1
|
Wang X, Zhou J, Wang M, Wang Y, Shen Z, Sun H, Hu Z, Luo X, Yang Y, Chen J. Proximal Oblique-Packing of Heptamethine Cyanines through Spiro-Connection Boosts Triplet State Generation in Near-Infrared. Angew Chem Int Ed Engl 2025; 64:e202425422. [PMID: 39809703 DOI: 10.1002/anie.202425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy. Herein, proximal oblique-packed (V-shaped) heptamethine cyanines (SZ780) through spiro-connection were achieved. Multi-channel ultrafast ISC were direct observed in SZ780 and a record high ISC rate constant (up to ~1011 s-1) is registered among all the reported NIR triplet dyes. SZ780 exhibits a triplet state quantum yield of 18.9 % upon excitation at 750 nm, which is almost an order of magnitude higher than that of the monomer (IR780, 2.1 %) and nearly threefold increase compared to that of the H-packed dimer (SC780) (6.7 %). Moreover, SZ780 efficiently generates singlet oxygen under 808 nm light irradiation, inducing cancer cell apoptosis in vivo. These findings demonstrate that constructing V-aggregated dyes system by spiro-connection offers a powerful approach for the design of high-performance NIR triplet sensitizers.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Mingkang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuze Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhetao Shen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
2
|
Li W, Ai S, Zhu H, Lin W. Activatable second-near-infrared-window multimodal luminogens with aggregation-induced-emission and aggregation-caused-quenching properties for step-imaging guided tumor therapy. Nat Commun 2025; 16:2471. [PMID: 40074731 PMCID: PMC11903686 DOI: 10.1038/s41467-025-57673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Traditional organic luminogens, such as aggregation-caused quenching or aggregation-induced emission luminogens, only suitable to exhibit bright luminescence in the single state (i.e., solution or aggregated state), restricting their applications in heterogeneous environments. Herein, we propose a class of luminogens, aggregation-caused quenching / aggregation-induced emission dual property multimodal luminogens, which can simultaneously balance radiative and non-radiative decay processes in both the solution and aggregation states, bridging the gap between aggregation-caused quenching and aggregation-induced emission luminogens. By manipulating the rigidity planes and twisted groups of the molecules, we successfully develop a series of dual-property multimodal dyes DPM-HD1-3 with excellent second near-infrared window (NIR-II) fluorescent, photoacoustic, and photothermal properties signals. Based on the dual-property multimodal characteristics of DPM-HD3, we construct a CO-activated multimodal luminogen, DPM-HD3-CO, for the step-imaging guided therapy in the tumor-bearing mice. DPM-HD3-CO can overcome the interference of tumor heterogeneity, and reveal the relationship between CO levels and treatment response in the different treatment steps via multimodal imaging. We expect that the introduction of the concept of dual-property multimodal luminogens would open up a innovative avenue for dye chemistry, offering greater possibilities for future widespread applications in the areas such as chemistry, biomedical imaging, and energy.
Collapse
Affiliation(s)
- Wenxiu Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Sixin Ai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Huayong Zhu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
3
|
Wang S, Liu H, Zhao S, Wu Q, Yang Z, Yang D, Lv Y, Su Q, Zhang ST, Yang B. A comparative investigation on excimer fluorescence toward its bright future. Chem Sci 2025; 16:3275-3284. [PMID: 39840294 PMCID: PMC11744815 DOI: 10.1039/d4sc08001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Must excimers quench fluorescence? This study aims to clarify the misconception that excimers are defective species with weak fluorescence. For this purpose, we utilized a rigid xanthene template to connect anthracene units for constructing an inter-excimer and an intra-excimer. Their photophysical properties were systematically investigated in solution and crystal forms, representing dynamic and static environments, respectively. In solutions, the inter- and intra-excimers exhibited low fluorescence efficiencies due to the limited formation and ease of dissociation of the excimers. In crystals, the inter- and intra-excimers both demonstrated a significant increase in fluorescence efficiency, which was ascribed to the greatly suppressed non-radiation for the static excimer in a rigid environment. Furthermore, the efficiency of the inter-excimer was higher than that of the intra-excimer, which arose from the more stable excited state for more effective non-radiative suppression. Therefore, it was concluded that the probability and stability of excimer formation are the key factors for improving excimer fluorescence efficiency. Overall, their fluorescence efficiencies can be ranked as follows: dynamic inter-excimer < dynamic intra-excimer < static intra-excimer < static inter-excimer, which is subjected to environmental rigidity and excimer stability. This work will provide a comprehensive understanding of excimers and propose a novel design strategy to achieve high-efficiency fluorescent materials for innovative organic photo-functional applications.
