1
|
Ghosh S, Das CK, Uddin S, Stripp ST, Engelbrecht V, Winkler M, Leimkühler S, Brocks C, Duan J, Schäfer LV, Happe T. Protein Dynamics Affect O 2-Stability of Group B [FeFe]-Hydrogenase from Thermosediminibacter oceani. J Am Chem Soc 2025. [PMID: 40267305 DOI: 10.1021/jacs.4c18483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
In the pursuit of sustainable "green" energy generation, [FeFe]-hydrogenases have attracted significant attention due to their ability to catalyze hydrogen production. However, the sensitivity of these enzymes to O2 is a major obstacle for their application as biocatalysts in energy conversion technologies. In the search for an O2-stable [FeFe]-hydrogenase, we identified the hydrogenase ToHydA from Thermosediminibacter oceani that belongs to the rarely characterized Group B (M2a) [FeFe]-hydrogenases. Our findings demonstrate that ToHydA exhibits remarkable O2-stability, even under prolonged O2 exposure. By characterizing site-directed mutagenesis variants, we found that the highly conserved proton-transporting active site cysteine residue protects the H-cluster from O2-induced degradation by forming the Hinact state. The additional cysteine residue in the TSCCCP motif of ToHydA, a feature unique to Group B (M2a) [FeFe]-hydrogenases, enhances the flexibility of that motif and facilitates the formation of the Hinact state. Moreover, ToHydA possesses unique features, including the formation of an unusual Hinact resting state that distinguishes the enzyme from other [FeFe]-hydrogenases. Our atomistic molecular dynamics simulations reveal a previously unrecognized cluster of hydrophobic residues centered around the proton-transporting cysteine-bearing loop. This structural feature appears to be a common molecular characteristic in hydrogenases that form the O2-protected Hinact state. By exploiting these molecular features of ToHydA, future research can aim to rationally design hydrogenases that combine high catalytic activity with enhanced O2-stability to develop more efficient and durable catalysts.
Collapse
Affiliation(s)
- Subhasri Ghosh
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Chandan K Das
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Computational Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sarmila Uddin
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sven T Stripp
- Spectroscopy & Biocatalysis, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany
| | - Vera Engelbrecht
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martin Winkler
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
- Electrobiotechnology, Technical University of Munich Campus Straubing for Biotechnology and Sustainability, 94315 Straubing, Germany
| | - Silke Leimkühler
- Molecular Enzymology, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany
| | - Claudia Brocks
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jifu Duan
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Wan L, Gao Y, DeBeer S, Rüdiger O. The unusual formaldehyde-induced activation of [NiFe]-hydrogenase: Implications from protein film electrochemistry and infrared spectroscopy. Bioelectrochemistry 2025; 165:108974. [PMID: 40147361 DOI: 10.1016/j.bioelechem.2025.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Here we investigate how formaldehyde (HCHO), a known strong inhibitor of [FeFe]‑hydrogenases and a mild inhibitor of [NiFe]‑hydrogenases, may exert more complex effects on this group of metalloenzymes, which reversibly catalyze the 2H+/H₂ reaction. We investigated the [NiFe]‑hydrogenase Hyd-2 from E. coli using protein film electrochemistry, a technique that enables the measurement of enzyme activity when the enzyme is adequately adsorbed on the electrode. The effect of HCHO on the electrocatalytic performance of Hyd-2 is highly dependent on the buffer pH and the direction of catalysis. During H₂ production, HCHO consistently acts as an inhibitor of Hyd-2. However, this effect is reversed in acidic pH values, where HCHO can mildly enhance the electrocatalytic H₂ oxidation by Hyd-2. FTIR investigations did not detect any new redox intermediate resulting from the inhibition or activation. Therefore, we propose that HCHO - a natural electrophile that can readily react with nucleophiles and proton acceptors - may facilitate the transfer protons during the rapid transformation of different redox species participating in the catalytic cycle of [NiFe]‑hydrogenases.
Collapse
Affiliation(s)
- Lei Wan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany; State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, China; Nankai International Advanced Research Institute (Futian), Nankai University, Shenzhen, Guangdong, 518045, China
| | - Yanxin Gao
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany; State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300350, China
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
3
|
Duan J, Rutz A, Kawamoto A, Naskar S, Edenharter K, Leimkühler S, Hofmann E, Happe T, Kurisu G. Structural determinants of oxygen resistance and Zn 2+-mediated stability of the [FeFe]-hydrogenase from Clostridium beijerinckii. Proc Natl Acad Sci U S A 2025; 122:e2416233122. [PMID: 39805018 PMCID: PMC11760498 DOI: 10.1073/pnas.2416233122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H2-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from Clostridium beijerinckii has a unique mechanism to protect the H-cluster from oxygen-induced degradation. The protective strategy of CbA5H was proposed based on a partial protein structure of CbA5H's oxygen-shielded form. Here, we present a cryo-EM structure of 2.2 Å resolution from the entire enzyme in its dimeric and active state and elucidate the structural parameters of the reversible cofactor protection mechanism. We found that both subunits of the homodimeric structure of CbA5H have a Zn2+-binding four-helix domain, which does not play a role in electron transport as described for other complex protein structures. Biochemical data instead confirm that two [4Fe-4S] clusters are responsible for electron transfer in CbA5H, while the identified zinc atom is critical for oligomerization and protein stability.
