1
|
Zhang J, Zhu C, Cao X, Jin H, Zhang L. N-Heterocyclic Carbene-Catalyzed [4 + 2] Annulation of Enolizable Thioesters for the Synthesis of 2-Pyrones. J Org Chem 2025; 90:6094-6101. [PMID: 40267022 DOI: 10.1021/acs.joc.5c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
An N-heterocyclic carbene (NHC)-catalyzed [4 + 2] annulation enables the direct synthesis of 2-pyrones from α-chlorothioesters and β,γ-unsaturated α-keto esters or chalcones. The method utilizes NHC-activated α-chlorothioesters to generate key intermediates for 2-pyrone formation with high functional group tolerance. Moreover, the 2-pyrones were transformed into polysubstituted benzene and naphthalene derivatives, showcasing their synthetic value.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang 110142, People's Republic of China
| | - Chen Zhu
- Institute of Functional Molecules, Shenyang University of Chemical Technology; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang 110142, People's Republic of China
| | - Xu Cao
- Institute of Functional Molecules, Shenyang University of Chemical Technology; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang 110142, People's Republic of China
| | - Hui Jin
- Institute of Functional Molecules, Shenyang University of Chemical Technology; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang 110142, People's Republic of China
| | - Lixin Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang 110142, People's Republic of China
| |
Collapse
|
2
|
Ren Y, Lin C, Zhang H, Liu Z, Wei D, Feng J, Du D. Organocatalytic atroposelective de novo construction of monoaxially and 1,4-diaxially chiral fused uracils with potential antitumor activity. Chem Sci 2025:d5sc00452g. [PMID: 40191121 PMCID: PMC11966538 DOI: 10.1039/d5sc00452g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Atropisomers bearing multiple stereogenic axes are of increasing relevance to materials science, pharmaceuticals, and catalysis. However, the catalytic enantioselective construction of these atropisomers in a single step remains synthetically challenging. We herein report the first NHC-organocatalytic enantioselective synthesis of a new class of monoaxially and 1,4-diaxially chiral fused uracil scaffolds. Preliminary studies on the antitumor activity of selected compounds demonstrated that this new class of axially chiral uracil derivatives may have potential applications in the discovery of new lead compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Yuzhi Ren
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Chen Lin
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Han Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Zuquan Liu
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Jie Feng
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
3
|
Du YB, Lu QT, Cui YS, Wu KW, Wang Y, Zhang YZ, Zhao Z, Hou JL, Cai Q. Enantioselective Synthesis of Atropisomeric Tri-Axis Naphthalenes via Diels-Alder Reaction and Dehydrative Aromatization of Isobenzofurans. Angew Chem Int Ed Engl 2025; 64:e202421060. [PMID: 39651784 DOI: 10.1002/anie.202421060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/11/2024]
Abstract
Atropisomers with multiple stereogenic axes have attracted much attention due to their increasing significance in the fields of natural products, chiral materials, and drug discoveries. However, the catalytic stereoselective construction of axially chiral ring scaffolds with more than two axes on a single benzene ring remains a challenging task. Herein, we present an efficient method for synthesizing triaxially chiral polysubstituted naphthalene scaffolds via sequential Ni(II)-catalyzed Diels-Alder reaction of isobenzofurans and TfOH-promoted dehydrative aromatization reaction. Using 1,3-biarylisobenzofurans and β-aryl-substituted α,β-unsaturated N-acyl pyrazoles as modular reaction partners, a series of naphthalenes with 1,3,4-triaxes were synthesized with excellent enantioselectivities and diastereoselectivities. Furthermore, by attaching two pyrene chromophores to this novel triaxially chiral ring scaffold, a circularly polarized luminescence (CPL)-active dye exhibiting a remarkable luminescence dissymmetry factor (glum=-0.019) and high fluorescence quantum efficiency (ØFL=0.29) was obtained, highlighting the potential applications of atropisomers with multiple stereogenic axes in the design of chiroptical organic materials.
