1
|
Großkopf J, Gopatta C, Martin RT, Haseloer A, MacMillan DWC. Generalizing arene C-H alkylations by radical-radical cross-coupling. Nature 2025:10.1038/s41586-025-08887-2. [PMID: 40127680 DOI: 10.1038/s41586-025-08887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
The efficient and modular diversification of molecular scaffolds, particularly for the synthesis of diverse molecular libraries, remains a notable challenge in drug optimization campaigns1-3. The late-stage introduction of alkyl fragments is especially desirable due to the high sp3 character and structural versatility of these motifs4. Given their prevalence in molecular frameworks, C(sp2)-H bonds serve as attractive targets for diversification, although this process often requires difficult prefunctionalization or lengthy de novo syntheses. Traditionally, direct alkylations of arenes are achieved by using Friedel-Crafts reaction conditions with strong Brønsted or Lewis acids5,6. However, these methods suffer from poor functional group tolerance and low selectivity, limiting their broad implementation in late-stage functionalization and drug optimization campaigns. Here we report the application of a new strategy for the selective coupling of differently hybridized radical species, which we term 'dynamic orbital selection'. This mechanistic model overcomes common limitations of Friedel-Crafts alkylations via the in situ formation of two distinct radical species, which are subsequently differentiated by a copper-based catalyst on the basis of their respective binding properties. As a result, we demonstrate here a general and highly modular reaction for the direct alkylation of native arene C-H bonds using abundant and benign alcohols and carboxylic acids as the alkylating agents. Ultimately, this solution overcomes the synthetic challenges associated with the introduction of complex alkyl groups into highly sophisticated drug scaffolds in a late-stage fashion, thereby granting access to vast new chemical space. Based on the generality of the underlying coupling mechanism, 'dynamic orbital selection' is expected to be a broadly applicable coupling platform for further challenging transformations involving two distinct radical species.
Collapse
Affiliation(s)
- Johannes Großkopf
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Robert T Martin
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
2
|
Zhang X, Chen XX, Li ZH, Lin GQ, He ZT. Stereoselective P(III)-Glycosylation for the Preparation of Phosphinated Sugars. Angew Chem Int Ed Engl 2025; 64:e202420355. [PMID: 39639578 DOI: 10.1002/anie.202420355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Most of the reported work focus on the development of O-, N-, C- and S-glycosylation methods. However, no study explores P(III)-glycosylation reaction. Herein we describe a convenient protocol to realize P(III)-glycosylation process. A simple β-phosphino ester is adopted as P(III)-transfer reagent for this new type of glycosylation via a nucleophilic substitution and release strategy. Diverse phosphine units are introduced to the anomeric center of various sugars efficiently and with excellent stereoselectivity. The value of this method is showcased by the prepared P(III)-sugars as novel linkers in bioactive molecule conjugation, new chiral ligands in metal-catalyzed asymmetric allylic substitutions and organocatalysts. Preliminary mechanistic studies corroborated the designed P(III)-transfer process.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xian-Xiao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Han Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guo-Qiang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Yang Q, Wen MM, Ruan YJ, Wang XL, Zhang CZ, Wang PF, Hu XY, Xiao YH, Liu XG. Stereoretentive Conversion to C-Glycosides from S-Glycosides via Ligand-Coupling on Sulfur(IV). Org Lett 2025; 27:954-960. [PMID: 39836883 DOI: 10.1021/acs.orglett.4c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A novel strategy is reported for the stereoselective synthesis of C(sp2)-C(sp3) C-glycosides, which converts heteroaryl S-glycosides into heteroaryl C-glycosides with retention of configuration through a sequential process involving oxidation and Grignard reagent attack. The new method involves the generation of a S(IV) intermediate, followed by ligand coupling of the glycosyl and heteroaryl groups to yield heteroaryl C-glycosides. The diverse heteroaryl C-glycosides were achieved with good efficiency.
Collapse
Affiliation(s)
- Qian Yang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-He Xiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
4
|
Huang MG, Fu YLT, Li JW, Liu YJ. Ruthenium-catalyzed three-component tandem remote C-H functionalization of naphthalenes: modular and concise synthesis of multifunctional naphthalenes. Chem Sci 2025; 16:1957-1965. [PMID: 39759927 PMCID: PMC11694486 DOI: 10.1039/d4sc06846g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
The prevalence of naphthalene compounds in biologically active natural products, organic ligands and approved drugs has motivated investigators to develop efficient strategies for their selective synthesis. C-H functionalization of naphthalene has been frequently deployed, but mainly involves two-component reactions, while multiple-component C-H functionalization for the synthesis of naphthalene compounds has thus far proven elusive. Herein, we disclose a versatile three-component protocol for the modular synthesis of multifunctional naphthalenes from readily available simple naphthalenes, olefins and alkyl bromides via P(iii)-assisted ruthenium-catalyzed remote C-H functionalization. This protocol not only tolerates various functional groups, but can be applied to many natural product and drug derivatives, and can involve a three-component reaction with two different bioactive molecules. Mechanism studies indicated that the utilization of tertiary phosphines as auxiliary groups is the key to achieving the three-component free-radical reaction.
