1
|
Vleugels MEJ, de Korver E, Hendrikse SIS, Kardas S, Dhiman S, de Waal BFM, Schoenmakers SMC, Wijker S, De Geest BG, Surin M, Palmans ARA, Meijer EW. Antibody-Recruiting Surfaces Using Adaptive Multicomponent Supramolecular Copolymers. Biomacromolecules 2025. [PMID: 40202813 DOI: 10.1021/acs.biomac.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Multicomponent structures that mediate the clustering of antibodies on cancer cell surfaces are an attractive strategy to unleash innate immune killing mechanisms. However, covalent multifunctional scaffolds that combine cell surface anchoring and antibody binding can be challenging to synthesize and lack adaptability. Here, we present a dynamic multicomponent supramolecular system displaying both antibody- and cell surface-binding motifs, without covalent linkage between them. Supramolecular monomers based on benzene-1,3,5-tricarboxamide (BTA-(OH)3) were functionalized with benzoxaborole (Ba) for surface anchoring (BTA-Ba) or dinitrophenyl (DNP) for antibody binding (BTA-DNP1/3). The multicomponent fibers comprising BTA-(OH)3, BTA-Ba, and BTA-DNP1/3 recruited anti-DNP antibodies to sialic acid-functionalized supported lipid bilayers, indicating that both Ba and DNP remained accessible for binding. Dynamic exchange was demonstrated in a cell-mimicking environment, highlighting the adaptivity of these supramolecular polymers. Despite the complexity of a ternary system, the adaptivity of supramolecular polymers gives the individual components the possibility to act in concert, mimicking natural systems.
Collapse
Affiliation(s)
- Marle E J Vleugels
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Esmee de Korver
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Simone I S Hendrikse
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Sinan Kardas
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Mons 7000, Belgium
| | - Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Bas F M de Waal
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Stefan Wijker
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Mons 7000, Belgium
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- School of Chemistry and RNA Institute, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Peng H, Martens S, Uvyn A, Chen Y, Zhong Z, Louage B, De Geest BG. Exploration of Solid Phase Peptoid Synthesis for the Design of Trifunctional Hapten-Lipid-TLR7/8 Agonist Antibody-Recruiting Oligomers That Combine Innate Effector with Innate Activation Function. ACS APPLIED BIO MATERIALS 2025; 8:177-188. [PMID: 39288003 DOI: 10.1021/acsabm.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The strategic engagement of innate immunity is a promising avenue for cancer treatment. Antibody-recruiting molecules (ARMs) direct endogenous antibodies to target tumor sites, eliciting innate immune effector killing responses. In this study, we report the synthesis of ARMs by employing solid-phase peptoid synthesis to construct three libraries of antibody-recruiting oligomers. Using dinitrophenyl (DNP) as a model hapten and alkyl lipid chains for cell surface anchoring, we tailored oligomers with variations in valency and spatial configuration. Among these, an oligomer design featuring DNP connected to the oligomer backbone through an extended PEG linker and flanked by two lipid motifs emerged as the most effective in antibody recruitment in vitro. This oligomer was further functionalized to include an imidazoquinoline, creating a trifunctional hapten-lipid-TLR7/8 agonist oligomer, and a parallel variant was conjugated with rhodamine, resulting in a trifunctional hapten-lipid-dye oligomer. Upon intratumorally administration in a murine model, these oligomers induced localized immune activation within tumors. Subsequent ex vivo analysis of single-cell suspensions from excised tumors confirmed the enhanced binding of anti-DNP antibodies. These findings underscore the potential of custom-designed ARMs in orchestrating precise immune-mediated tumor targeting and highlight the adaptability of solid-phase synthesis in oligomer design for the design of multifunctional antibody recruiting molecules.