Collapse
Affiliation(s)
- Yuan-Bo Du
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qi-Tao Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Kai-Wen Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu-Zhen Zhang
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
4
|
Chen B, Feng TT, Zhou DG, Yang LJ. Mechanisms of C(sp 3)-H Functionalization of Acetonitrile or Acetone with Alkynes: A DFT Investigation. J Chem Inf Model 2025; 65:1953-1966. [PMID: 39912650 DOI: 10.1021/acs.jcim.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The mechanisms for the C(sp3)-H activation and addition reactions between acetonitrile (or acetone) and alkynes have been investigated with the M06-2X-D3/ma-def2-TZVP method and basis set. The SMD (solvation model based on solute electron density) model was applied to simulate the solvent effect. In the first and second reactions, 2-phenylbut-3-yn-2-ol reacted with acetonitrile and acetone, respectively. First, the C(sp3)-H activations of acetonitrile and acetone could be achieved by PhCOO• and t-BuO• radicals. Then, addition reactions converted 2-phenylbut-3-yn-2-ol into final products P1 and P2. Gibbs free energy surfaces of these two reactions suggest that blue lines would be the favorable paths with lower Gibbs energy barriers, and the terminal C atom of the C≡C bond is the best reactive site. Moreover, the analysis of the IRI (Interaction Region Indicator) reveals the Z- and E-configuration transformations. While in the third and fourth reactions, methyl(2-(phenylethynyl)phenyl)sulfane has interactions with acetonitrile and acetone via some paths, respectively. Gibbs free energy profiles show that the C10 atom, rather than the C11 atom, has priority, and the blue lines are favorable. Furthermore, the action mode of Na2HPO4 could reduce the energy barrier and benefit the reaction. vdW (van der Waals) interactions play an important role in the choice for the reactive site. In the fifth (or sixth) reaction, it happened between 1-(2-(methylthio)phenyl)-3-phenylprop-2-yn-1-one and acetontrile (or acetone) to yield the final product P5 (or P6). The computational results uncovered the blue line is the best path, and the choice for the reactive site depends on the vdW interactions, which reveals the origin of selectivity. In addition, the investigation for the byproducts have been carried out, and these can explain the reason that only the main product is produced. Both of those can agree with the experimental results. The localized orbital locator (LOL) isosurfaces, Laplacian bond order (LBO), electron density of the bond critical point (ρBCP), electron spin density isosurface graphs, and IRI graphs can be used to analyze the structure and reveal the reaction substances.
Collapse
Affiliation(s)
- Bin Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Tian-Tian Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Li-Jun Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| |
Collapse
|
5
|
Liu Z, Li C, Zhang S, Du D. Divergent Synthesis of Axially Chiral 2-Pyranones and Fused 2-Pyridones via N-Heterocyclic Carbene-Catalyzed Atroposelective [3 + 3] Annulation. J Org Chem 2025; 90:1934-1939. [PMID: 39854173 DOI: 10.1021/acs.joc.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
An N-heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of alkynyl acylazoliums with benzothiazole derivatives has been developed for the divergent synthesis of axially chiral triaryl 2-pyranones and fused 2-pyridones. The regioselectivity of this protocol depends on the structure of benzothiazoles with three different nucleophilic centers. The obtained axially chiral frameworks represent a new class of arylheterocycle atropisomers, which may be potentially useful in medicinal chemistry.
Collapse
Affiliation(s)
- Zuquan Liu
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chenxing Li
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2025; 54:1102-1124. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Feng K, Yao C, Xu H. Biaxially chiral compounds: research and development of synthesis. Chem Commun (Camb) 2025; 61:2217-2234. [PMID: 39775290 DOI: 10.1039/d4cc04701j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
With the rapid advancements in asymmetric catalysis, there is a growing need for the asymmetric selective synthesis of complex and diverse molecules with chiral axes. Axially chiral molecules are not only present in natural products and drugs but also in specialized chiral ligands and catalysts. The catalytic asymmetric synthesis of axially chiral molecules has garnered significant attention within the chemical community. To date, two asymmetric catalytic methods have been established for the synthesis of biaxially chiral molecules: transition-metal catalysis and asymmetric organocatalysis. This feature article presents a summary of the research progress made in the field of asymmetric selective synthesis of biaxially chiral molecules. This review focuses on the reaction range, limitations, and reaction mechanism of the biaxially chiral molecular synthesis method, as well as the contribution and advantages of this method in the preparation of various axially chiral compounds.