Collapse
Affiliation(s)
- Shiyin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Qiaolin Wu
- College of Chemistry, Jilin University Changchun 130012 China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Daojie Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Yingbo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Qing Su
- College of Chemistry, Jilin University Changchun 130012 China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
4
|
Feng W, Lu S, Wu Y, Li X, Han D, Zhao Y, Tian W, Yan H. Achieving Controllable Thermochromic Fluorescence via Synergistic Intramolecular Charge Transfer and Molecular Packing. Angew Chem Int Ed Engl 2025; 64:e202415815. [PMID: 39316428 DOI: 10.1002/anie.202415815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
Thermochromic fluorescent materials (TFMs) have attracted significant attention due to their unique fluorescent colorimetric response to temperature. However, existing TFMs still suffer from weak stimulus responsiveness, broad temperature response ranges, uncontrollable emission color changes, and low quantum yields. In this study, we address these issues by designing and synthesizing three diketone-boron complexes with distinct emission wavelengths (NWPU-(2-4)). Utilizing a molecular engineering strategy to manipulate intramolecular charge transfer transitions and molecular packing modes, our synthesized complexes exhibit efficient fluorescence emission in both solution and solid states. Moreover, their emission wavelengths are highly sensitive to environmental polarity. By incorporating these compounds into thermosensitive matrices of long-chain alkanes, we produced TFMs with varied fluorescence emission peak variation ranges. Notably, the TFM based on NWPU-4, owing to its strong charge transfer transitions and dense J-aggregate packing configuration, not only exhibits intense fluorescence emission spanning the deep red to near-infrared spectrum but also displays a remarkable 90 nm broad range of thermochromic properties. Ultimately, it was successfully applied to programmable, thermally controlled, multi-level information encryption.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Sumin Lu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Yanhui Wu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Xiaotian Li
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Dong Han
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Wei Tian
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| |
Collapse
|
5
|
Chen Y, Sahoo SR, Baryshnikov GV, Gao L, Zhu Z, Wu H. Solution and solid-state fluorescence emission from cyanostyrene molecules with multiple nitrogen atoms. Phys Chem Chem Phys 2024; 26:26816-26822. [PMID: 39403897 DOI: 10.1039/d4cp03297g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A design strategy has been proposed to utilize structure-driven solution and solid-state fluorescence emission of polynitrogen atoms. The strategy uses benzimidazole as the electron donor and pyridine as the electron acceptor to construct D-A-type cyanopyridine ethylene molecules. Theoretical calculations reveal that compound 1 has energy-close isomers in dilute solutions, with planar conformation in S0 and S1 states, reducing molecular motion and thus enhancing radiation efficiency (quantum yield up to 42.7%). Conversely, the distorted cyanobenzene structure reduces the quenching effect of π-π stacking alignment, and hydrogen bonding between molecules limits molecular vibration and rotation, ultimately leading to strong emission in the solid state (quantum yield up to 27.4%). These dual-state luminescence systems have wide-ranging potential applications in information encryption and temperature sensors.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Smruti Ranjan Sahoo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- Department of Physics and Astronomy, Division of X-ray Photon Science, Uppsala University, Lägerhyddsvägen 1, SE-75120 Uppsala, Sweden
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Lei Gao
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543000, China