Collapse
Affiliation(s)
- Haixia Peng
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Steven Martens
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Benoit Louage
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Louage B, Defreyne D, Lauwers H, De Baere J, Uvyn A, Peng H, Chen Y, De Geest BG. Lysosomal Trafficking and Degradation of Extracellular Proteins via Multivalent Small Molecule Ligand Display on Dextran Scaffolds. Biomacromolecules 2025; 26:738-750. [PMID: 39668457 DOI: 10.1021/acs.biomac.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Targeted protein degradation (TPD) marks a shift in drug development from conventional inhibition to the complete removal of pathological proteins. Traditional TPD technologies target intracellular proteins of interest (POIs) for degradation but are ineffective against extracellular cell surface and soluble proteins, a significant portion of the human proteome. Recent advances involve the formation of ternary complexes between a POI and a cell surface lysosomal trafficking receptor, directing POIs to lysosomes for degradation. We report on DEXtran TRAfficking Chimeras (DEXTRACs) comprising multiple copies of synthetic small molecule ligands for a model POI and the cation-independent mannose-6-phosphate receptor (CI-M6PR) lysosomal trafficking receptor. These ligands are arranged along the dextran backbones. We demonstrate that DEXTRACs leverage multivalency with their efficacy dependent on the dextran chain length and ligand density to form high-avidity ternary complexes. Our in vitro studies confirmed that DEXTRACs traffic the target POI to lysosomes and facilitate its degradation.
Collapse
Affiliation(s)
- Benoit Louage
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Demi Defreyne
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Heleen Lauwers
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Jamie De Baere
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Haixia Peng
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| |
Collapse
|
4
|
Shahriar I, Kamra M, Kanduluru AK, Campbell CL, Nguyen TH, Srinivasarao M, Low PS. Targeted recruitment of immune effector cells for rapid eradication of influenza virus infections. Proc Natl Acad Sci U S A 2024; 121:e2408469121. [PMID: 39348541 PMCID: PMC11474073 DOI: 10.1073/pnas.2408469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
Despite much research, considerable data suggest that influenza virus remains a serious health problem because i) the effectiveness of current vaccines ranges only from 19% to 60%, ii) available therapies remain ineffective in advanced stages of disease, iii) death rates vary between 25,000 and 72,000/year in the United States, and iv) avian influenza strains are now being transmitted to dairy cattle that in turn are infecting humans. To address these concerns, we have developed zanDR, a bispecific small molecule that binds and inhibits viral neuraminidase expressed on both free virus and virus-infected cells and recruits naturally occurring anti-rhamnose and anti-dinitrophenyl (DNP) antibodies with rhamnose and DNP haptens. Because the neuraminidase inhibition replicates the chemotherapeutic mechanism of zanamivir and oseltamivir, while rhamnose and DNP recruit endogenous antibodies much like an anti-influenza vaccine, zanDR reproduces most of the functions of current methods of protection against influenza virus infections. Importantly, studies on cells in culture demonstrate that both of the above protective mechanisms remain highly functional in the zanDR conjugate, while studies in lethally infected mice with advanced-stage disease establish that a single intranasal dose of zanDR not only yields 100% protection but also reduces lung viral loads faster and ~1,000× more thoroughly than current antiviral therapies. Since zanDR also lowers secretion of proinflammatory cytokines and protects against virus-induced damage to the lungs better than current therapies, we suggest that combining an immunotherapy with a chemotherapy in single pharmacological agent constitutes a promising approach for treating the more challenging forms of influenza.