Collapse
Affiliation(s)
- Kongling Feng
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
| | - Chaochao Yao
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
| | - Hao Xu
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
8
|
Xiao Y, Huang DW, Liao J, Wang B, Li YL, Wang JY. Fe(III)-Catalyzed Ring Expansion of Cyclopropenone from Olefins via Radicals to Access Pyrone and Indanone Derivatives. Org Lett 2025; 27:814-820. [PMID: 39797810 DOI: 10.1021/acs.orglett.4c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated. This method has mild conditions and wide substrate adaptability and allows the indanone fragment to be conveniently accessed.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Dong-Wei Huang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Jie Liao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Yu-Long Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Chengdu 610039, P. R. China
| |
Collapse
|
9
|
Szabados H, Šebesta R. Recent advances in organocatalytic atroposelective reactions. Beilstein J Org Chem 2025; 21:55-121. [PMID: 39811683 PMCID: PMC11729692 DOI: 10.3762/bjoc.21.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis. Atroposelective organocatalytic reactions are discussed according to the dominant catalyst activation mode. For covalent organocatalysis, the typical enamine and iminium modes are presented, followed by N-heterocyclic carbene-catalyzed reactions. The bulk of the review is devoted to non-covalent activation, where chiral Brønsted acids feature as the most prolific catalytic structure. The last part of the article discusses hydrogen-bond-donating catalysts and other catalyst motifs such as phase-transfer catalysts.
Collapse
Affiliation(s)
- Henrich Szabados
- Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
10
|
Liu X, Yu M, Huang K, Huang H, Gu H, Tian C, Qi J, Guo Z, Lian C, Wu Y, Zhang W, Zhu WH. Efficient Quasi-Homogenous Photocatalysis Enabled by Molecular Nanophotocatalysts with Donor-Acceptor Motif. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413440. [PMID: 39623807 DOI: 10.1002/adma.202413440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Indexed: 01/30/2025]
Abstract
Polymer semiconductors have attracted much attention for photocatalytic hydrogen evolution, but they typically exhibit micrometer-sized particles in water-suspension, causing severe loss in light absorption and exciton recombination. Here a molecular nanophotocatalyst featuring a donor-acceptor motif is presented that solution is processed via a facile stirring nanoprecipitation method assisted by hydrophilic surfactants, enabling an efficient quasi-homogenous hydrogen evolution. In contrast to the original bulk powder (heterogeneous system), these quasi-homogenous nanophotocatalysts exhibit significantly improved light-harvesting, water-wettability, and exciton dissociation, resulting in distinctly enhanced (by four-order-of-magnitude) photocatalytic hydrogen evolution rate. The optimized nanophotocatalysts (4CzPN/DDBAB/SDBS) generate an outstanding hydrogen evolution rate of 116.42 mmol g-1 h-1 and apparent quantum yield of 30.2% at 365 nm, which are among the highest reported for single-junction organic photocatalysts. The scalability of the quasi-homogenous photocatalysts is further demonstrated using a flow-based flash nanoprecipitation (FNP) processing.
Collapse
Affiliation(s)
- Xueyan Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaojie Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kai Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haiyang Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongxu Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changhao Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Qi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongzhen Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Wang QQ, Qiao Y, Wei D. Unraveling proton-coupled electron transfer in cofactor-free oxidase- and oxygenase-catalyzed oxygen activation: a theoretical view. Phys Chem Chem Phys 2024; 27:20-31. [PMID: 39628287 DOI: 10.1039/d4cp03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Oxygen plays a crucial role in the metabolic processes of non-anaerobic organisms. However, a detailed understanding of how triplet oxygen participates in the enzymatic oxidation of organic compounds involved in life processes is still lacking. It is noteworthy that recent studies have found that cofactor-free oxidase- and oxygenase-catalyzed oxygen activation occurs through proton-coupled electron transfer (PCET), which is significantly different from the previously proposed single electron transfer (SET) mechanism. Herein, we summarize the recent advances in the general mechanism of catalytic activation reactions of triplet oxygen by these enzymes. We believe that this review not only helps in providing a deep understanding of the processes involved in oxygen metabolism in organisms but also provides valuable theoretical reference data for designing more efficient enzyme mutants for treating diseases and handling environmental pollution in the future.
