1
|
Hu Y, Han X, Hu S, Yu G, Chao T, Wu G, Qu Y, Chen C, Liu P, Zheng X, Yang Q, Hong X. Surface-Diffusion-Induced Amorphization of Pt Nanoparticles over Ru Oxide Boost Acidic Oxygen Evolution. NANO LETTERS 2024; 24:5324-5331. [PMID: 38624236 DOI: 10.1021/acs.nanolett.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Phase transformation offers an alternative strategy for the synthesis of nanomaterials with unconventional phases, allowing us to further explore their unique properties and promising applications. Herein, we first observed the amorphization of Pt nanoparticles on the RuO2 surface by in situ scanning transmission electron microscopy. Density functional theory calculations demonstrate the low energy barrier and thermodynamic driving force for Pt atoms transferring from the Pt cluster to the RuO2 surface to form amorphous Pt. Remarkably, the as-synthesized amorphous Pt/RuO2 exhibits 14.2 times enhanced mass activity compared to commercial RuO2 catalysts for the oxygen evolution reaction (OER). Water electrolyzer with amorphous Pt/RuO2 achieves 1.0 A cm-2 at 1.70 V and remains stable at 200 mA cm-2 for over 80 h. The amorphous Pt layer not only optimized the *O binding but also enhanced the antioxidation ability of amorphous Pt/RuO2, thereby boosting the activity and stability for the OER.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Shaojin Hu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Ge Yu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Tingting Chao
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Yunteng Qu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Cai Chen
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qing Yang
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| |
Collapse
|
2
|
Wu YH, Janák M, Abdala PM, Borca CN, Wach A, Kierzkowska A, Donat F, Huthwelker T, Kuznetsov DA, Müller CR. Probing Surface Transformations of Lanthanum Nickelate Electrocatalysts during Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:11887-11896. [PMID: 38529556 DOI: 10.1021/jacs.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Marcel Janák
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Anna Wach
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Huthwelker
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|