Collapse
Affiliation(s)
- Imrul Shahriar
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Mohini Kamra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Ananda Kumar Kanduluru
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Charity Lynn Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Thanh Hiep Nguyen
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Madduri Srinivasarao
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Philip S. Low
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
5
|
Li Y, Lin H, Hong H, Li D, Gong L, Zhao J, Wang Z, Wu Z. Multivalent Rhamnose-Modified EGFR-Targeting Nanobody Gains Enhanced Innate Fc Effector Immunity and Overcomes Cetuximab Resistance via Recruitment of Endogenous Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307613. [PMID: 38286668 PMCID: PMC10987161 DOI: 10.1002/advs.202307613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Cetuximab resistance is a significant challenge in cancer treatment, requiring the development of novel therapeutic strategies. In this study, a series of multivalent rhamnose (Rha)-modified nanobody conjugates are synthesized and their antitumor activities and their potential to overcome cetuximab resistance are investigated. Structure-activity relationship studies reveal that the multivalent conjugate D5, bearing sixteen Rha haptens, elicits the most potent innate fragment crystallizable (Fc) effector immunity in vitro and exhibits an excellent in vivo pharmacokinetics by recruiting endogenous antibodies. Notably, it is found that the optimal conjugate D5 represents a novel entity capable of reversing cetuximab-resistance induced by serine protease (PRSS). Moreover, in a xenograft mouse model, conjugate D5 exhibits significantly improved antitumor efficacy compared to unmodified nanobodies and cetuximab. The findings suggest that Rha-Nanobody (Nb) conjugates hold promise as a novel therapeutic strategy for the treatment of cetuximab-resistant tumors by enhancing the innate Fc effector immunity and enhancing the recruitment of endogenous antibodies to promote cancer cell clearance by innate immune cells.
Collapse
Affiliation(s)
- Yanchun Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Han Lin
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Liang Gong
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Jie Zhao
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zheng Wang
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxi214122China
| |
Collapse
|
6
|
Lake BM, Rullo AF. Offsetting Low-Affinity Carbohydrate Binding with Covalency to Engage Sugar-Specific Proteins for Tumor-Immune Proximity Induction. ACS CENTRAL SCIENCE 2023; 9:2064-2075. [PMID: 38033792 PMCID: PMC10683482 DOI: 10.1021/acscentsci.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 12/02/2023]
Abstract
Carbohydrate-binding receptors are often used by the innate immune system to potentiate inflammation, target endocytosis/destruction, and adaptive immunity (e.g., CD206, DC-SIGN, MBL, and anticarbohydrate antibodies). To access this class of receptors for cancer immunotherapy, a growing repertoire of bifunctional proximity-inducing therapeutics use high-avidity multivalent carbohydrate binding domains to offset the intrinsically low affinity associated with monomeric carbohydrate-protein binding interactions (Kd ≈ 10-3-10-6 M). For applications aimed at recruiting anticarbohydrate antibodies to tumor cells, large synthetic scaffolds are used that contain both a tumor-binding domain (TBD) and a multivalent antibody-binding domain (ABD) comprising multiple l-rhamnose monosaccharides. This allows for stable bridging between tumor cells and antibodies, which activates tumoricidal immune function. Problematically, such multivalent macromolecules can face limitations including synthetic and/or structural complexity and the potential for off-target immune engagement. We envisioned that small bifunctional "proximity-inducing" molecules containing a low-affinity monovalent ABD could efficiently engage carbohydrate-binding receptors for tumor-immune proximity by coupling weak binding with covalent engagement. Typical covalent drugs and electrophilic chimeras use high-affinity ligands to promote the fast covalent engagement of target proteins (i.e., large kinact/KI), driven by a favorably small KI for binding. We hypothesized the much less favorable KI associated with carbohydrate-protein binding interactions can be offset by a favorably large kinact for the covalent labeling step. In the current study, we test this hypothesis in the context of a model system that uses rhamnose-specific antibodies to induce tumor-immune proximity and tumoricidal function. We discovered that synthetic chimeric molecules capable of preorganizing an optimal electrophile (i.e., SuFEx vs activated ester) for protein engagement can rapidly covalently engage natural sources of antirhamnose antibody using only a single low-affinity rhamnose monosaccharide ABD. Strikingly, we observe chimeric molecules lacking an electrophile, which can only noncovalently bind the antibody, completely lack tumoricidal function. This is in stark contrast to previous work targeting small molecule hapten and peptide-specific antibodies. Our findings underscore the utility of covalency as a strategy to engage low-affinity carbohydrate-specific proteins for tumor-immune proximity induction.