Collapse
Affiliation(s)
- Qian-Qian Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
12
|
He Y, Chen J, Jiang Y, Fang X, Liu J, Yan JL. N-Heterocyclic Carbene Catalyzed Reactions Involving Acetylenic Breslow and/or Acylazolium as Key Intermediates. CHEM REC 2024; 24:e202400165. [PMID: 39558761 DOI: 10.1002/tcr.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Indexed: 11/20/2024]
Abstract
N-heterocyclic carbene (NHC) organocatalysis has been developed as a powerful tool in modern synthetic chemistry. NHC catalytic activation of ynals and alkynoic acid derivatives provided versatile reactions that involve acetylenic Breslow and/or acylazolium as key intermediates, and diverse transformations have been established for access to molecules with unique skeletons in efficient fashions. Herein we summarize the recent achievements in NHC-catalyzed reactions involving acetylenic Breslow and/or acylazolium intermediates. Different reactions belonging to three catalytic modes, including (1) conjugate additions to acetylenic Breslow derived α,β-unsaturated acylazolium intermediates, (2) β-umpolung of ynals via acetylenic Breslow intermediates, and (3) conjugate additions to acetylenic acylazolium intermediates, are emphasized with examples and plausible mechanisms cited to guide a better understanding.
Collapse
Affiliation(s)
- Yujie He
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jintao Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yu Jiang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Xiaoyu Fang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Junyang Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Jia-Lei Yan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
13
|
Han TJ, Yang QL, Hu J, Wang MC, Mei GJ. Divergent Synthesis of Chiroptical Molecular Switches Based on 1,2-Diaxial Atropisomers. JACS AU 2024; 4:4445-4454. [PMID: 39610732 PMCID: PMC11600187 DOI: 10.1021/jacsau.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024]
Abstract
The development of chiroptical molecular switches for chiral sensing, data communication, optical displays, chiral logic gates, and asymmetric catalysis is currently a vibrant frontier of science and technology. Herein, we report a practical artificial dynamic system based on a 1,2-diaxial atropisomer. Organocatalytic parallel kinetic resolution allows the divergent synthesis of two sets of stereoisomers with vicinal C-C and N-N axes from the same racemic single-axis substrates. By simply varying the configuration of the single catalyst, all four stereoisomers are accessible. The successive conduction of covalent unlocking/locking and thermal-isomerization processes enables sequential switching between all four atropisomeric states with electronic circular dichroism signal reversal, providing an example of multistate chiroptical molecular switches.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Le Yang
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaen Hu
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Can Wang
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan
Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
14
|
Sarkar S, Das S, Gandhi S. Catalytic Synthesis of 1 H-Benzoxazolo[3,2- a]pyridin-1-ones via Formal [3 + 3] Annulations of NHC-Generated Alkynyl Acylazoliums with Benzoxazolyl Acetates and Their Photophysical Studies. J Org Chem 2024; 89:15559-15567. [PMID: 39431487 DOI: 10.1021/acs.joc.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
We disclose the synthesis of a tricyclic fused N-heterocycle via the NHC-catalyzed annulation of either a ynal or an alkynyl ester with readily accessible benzoxazolyl acetate. While the annulation with ynals requires an oxidant, the reaction with alkynyl esters proceeds via the direct generation of alkynyl acylazolium intermediates with an NHC. With the dearth of catalytic processes to access these 1H-benzoxazolo[3,2-a]pyridin-1-ones from simple starting materials, this method is especially important. The photophysical properties of the products have also been evaluated.
Collapse
Affiliation(s)
- Sibasis Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha 760010, India
| | - Suravi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha 760010, India
| | - Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha 760010, India
| |
Collapse
|
15
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
16
|
Shi SQ, Cui CC, Xu LL, Zhang JP, Hao WJ, Wang J, Jiang B. Enantioselective synthesis of saddle-shaped eight-membered lactones with inherent chirality via organocatalytic high-order annulation. Nat Commun 2024; 15:8474. [PMID: 39349925 PMCID: PMC11442971 DOI: 10.1038/s41467-024-52823-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Inherently chiral medium-ring derivatives have important applications in many research fields, such as materials science, molecular recognition, and asymmetric catalysis. However, the enantioselective assembly of these molecules, especially by organocatalytic strategies, remains a formidable challenge, and few methods are available. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) formal high-order (5 + 3) annulation of 1-(2-indolyl)naphthalen-2-ols with ynals. In the presence of an NHC pre-catalyst, base, Lewis acid and oxidant, this protocol enables the catalytic formation of C-C and C-O bonds, providing practical and facile access to an array of inherently chiral saddle-shaped eight-membered lactones featuring an oxocin-2-one scaffold with structural diversity in good efficiency and excellent enantiocontrol. Moreover, the scale-up preparation and representative late-stage transformations of the eight-membered lactones further demonstrate the application potential of this synthetic technology.