Collapse
Affiliation(s)
- Jifu Duan
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Andreas Rutz
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Akihiro Kawamoto
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuvankar Naskar
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Kristina Edenharter
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Silke Leimkühler
- Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam14476, Germany
| | - Eckhard Hofmann
- Protein crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Thomas Happe
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum44801, Germany
| | - Genji Kurisu
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
4
|
Voloshyn I, Schumann C, Cabotaje PR, Zamader A, Land H, Senger M. Secondary structure changes as the potential H 2 sensing mechanism of group D [FeFe]-hydrogenases. Chem Commun (Camb) 2024; 60:10914-10917. [PMID: 39254592 DOI: 10.1039/d4cc03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
[FeFe]-hydrogenases function as both H2 catalysts and sensors. While catalysis is well investigated, details regarding the H2 sensing mechanism are limited. Here, we relate protein structure changes to H2 sensing, similar to light-driven bio-sensors. Our results highlight how identical cofactors incorporated in alternative protein scaffolds serve different functions in nature.
Collapse
Affiliation(s)
- Ivan Voloshyn
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75120 Uppsala, Sweden.
| | - Conrad Schumann
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Princess R Cabotaje
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Afridi Zamader
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| | - Moritz Senger
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75120 Uppsala, Sweden.
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
5
|
Liu YC, Chu KT, Wang HR, Lee GH, Tseng MC, Wang CH, Horng YC, Chiang MH. Chloride- and Hydrosulfide-Bound 2Fe Complexes as Models of the Oxygen-Stable State of [FeFe] Hydrogenase. Angew Chem Int Ed Engl 2024; 63:e202408142. [PMID: 38818643 DOI: 10.1002/anie.202408142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
[FeFe] hydrogenases demonstrate remarkable catalytic efficiency in hydrogen evolution and oxidation processes. However, susceptibility of these enzymes to oxygen-induced degradation impedes their practical deployment in hydrogen-production devices and fuel cells. Recent investigations into the oxygen-stable (Hinact) state of the H-cluster revealed its inherent capacity to resist oxygen degradation. Herein, we present findings on Cl- and SH-bound [2Fe-2S] complexes, bearing relevance to the oxygen-stable state within a biological context. A characteristic attribute of these complexes is the terminal Cl-/SH- ligation to the iron center bearing the CO bridge. Structural analysis of the t-Cl demonstrates a striking resemblance to the Hinact state of DdHydAB and CbA5H. The t-Cl/t-SH exhibit reversible oxidation, with both redox species, electronically, being the first biomimetic analogs to the Htrans and Hinact states. These complexes exhibit notable resistance against oxygen-induced decomposition, supporting the potential oxygen-resistant nature of the Htrans and Hinact states. The swift reductive release of the Cl-/SH-group demonstrates its labile and kinetically controlled binding. The findings garnered from these investigations offer valuable insights into properties of the enzymatic O2-stable state, and key factors governing deactivation and reactivation conversion. This work contributes to the advancement of bio-inspired molecular catalysts and the integration of enzymes and artificial catalysts into H2-evolution devices and fuel-cell applications.
Collapse
Affiliation(s)
- Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Kai-Ti Chu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Hong-Ru Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Cheng-Hsin Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua, 500, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
6
|
Lachmann MT, Duan Z, Rodríguez-Maciá P, Birrell JA. The missing pieces in the catalytic cycle of [FeFe] hydrogenases. Chem Sci 2024:d4sc04041d. [PMID: 39246377 PMCID: PMC11376134 DOI: 10.1039/d4sc04041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Hydrogen could provide a suitable means for storing energy from intermittent renewable sources for later use on demand. However, many challenges remain regarding the activity, specificity, stability and sustainability of current hydrogen production and consumption methods. The lack of efficient catalysts based on abundant and sustainable elements lies at the heart of this problem. Nature's solution led to the evolution of hydrogenase enzymes capable of reversible hydrogen conversion at high rates using iron- and nickel-based active sites. Through a detailed understanding of these enzymes, we can learn how to mimic them to engineer a new generation of highly active synthetic catalysts. Incredible progress has been made in our understanding of biological hydrogen activation over the last few years. In particular, detailed studies of the [FeFe] hydrogenase class have provided substantial insight into a sophisticated, optimised, molecular catalyst, the active site H-cluster. In this short perspective, we will summarise recent findings and highlight the missing pieces needed to complete the puzzle.