Collapse
Affiliation(s)
- Mao-Gui Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Yue-Liu-Ting Fu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| | - Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan 430062 P. R. China
| |
Collapse
|
5
|
Cheng G, Yang B, Han Y, Lin W, Tao S, Nian Y, Li Y, Walczak MA, Zhu F. Pd-Catalyzed Stereospecific Glycosyl Cross-Coupling of Reversed Anomeric Stannanes for Modular Synthesis of Nonclassical C-Glycosides. PRECISION CHEMISTRY 2024; 2:587-599. [PMID: 39611026 PMCID: PMC11600346 DOI: 10.1021/prechem.4c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 11/30/2024]
Abstract
Nonclassical C-glycosides, distinguished by their unique glycosidic bond connection mode, represent a promising avenue for the development of carbohydrate-based drugs. However, the accessibility of nonclassical C-glycosides hinders broader investigations into their structural features and modes of action. Herein, we present the first example of Pd-catalyzed stereospecific glycosylation of nonclassical anomeric stannanes with aryl or vinyl halides. This method furnishes desired nonclassical aryl and vinyl C-glycosides in good to excellent yields, while allowing for exclusive control of nonclassical anomeric configuration. Of significant note is the demonstration of the generality and practicality of this nonclassical C-glycosylation approach across more than 50 examples, encompassing various protected and unprotected saccharides, deoxy sugars, oligopeptides, and complex molecules. Furthermore, biological evaluation indicates that nonclassical C-glycosylation modifications of drug molecules can positively impact their biological activity. Additionally, extensive computational studies are conducted to elucidate the rationale behind differences in reaction reactivity, unveiling a transmetalation transition state containing silver (Ag) within a six-membered ring. Given its remarkable controllability, predictability, and consistently high chemical selectivity and stereospecificity regarding nonclassical anomeric carbon and Z/E configuration, the method outlined in this study offers a unique solution to the longstanding challenge of accessing nonclassical C-glycosides with exclusive stereocontrol.
Collapse
Affiliation(s)
- Guoqiang Cheng
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bo Yang
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Han
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Lin
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Siyuan Tao
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yong Nian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yingzi Li
- Institute
of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Maciej A. Walczak
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Feng Zhu
- Frontiers
Science Center for Transformative Molecules (FSCTM), Center for Chemical
Glycobiology, Shanghai Key Laboratory for Molecular Engineering of
Chiral Drugs, Department of Chemical Biology, School of Chemistry
and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Zargar IA, Rasool B, Bappa SK, Mukherjee D. Anomeric oxyacetamide assisted site-selective C-2 arylation and its application in O/ S glycosylation of 2,3 eno-pyranoside. Chem Commun (Camb) 2024; 60:13040-13043. [PMID: 39431901 DOI: 10.1039/d4cc04301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Herein we developed a palladium-catalyzed coupling of 2,3-enopyranose with arylboronic acid using a removable oxyacetamide directing group, which provides an efficient method for the synthesis of C-2 aryl sugars. The synthesized products were subsequently utilized as glycosyl donors in O/S glycosylation, enabling regio- and stereoselective production of 1,2-disubstituted branched sugars.
Collapse
Affiliation(s)
- Irshad Ahmad Zargar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bisma Rasool
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S K Bappa
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India.
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India.
| |
Collapse
|
7
|
Xie D, Zeng W, Yang J, Ma X. Visible-light-promoted direct desulfurization of glycosyl thiols to access C-glycosides. Nat Commun 2024; 15:9187. [PMID: 39448612 PMCID: PMC11502824 DOI: 10.1038/s41467-024-53563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
C-Glycosides are essential for the study of biological processes and the development of carbohydrate-based drugs. Despite the tremendous hurdles, glycochemists have often fantasized about the efficient, highly stereoselective synthesis of C-glycosides with the shortest steps under mild conditions. Herein, we report a desulfurative radical protocol to synthesize C-alkyl glycosides and coumarin C-glycosides under visible-light induced conditions without the need of an extra photocatalyst, in which stable and readily available glycosyl thiols that could be readily obtained from native sugars are activated in situ by pentafluoropyridine. The benefits of this procedure include high stereoselectivity, broad substrate scope, and easy handling. Mechanistic studies indicate that the in situ produced tetrafluoropyridyl S-glycosides form key electron donor-acceptor (EDA) complexes with Hantzsch ester (for C-alkyl glycosides) or Et3N (for coumarin C-glycosides), which, upon irradiation with visible light, trigger a cascade of glycosyl radical processes to access C-glycosides smoothly.