Collapse
Affiliation(s)
- Shao-Qing Shi
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chen-Chang Cui
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lin-Lin Xu
- Key Laboratory of Human Genetics and Environmental Medicine, College of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jin-Peng Zhang
- Key Laboratory of Human Genetics and Environmental Medicine, College of Public Health, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
17
|
Gao G, Liang PY, Jin N, Zhao ZB, Tian XC, Xie D, Tu CZ, Zhang HR, Zhou PP, Yang Z. Mechanism and origin of enantioselectivity for organocatalyzed asymmetric heteroannulation of alkynes in the construction of axially chiral C2-arylquinoline. Org Biomol Chem 2024; 22:7500-7517. [PMID: 39189805 DOI: 10.1039/d4ob01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Peng-Yu Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Nengzhi Jin
- Key Laboratory of Advanced Computing of Gansu Province, Gansu Computing Center, 42 Qingyang Road, Lanzhou 730000, P. R. China
| | - Zi-Bo Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Xiao-Cheng Tian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Chi-Zhou Tu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Hai-Rong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100050, P. R. China.
| |
Collapse
|
18
|
Yu M, Huang J, Zhu H, Shi D, Yang W, Liu Y, Ji Y, Fu Z. Facile construction of 2-pyrones under carbene catalysis. RSC Adv 2024; 14:28585-28595. [PMID: 39247504 PMCID: PMC11378031 DOI: 10.1039/d4ra05596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
2-Pyrones are valuable structural motifs in organic chemistry, found in numerous natural products and pharmaceuticals. The synthesis of these heterocycles has been significantly advanced by the application of N-Heterocyclic Carbene (NHC) catalysis. This review examines the recent advancements in NHC-catalyzed synthesis of 2-pyrones, highlighting key methodologies, mechanisms, and synthetic applications. NHC catalysis has revolutionized the synthesis of 2-pyrones, providing efficient, selective, and versatile methods for constructing these valuable heterocycles.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce Harbin 150076 China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Haibin Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Dongping Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Weiqi Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| | - Yingjie Liu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce Harbin 150076 China
| | - Yubin Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce Harbin 150076 China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
19
|
Yao C, Li DR, Xiang HM, Li SJ, Lu Y, Wang Z, Yin T, Wang J, Feng K, Zhu C, Xu H. Copper-catalysed asymmetric annulation of yne-allylic esters with amines to access axially chiral arylpyrroles. Nat Commun 2024; 15:6848. [PMID: 39127693 DOI: 10.1038/s41467-024-50896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The construction of atropisomers with 1,2-diaxes, while maintaining high enantiocontrol, presents a significant challenge due to the dynamic nature of steric hindrance at ortho-aryl substituents. Although various catalytic asymmetric methods have been developed for accessing axially chiral arylpyrroles, the synthesis of axially chiral arylpyrroles with 1,2-diaxes in a catalytic asymmetric manner has remained rare. Herein, the authors report the synthesis of diverse axially chiral arylpyrroles with 1,2-diaxes, and C-C and C-N axes through copper-catalysed asymmetirc [4 + 1] annulation of yne-allylic esters with arylamines via a remote stereocontrol strategy. This approach provides facile access to a broad range of heterobiaryl atropisomers (67 examples) in excellent enantioselectivities, each bearing one or two C-C/C-N axes, demonstrating its versatility and efficiency. The utility of this methodology is further highlighted by the transformation of the product into chiral phosphine ligand, and chiral thioureas for the use in asymmetric catalysis.
Collapse
Affiliation(s)
- Chaochao Yao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dan-Ran Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hua-Ming Xiang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Si-Jia Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuepeng Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zihao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tingrui Yin
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiaqiang Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Kongling Feng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
20
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
21
|
Zheng Z, Liu Q, Peng X, Jin Z, Wu J. NHC-Catalyzed Chemo- and Enantioselective Reaction between Aldehydes and Enals for Access to Axially Chiral Arylaldehydes. Org Lett 2024; 26:917-921. [PMID: 38236760 DOI: 10.1021/acs.orglett.3c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A chiral carbene-catalyzed chemo- and enantioselective reaction with racemic biaryl aldehydes and α-bromoenals is developed for access to axially chiral 2-arylbenzaldehydes through atroposelective dynamic kinetic resolution (DKR) processes. This atroposelective DKR strategy can tolerate a broad scope of substrates with diverse functionalities. The axially chiral 2-aryl benzaldehyde products generally afford moderate to good yields and enantioselectivities. The axially chiral molecules afforded from the current approach are variable through simple transformations to afford axially chiral functional molecules with excellent optical purities.