Collapse
Affiliation(s)
- Manon T Lachmann
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - Zehui Duan
- University of Oxford, Department of Chemistry, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Patricia Rodríguez-Maciá
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - James A Birrell
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| |
Collapse
|
7
|
Duan J, Veliju A, Lampret O, Liu L, Yadav S, Apfel UP, Armstrong FA, Hemschemeier A, Hofmann E. Insights into the Molecular Mechanism of Formaldehyde Inhibition of [FeFe]-Hydrogenases. J Am Chem Soc 2023; 145:26068-26074. [PMID: 37983562 DOI: 10.1021/jacs.3c07800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
[FeFe]-hydrogenases are efficient H2 converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum, showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover. Kinetic assays via protein film electrochemistry show the CpI variant C299D is significantly less inhibited by HCHO, corroborating the structural results. By combining our data from protein crystallography, site-directed mutagenesis and protein film electrochemistry, a reaction mechanism involving the cofactor's amine base, the thiol group of C299 and HCHO can be deduced. In addition to the specific case of [FeFe]-hydrogenases, our study provides additional insights into the reactions between HCHO and protein molecules.
Collapse
Affiliation(s)
- Jifu Duan
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Astrit Veliju
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Oliver Lampret
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lingling Liu
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Energy, Electrosynthesis Group, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Anja Hemschemeier
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
8
|
Arriaza-Gallardo FJ, Zheng YC, Gehl M, Nomura S, Fernandes-Queiroz JP, Shima S. [Fe]-Hydrogenase, Cofactor Biosynthesis and Engineering. Chembiochem 2023; 24:e202300330. [PMID: 37671838 DOI: 10.1002/cbic.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
[Fe]-hydrogenase catalyzes the heterolytic cleavage of H2 and reversible hydride transfer to methenyl-tetrahydromethanopterin. The iron-guanylylpyridinol (FeGP) cofactor is the prosthetic group of this enzyme, in which mononuclear Fe(II) is ligated with a pyridinol and two CO ligands. The pyridinol ligand fixes the iron by an acyl carbon and a pyridinol nitrogen. Biosynthetic proteins for this cofactor are encoded in the hmd co-occurring (hcg) genes. The function of HcgB, HcgC, HcgD, HcgE, and HcgF was studied by using structure-to-function analysis, which is based on the crystal structure of the proteins and subsequent enzyme assays. Recently, we reported the catalytic properties of HcgA and HcgG, novel radical S-adenosyl methionine enzymes, by using an in vitro biosynthesis assay. Here, we review the properties of [Fe]-hydrogenase and the FeGP cofactor, and the biosynthesis of the FeGP cofactor. Finally, we discuss the expected engineering of [Fe]-hydrogenase and the FeGP cofactor.
Collapse
Affiliation(s)
| | - Yu-Cong Zheng
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Manuel Gehl
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - J Pedro Fernandes-Queiroz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| |
Collapse
|
9
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
10
|
Chalopin Y, Cramer SP, Arragain S. Phonon-assisted electron-proton transfer in [FeFe] hydrogenases: Topological role of clusters. Biophys J 2023; 122:1557-1567. [PMID: 36960530 PMCID: PMC10147833 DOI: 10.1016/j.bpj.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
[FeFe] hydrogenases are enzymes that have acquired a unique capacity to synthesize or consume molecular hydrogen (H2). This function relies on a complex catalytic mechanism involving the active site and two distinct electron and proton transfer networks working in concert. By an analysis based on terahertz vibrations of [FeFe] hydrogenase structure, we are able to predict and identify the existence of rate-promoting vibrations at the catalytic site and the coupling with functional residues involved in reported electron and proton transfer networks. Our findings suggest that the positioning of the cluster is influenced by the response of the scaffold to thermal fluctuations, which in turn drives the formation of networks for electron transfer through phonon-assisted mechanisms. Thus, we address the problem of linking the molecular structure to the catalytic function through picosecond dynamics, while raising the functional gain brought by the cofactors or clusters, using the concept of fold-encoded localized vibrations.
Collapse
Affiliation(s)
- Yann Chalopin
- Laboratoire d'Energétique Macroscopique et Moléculaire, Combustion (EM2C), CNRS/CentraleSupélec, University of Paris-Saclay, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
11
|
Martini MA, Bikbaev K, Pang Y, Lorent C, Wiemann C, Breuer N, Zebger I, DeBeer S, Span I, Bjornsson R, Birrell JA, Rodríguez-Maciá P. Binding of exogenous cyanide reveals new active-site states in [FeFe] hydrogenases. Chem Sci 2023; 14:2826-2838. [PMID: 36937599 PMCID: PMC10016341 DOI: 10.1039/d2sc06098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.
Collapse
Affiliation(s)
- Maria Alessandra Martini
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Konstantin Bikbaev
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg Bioinorganic Chemistry Erlangen Germany
| | - Yunjie Pang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- College of Chemistry, Beijing Normal University 100875 Beijing China
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Charlotte Wiemann
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
- Ruanda-Zentrum und Büro für Afrika-Kooperationen, Universität Koblenz-Landau, Universitätsstraße 1 56070 Koblenz Germany
| | - Nina Breuer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Ingrid Span
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg Bioinorganic Chemistry Erlangen Germany
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble Cedex France
| | - James A Birrell
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| | - Patricia Rodríguez-Maciá
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
12
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|