Collapse
Affiliation(s)
- Demeng Xie
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zeng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Yang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Ma
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
8
|
Lan H, Liu Y, Ackermann L, Wang L, Wang D. Ruthenium(II)-Catalyzed Remote C-H Alkylation of Arenes Using Diverse N-Directing Groups through Aziridine Ring Opening. Org Lett 2024; 26:7993-7998. [PMID: 39264308 DOI: 10.1021/acs.orglett.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
An efficient approach for the remote C-H alkylation of arenes, employing a variety of N-directing groups is described. This method facilitates the straightforward synthesis of valuable phenylethylamine derivatives by exclusively cleaving the benzylic C-N bond in aziridines. Furthermore, these products can easily remove the protecting groups, resulting in a variety of meta-substituted compounds, such as amines and ketones, which hold significance in synthetic chemistry.
Collapse
Affiliation(s)
- Hongyan Lan
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yingzhen Liu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
9
|
Shen HC, Li JJ, Wang P, Yu JQ. meta-C-H functionalization of phenylethyl and benzylic alcohol derivatives via Pd/NBE relay catalysis. Chem Sci 2024:d4sc03802a. [PMID: 39268204 PMCID: PMC11388095 DOI: 10.1039/d4sc03802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The transition metal-catalyzed meta-C-H functionalization of alcohols and their hydroxylamine derivatives remains underdeveloped. Herein, we report an efficient meta-C-H arylation of both phenylethyl and benzylic alcohols and their hydroxylamine derivatives using a readily removable oxime ether directing group. Using electronically activated 2-carbomethoxynorbornene as the transient mediator and 3-trifluoromethyl-2-pyridone as the enabling ligand, this reaction features a broad substrate scope and good functional group tolerance. More importantly, with this oxime-directed meta-C-H functionalization, this method provides a dual approach for efficient access to both meta-substituted alcohols and hydroxylamines using two sets of simple deprotection conditions. This protocol leads to the efficient synthesis of bioactive compounds possessing promising reactivities for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| |
Collapse
|
10
|
Shi WY, Ma JJ, Li HY, Chen D, Liu XY, Liang YM. Synthesis of C-Alkyl Glycosides from Alkyl Bromides and Glycosyl Carboxylic Acids via Ni/Photoredox Dual Catalysis. J Org Chem 2024; 89:11136-11147. [PMID: 39106492 DOI: 10.1021/acs.joc.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
C-Alkyl glycosides, an important class of C-glycosides, are widely found in various drugs and natural products. The synthesis of C-alkyl glycosides has attracted considerable attention. Herein, we developed a Ni/photoredox catalyzed decarboxylative C(sp3)-C(sp3) coupling reaction of stable glycosylcarboxylic acids with simple aliphatic bromides to generate C-alkyl glycosides. The method successfully linked several functional molecular fragments (natural products or drugs) to a sugar moiety, showing the extensive application prospects of this transformation. Controlled experiments and DFT calculations demonstrated that the reaction pathway contains a free radical process, and a possible mechanism is proposed.
Collapse
Affiliation(s)
- Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia-Jun Ma
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hu-Yi Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dongping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
12
|
Gulzar T, Liu YH, Xia YN, Liu W, Liu P, Zhu D, Xu P, Yu B. Synthesis of C-Oligosaccharides via Ni-Catalyzed Reductive Hydroglycosylation. Org Lett 2024; 26:1718-1722. [PMID: 38380896 DOI: 10.1021/acs.orglett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
C-Oligosaccharides are metabolically stable surrogates of native glycans containing O/N/S-glycosidic linkages and thus have therapeutic potential. Here we report a straightforward approach to the synthesis of vinyl C-linked oligosaccharides via the Ni-catalyzed reductive hydroglycosylation of alkynyl glycosides with glycosyl bromides.
Collapse
Affiliation(s)
- Tayyab Gulzar
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Hua Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu-Nong Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pengchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dapeng Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
13
|
Jiang Y, Zhang Y, Lee BC, Koh MJ. Diversification of Glycosyl Compounds via Glycosyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202305138. [PMID: 37278303 DOI: 10.1002/anie.202305138] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Glycosyl radical functionalization is one of the central topics in synthetic carbohydrate chemistry. Recent advances in metal-catalyzed cross-coupling chemistry and metallaphotoredox catalysis provided powerful platforms for glycosyl radical diversification. In particular, the discovery of new glycosyl radical precursors in conjunction with these advanced reaction technologies have significantly expanded the space for glycosyl compound synthesis. In this Review, we highlight the most recent progress in this area starting from 2021, and the reports included will be categorized based on different reaction types for better clarity.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
14
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|