Collapse
Affiliation(s)
- Zhiguo Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Zhou BA, Li XN, Zhang CL, Wang ZX, Ye S. Enantioselective Synthesis of Axially Chiral Diaryl Ethers via NHC Catalyzed Desymmetrization and Following Resolution. Angew Chem Int Ed Engl 2024; 63:e202314228. [PMID: 38019184 DOI: 10.1002/anie.202314228] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.
Collapse
Affiliation(s)
- Bang-An Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Ning Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Xiang Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
23
|
Wang SJ, Wang X, Xin X, Zhang S, Yang H, Wong MW, Lu S. Organocatalytic diastereo- and atroposelective construction of N-N axially chiral pyrroles and indoles. Nat Commun 2024; 15:518. [PMID: 38225235 PMCID: PMC10789812 DOI: 10.1038/s41467-024-44743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
The construction of N-N axially chiral motifs is an important research topic, owing to their wide occurrence in natural products, pharmaceuticals and chiral ligands. One efficient method is the atroposelective dihydropyrimidin-4-one formation. We present herein a direct catalytic synthesis of N-N atropisomers with simultaneous creation of contiguous axial and central chirality by oxidative NHC (N-heterocyclic carbenes) catalyzed (3 + 3) cycloaddition. Using our method, we are able to synthesize structurally diverse N-N axially chiral pyrroles and indoles with vicinal central chirality or bearing a 2,3-dihydropyrimidin-4-one moiety in moderate to good yields and excellent enantioselectivities. Further synthetic transformations of the obtained axially chiral pyrroles and indoles derivative products are demonstrated. The reaction mechanism and the origin of enantioselectivity are understood through DFT calculations.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaolan Xin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Shulei Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
24
|
Qu HY, Zheng WH. Synthesis of Chiral Biphenyl Monophosphines as Ligands in Enantioselective Suzuki-Miyaura Coupling. Org Lett 2023; 25:9119-9123. [PMID: 38112557 DOI: 10.1021/acs.orglett.3c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we describe our design and synthesis of novel chiral monophosphine ligands by the short-step addition of chiral lactates as side chains to the well-known ligand SPhos/RuPhos. The new chiral ligands were shown to be highly efficient in palladium-catalyzed Suzuki-Miyaura coupling, providing a series of axially chiral biphenyl products in high yield and high enantioselectivity. Furthermore, the gram-scale reaction and the diverse conversions of the products demonstrated the potential utility of the approach.
Collapse
Affiliation(s)
- Hong-Yu Qu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
25
|
Li J, Duan XY, Ren X, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of 5-Aminopyrazoles with Enals: Enantioselective Synthesis of Pyrazolo[3,4- b]pyridones. J Org Chem 2023; 88:16621-16632. [PMID: 37967027 DOI: 10.1021/acs.joc.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
An enantioselective construction of pyrazolo[3,4-b]pyridones was achieved via N-heterocyclic carbene-catalyzed [3 + 3] annulation of enals with 5-aminopyrazoles. This protocol not only offers a highly efficient synthetic approach for the preparation of various substituted pyrazolo[3,4-b]pyridones but also provides an effective method for the rapid synthesis of enantiopure spirooxindone derivatives.