| | - Zhijia Zhu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Zhang Z, Bai Q, Zhai Z, Long Q, Han E, Zhao H, Zhou CW, Lin H, Zhang W, Ning GH, Xie TZ, Wang P, Wu T. Multiple-stimuli fluorescent responsive metallo-organic helicated cage arising from monomer and excimer emission. Nat Commun 2024; 15:7261. [PMID: 39179587 PMCID: PMC11344131 DOI: 10.1038/s41467-024-51792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Effectively regulating monomer and excimer emission in a singular supramolecular luminous platform is challenging due to high difficulty of precise control over its aggregation and dispersion behavior when subjected to external stimuli. Here, we show a metallo-cage (MTH) featuring a triple helical motif that displays a unique dual emission. It arises from both intramolecular monomer and intermolecular excimer, respectively. The distorted molecular conformation and the staggered stacking mode of MTH excimer are verified through single crystal X-ray diffraction analysis. These structural features facilitate the switch between monomer and excimer emission, which are induced by changes in concentration and temperature. Significantly, adjusting the equilibrium between these two states in MTH enables the production of vibrant white light emission in both solution and solid state. Moreover, when combined with a PMMA (polymethyl methacrylate) substrate, the resulting thin films can serve as straightforward fluorescence thermometer and thermally activated information encryption materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Haobo Lin
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
7
|
Li R, Ma B, Li M, Wang D, Liu P, An P. Multi-heteroatom doped nanographenes: enhancing photosensitization capacity by forming an electron donor-acceptor architecture. Chem Sci 2024; 15:11408-11417. [PMID: 39055003 PMCID: PMC11268484 DOI: 10.1039/d4sc02416h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
Systematically tuning and optimizing the properties of synthetic nanographenes (NGs) is particularly important for NG applications in diverse areas. Herein, by devising novel electron donor-acceptor (D-A) type structures, we reported a series of multi-heteroatom-doped NGs possessing an electron-rich chalcogen and electron-deficient pyrimidine or pyrimidinium rings. Comprehensive experimental and theoretical investigations revealed significantly different physical, optical, and energetic properties compared to the non-doped HBC or chalcogen-doped, non-D-A analogues. Some intriguing properties of the new NGs such as unique electrostatically oriented molecular stacking, red-shifted optical spectra, solvatochromism, and enhanced triplet excitons were observed due to the formation of the D-A electron pattern. More importantly, these D-A type structures can serve as photosensitizers to generate efficiently reactive-oxygen species (ROS), and the structure-related photosensitization capacity that strengthens the electron transfer (ET) process leads to significantly enhanced ROS which was revealed by experimental and calculated studies. As a result, the cell-based photodynamic therapy (PDT) indicated that the cationic NG 1-Me+ is a robust photosensitizer with excellent water-solubility and biocompatibility.
Collapse
Affiliation(s)
- Ranran Li
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Bin Ma
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Meng Li
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Dan Wang
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Peng Liu
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
8
|
Chen M, Chen Y, Zhong M, Xie D, Wang C, Ren X, Huang S, Xu J, Zhu M. The Synergistic Mechanisms of AIE, ESIPT and ICT in the α-cyanostilbene-based Derivative: A Red-fluorescence Probe With a Large Stokes' Shift for Copper (II) Ion Determination and Reversible Response to Amine/acid Vapor. J Fluoresc 2024; 34:1075-1090. [PMID: 37458937 DOI: 10.1007/s10895-023-03341-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/06/2023] [Indexed: 05/02/2024]
Abstract
Herein, α-cyanostilbene-based luminogen with an electron donor-π-electron acceptor (D-π-A) architecture was formylated into the salicylaldehyde-analogue luminogen, followed by the Schiff base reaction with phenylamine, a red-emitting luminogen was elaborately designed and successfully synthesized in a high yield of 89%. Its well-defined structure was confirmed by FT-IR, MALDI-TOF-MS, HR-MS and 1H/13C NMR technologies. Based on the synergistic mechanisms of aggregation-induced emission (AIE), excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT), it enjoyed a red-fluorescence emission at 627 nm in THF/water mixtures (fw = 95%) and was used as a probe. Moreover, the TLC-based test strips loaded with the probe not only exhibited the reversible fluorescence response to amine/acid vapor but also showed sensitive and selective fluorescence response towards Cu2+. Furthermore, the fluorescence titration experiment between the probe and Cu2+ in THF/water mixtures (fw = 95%, pH = 7.4) revealed that the detection limit was 1.18 × 10-7 M and the binding constant was 1.59 × 105. Job's plot experiment and HR-MS analysis revealed the 2:1 binding stoichiometry of the probe with Cu2+. The method enabled real-time assessment for Cu2+ in real water samples. This study could offer insightful opinions on the development of long-wavelength emissive luminogens based on α-cyanostilbene.
