and tunable pore sizes allow MOFs to load anticancer drugs, further enhancing the antitumor efficiency. In this review, the categories and developing strategies of MOFs are briefly introduced. The application fields of MOFs in bioimaging, such as up-conversion fluorescence imaging, single/two-photon fluorescence bioimaging, magnetic resonance imaging, etc., are summarized. The working mechanism of MOFs in photo-responsive, photothermal therapy (PTT), and photodynamic therapy (PDT) are expounded. Examples of using MOFs for cancer treatment, including PTT, PDT, chemotherapy, and radiotherapy, are also demonstrated. Lastly, current limitations, challenges, and future perspectives for bioimaging and cancer treatment of MOFs are discussed. We believe that the versatile MOF will bring the dawn to the next generation of cancer treatment.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian Jiang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Xiaowei Liu,
| |
Collapse
|