Collapse
Affiliation(s)
- Jiahan Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Xiao-Yong Duan
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiaojie Ren
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanting Li
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jing Qi
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
26
|
Han TJ, Guan CY, Li N, Dong R, Xu LP, Xiao X, Wang MC, Mei GJ. Catalytic atroposelective synthesis of heterobiaryls with vicinal C-C and N-N diaxes via dynamic kinetic resolution. iScience 2023; 26:107978. [PMID: 37822512 PMCID: PMC10562788 DOI: 10.1016/j.isci.2023.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Reported herein is a highly efficient dynamic kinetic resolution protocol for the atroposelective synthesis of heterobiaryls with vicinal C-C and N-N diaxes. Atropisomers bearing vicinal diaxes mainly exist in o-triaryls, while that of biaryls is highly challenging in terms of the concerted rotation and deplanarization effects. The combination of C-C biaryl with N-N nonbiaryl delivers a novel class of vicinal-diaxis heterobiaryls. For their atroposelective synthesis, the dynamic kinetic resolution enabled by either quinine-catalyzed allylation or isothiourea-catalyzed acylation has been developed, allowing the preparation of a wide range of vicinal-axis heterobiaryls in good yields with excellent enantioselectivities. Atropisomerization experiments revealed that the C-C bond rotation led to diastereomers, and the N-N bond rotation offered enantiomers. Besides, this protocol could be extended to kinetic resolution by employing substrates with a more hindered axis.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Chun-Yan Guan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Rui Dong
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People’s Republic China
| | - Min-Can Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
27
|
Wang HY, Li ZC, Zhang CL, Ye S. N-Heterocyclic Carbene-Catalyzed Atroposelective Synthesis of Axially Chiral α-Carbolinones via Heterocycle Formation. J Org Chem 2023; 88:11913-11923. [PMID: 37498087 DOI: 10.1021/acs.joc.3c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
An NHC-catalyzed atroposelective synthesis of axially chiral α-carbolinones from α,β-unsaturated iminoindole derivatives and α-chloroaldehydes was developed. The reaction proceeds through a cascade process including [4 + 2] annulation and then oxidative dehydrogenation with concomitant central-to-axial chirality conversion under mild conditions. The developed method opens a new avenue to efficiently access axially chiral α-carbolinones in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hai-Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Li Y, Duan XY, Yang C, Wei Y, Li J, Ren X, Qi J. Atroposelective Access to Dihydropyridinones with C-N Axial and Point Chirality via NHC-Catalyzed [3 + 3] Annulation. J Org Chem 2023. [PMID: 37449806 DOI: 10.1021/acs.joc.3c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An N-heterocyclic carbene-catalyzed atroposelective [3 + 3] annulation of enals with 2-aminomaleate derivatives is described. A series of substituted dihydropyridones bearing both C-N axis and point chirality were synthesized with good diastereo- and enantioselectivity under mild conditions. This efficient strategy successfully superpositions an extra point chiral element with an axial backbone, and the generated structurally interesting atropisomers may have potential application in drug discovery.
Collapse
|
29
|
Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res 2023:106812. [PMID: 37271425 DOI: 10.1016/j.phrs.2023.106812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polyphenols, also known as phenolic compounds, are chemical substances containing aromatic rings as well as at least two hydroxyl groups. Natural phenolic compounds exist widely in plants, which protect plants from ultraviolet radiation and other insults. Phenolic compounds have superior pharmacological and nutritional properties (antimicrobial, antibacterial, antiviral, anti-sclerosis, antioxidant, and anti-inflammatory activities), which have been paid more and more attention by the scientific community. Phenols can protect key cellular components from reactive free radical damage, which is mainly due to their property to activate antioxidant enzymes and alleviate oxidative stress and inflammation. It can also inhibit or isolate reactive oxygen species and transfer electrons to free radicals, thereby avoiding cell damage. It has a regulatory role in glucose metabolism, which has a promising prospect in the prevention and intervention of diabetes. It also prevents cardiovascular disease by regulating blood pressure and blood lipids. Polyphenols can inhibit cell proliferation by affecting Erk1/2, CDK, and PI3K/Akt signaling pathways. Polyphenols can function as enhancers of intrinsic defense systems, including superoxide dismutase (SOD) and glutathione peroxidase (GPX). Simultaneously, they can modulate multiple proteins and transcription factors, making them promising candidates in the investigation of anti-cancer medications. This review focuses on multiple aspects of phenolic substances, including their natural origins, production process, disinfection activity, oxidative and anti-inflammatory functions, and the effects of different phenolic substances on tumors.
Collapse
Affiliation(s)
- Wenshi Liu
- Department of Translantation/Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Yonghui Xia
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Zhang SC, Liu S, Wang X, Wang SJ, Yang H, Li L, Yang B, Wong MW, Zhao Y, Lu S. Enantioselective Access to Triaryl-2-pyrones with Monoaxial or Contiguous C–C Diaxes via Oxidative NHC Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Si-Chen Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shengping Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xia Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of Singapore 117543
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|