Collapse
Affiliation(s)
- Benjamin
P. M. Lake
- Department
of Medicine, McMaster Immunology Research Center, Center
for Discovery in Cancer Research, Department of Biochemistry and Biomedical
Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Anthony F. Rullo
- Department
of Medicine, McMaster Immunology Research Center, Center
for Discovery in Cancer Research, Department of Biochemistry and Biomedical
Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| |
Collapse
|
7
|
Wei X, Yu CY, Wei H. Application of Cyclodextrin for Cancer Immunotherapy. Molecules 2023; 28:5610. [PMID: 37513483 PMCID: PMC10384645 DOI: 10.3390/molecules28145610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor immunotherapy, compared with other treatment strategies, has the notable advantage of a long-term therapeutic effect for preventing metastasis and the recurrence of tumors, thus holding great potential for the future of advanced tumor therapy. However, due to the poor water solubility of immune modulators and immune escape properties of tumor cells, the treatment efficiency of immunotherapy is usually significantly reduced. Cyclodextrin (CD) has been repeatedly highlighted to be probably one of the most investigated building units for cancer therapy due to its elegant integration of an internal hydrophobic hollow cavity and an external hydrophilic outer surface. The application of CD for immunotherapy provides new opportunities for overcoming the aforementioned obstacles. However, there are few published reviews, to our knowledge, summarizing the use of CD for cancer immunotherapy. For this purpose, this paper provides a comprehensive summary on the application of CD for immunotherapy with an emphasis on the role, function, and reported strategies of CD in mediating immunotherapy. This review summarizes the research progress made in using CD for tumor immunotherapy, which will facilitate the generation of various CD-based immunotherapeutic delivery systems with superior anticancer efficacy.
Collapse
Affiliation(s)
- Xiaojie Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Aksakal R, Tonneaux C, Uvyn A, Fossépré M, Turgut H, Badi N, Surin M, De Geest BG, Du Prez FE. Sequence-defined antibody-recruiting macromolecules. Chem Sci 2023; 14:6572-6578. [PMID: 37350815 PMCID: PMC10284026 DOI: 10.1039/d3sc01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Antibody-recruiting molecules represent a novel class of therapeutic agents that mediate the recruitment of endogenous antibodies to target cells, leading to their elimination by the immune system. Compared to single-ligand copies, macromolecular scaffolds presenting multiple copies of an antibody-binding ligand offer advantages in terms of increased complex avidity. In this study, we describe the synthesis of sequence-defined macromolecules designed for antibody recruitment, utilising dinitrophenol (DNP) as a model antibody-recruiting motif. The use of discrete macromolecules gives access to varying the spacing between DNP motifs while maintaining the same chain length. This characteristic enables the investigation of structure-dependent binding interactions with anti-DNP antibodies. Through solid-phase thiolactone chemistry, we synthesised a series of oligomers with precisely localised DNP motifs along the backbone and a terminal biotin motif for surface immobilisation. Utilising biolayer interferometry analysis, we observed that oligomers with adjacent DNP motifs exhibited enhanced avidity for anti-DNP antibodies. Molecular modelling provided insights into the structures and dynamics of the various macromolecules, shedding light on the accessibility of the ligands to the antibodies. Overall, our findings highlight that the use of sequence-defined macromolecules can contribute to our understanding of structure-activity relationships and provide insights for the design of novel antibody-recruiting therapeutic agents.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Corentin Tonneaux
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Hatice Turgut
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| |
Collapse
|
9
|
Kapcan E, Lake BM, Rullo AF. Orchestrating Binding Interactions and the Emergence of Avidity Driven Therapeutics. ACS CENTRAL SCIENCE 2023; 9:586-589. [PMID: 37122467 PMCID: PMC10141585 DOI: 10.1021/acscentsci.3c00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Eden Kapcan
- Department of Medicine, Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Benjamin
P. M. Lake
- Department of Medicine, Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Anthony F. Rullo
- Department of Medicine, Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|