Collapse
Affiliation(s)
- Meihui Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Yongchun Chen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Min Zhong
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Donghong Xie
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Chuan Wang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Xiaorui Ren
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Shizhou Huang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Jia Xu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China
| | - Mingguang Zhu
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641100, P. R. China.
| |
Collapse
|
9
|
Xie Z, Liu D, Zhao Z, Gao C, Wang P, Jiang C, Liu X, Zhang X, Ren Z, Yan S, Hu W, Dong H. High Mobility Emissive Excimer Organic Semiconductor Towards Color-Tunable Light-Emitting Transistors. Angew Chem Int Ed Engl 2024; 63:e202319380. [PMID: 38246876 DOI: 10.1002/anie.202319380] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.
Collapse
Grants
- 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology
- 52233010, 52103245, 61890943, 22021002, 51725304 and 22305252 Innovative Research Group Project of the National Natural Science Foundation of China
- YSBR-053 Training Program for Excellent Young Innovators of Changsha
- 2023YFB3609000, 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology of China
- 52233010, 52103245, 22021002, and 22305252 Natural Science Foundation of China
- YSBR-053 CAS Project for Young Scientists in Basic Research
- BNLMS-CXXM-202012 Beijing National Laboratory for Molecular Sciences
- 2023M733555 China Postdoctoral Science Foundation
- GZB20230771 Postdoctoral Fellowship Program of CPSF
Collapse
Affiliation(s)
- Ziyi Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
11
|
Feng W, Wu Y, Chen D, Lu S, Zhao Y, Yan H. An ultra-sensitive ratiometric fluorescent thermometer based on monomer and excimer dual emission. Chem Commun (Camb) 2023. [PMID: 38009240 DOI: 10.1039/d3cc04441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
By leveraging natural saturated fatty acids with distinct melting points and swift reversible phase transitions, we correlated external thermal cues to monomer and excimer emissions of difluoroboron β-diketonate fluorophores. This integration yielded a ratiometric fluorescent thermometer showcasing unparalleled sensitivity and thermochromism in the physiological temperature range.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Yanhui Wu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Dong Chen
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Sumin Lu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| |
Collapse
|
12
|
Lin B, Wang Q, Qi Z, Xu H, Qu DH. Cucurbit[8]uril-mediated multi-color fluorescence system for time-dependent information encryption. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Mu B, Ma T, Zhang Z, Hao X, Wang L, Wang J, Yan H, Tian W. Thermo-Induced Bathochromic Emission in Columnar Discotic Liquid Crystals Realized by Intramolecular Planarization. Chemistry 2023; 29:e202300320. [PMID: 36794471 DOI: 10.1002/chem.202300320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Most organic thermochromic fluorescent materials exhibit thermo-induced hypsochromic emission due to the formation of excimers in ordered molecular solids; however, it is still a challenge to endow them with bathochromic emission despite its significance in making up the field of thermochromism. Here, a thermo-induced bathochromic emission in columnar discotic liquid crystals is reported realized by intramolecular planarization of the mesogenic fluorophores. A three-armed discotic molecule of dialkylamino-tricyanotristyrylbenzene was synthesized, which preferred to twist out of the core plane to accommodate ordered molecular stacking in hexagonal columnar mesophases, giving rise to bright green monomer emission. However, intramolecular planarization of the mesogenic fluorophores occurred in isotropic liquid increasing the conjugation length, and as a result led to thermo-induced bathochromic emission from green to yellow light. This work reports a new concept in the thermochromic field and provides a novel strategy to achieve fluorescence tuning from intramolecular actions.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingxia Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxia Yan
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|