1
|
Liu Y, Han D, Liu L. Temporary Structural Supports for Chemical Protein Synthesis. Angew Chem Int Ed Engl 2025:e202504405. [PMID: 40248862 DOI: 10.1002/anie.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The range of functional proteins that can be prepared by chemical protein synthesis includes those bearing complex modifications and incorporating d-amino acids, and exceeds what can be accessed by biological means, but the technique is still limited by the unfavorable solution behavior of many synthetic protein intermediates in buffer, leading to inefficient ligation, purification, and in vitro folding. One approach to address this limitation is the use of temporary structural supports-chemical modifications, usually solubilizing functionalities such as polyamines or carbohydrates-that are installed on either the backbone or side chains of the synthetic protein intermediates and removed at a later stage of chemical protein synthesis. The basic processes for introducing and removing such temporary structural supports are reminiscent of the canonical protecting groups ubiquitous in organic chemistry. However, unlike the synthesis of small organic molecules, where solubility is rarely an issue, the purpose of temporary structural supports is to modulate the solution behavior of the synthetic protein intermediates to prevent them from aggregation, precipitation, or retention in unfavorable solvation-phase conformations. In this review, we summarize recent advances in the development of temporary structural supports for chemical protein synthesis and organize them into three categories: 1) Temporary structural supports to improve solubility; 2) Temporary structural supports to assist chemical ligation; and 3) Temporary structural supports to promote in vitro folding.
Collapse
Affiliation(s)
- Yanbo Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Nithun RV, Khoury S, Jbara M. One-Pot Total Synthesis of a Post-translationally Modified Max Transcription Factor Sheds Light on Ser-Phosphorylation and Lys-Acetylation Crosstalk in DNA Binding. Org Lett 2025; 27:3760-3764. [PMID: 40163800 PMCID: PMC11998062 DOI: 10.1021/acs.orglett.5c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
We report a one-pot total synthesis of the transcription factor Max in seven consecutive steps, starting from three peptide segments and employing native chemical ligation. The developed synthesis facilitates the generation of homogeneous Max analogues bearing defined transformations within hours in excellent yields, enabling us to probe the effect of the crosstalk between Ser-phosphorylation and Lys-acetylation on the Max function. Our findings reveal that these post-translational modifications significantly inhibit DNA-binding activity, potentially by disrupting essential Max-DNA interactions.
Collapse
Affiliation(s)
- Raj V. Nithun
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel
| | - Shada Khoury
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Yesilcimen A, Gandhesiri S, Travaline TL, Callahan AJ, Tokareva OS, Loas A, McGee JH, Pentelute BL. Chemical Synthesis, Refolding, and Characterization of Mirror-Image Cyclophilin A. J Org Chem 2025; 90:3365-3372. [PMID: 40008609 DOI: 10.1021/acs.joc.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The chemical synthesis of proteins (CSP) has been an essential tool in studying and understanding the role of these biological polymers and in enabling the discovery of novel classes of inhibitors. However, CSP with commercially available synthesizers is typically limited to producing polypeptides of about 50 to 70 amino acids in length. Consequently, a wide range of protein targets have been inaccessible using these technologies, or they require cumbersome synthesis and purification of multiple peptide fragments. In this report, we employed a powerful combination of automated fast-flow peptide synthesis (AFPS), native chemical ligation (NCL), and high-throughput evaluation of refolding conditions to achieve the first chemical synthesis of both the wild-type and mirror-image forms of functional full-length cyclophilin A, which plays a vital role in proline cis-trans isomerization and other important processes. Functional assays confirmed that the chemically synthesized proteins retained their biological properties.
Collapse
Affiliation(s)
- Ahmet Yesilcimen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Satish Gandhesiri
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara L Travaline
- Parabilis Medicines, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Alex J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Olena S Tokareva
- Parabilis Medicines, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John H McGee
- Parabilis Medicines, 30 Acorn Park Drive, Cambridge, Massachusetts 02140, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
4
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2025; 31:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Hong ZZ. Review on the o-Aminoaniline Moiety in Peptide and Protein Chemistry. Chembiochem 2025:e202401011. [PMID: 39854053 DOI: 10.1002/cbic.202401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Peptides and proteins are important functional biomolecules both inside and outside of living organisms. The ability to prepare various types of functionalized peptides and proteins is essential for understanding fundamental biological processes, such as protein folding and post-translational modifications (PTMs), and for developing new therapeutics for many diseases, such as cancers and neurodegenerative diseases. The o-aminoaniline moiety was first proposed for activation to a thioester precursor and used for native chemical ligation to prepare large peptides and proteins. In the past decade, the function of o-aminoaniline has been greatly expanded to facilitate the preparation of homogeneously modified peptide and protein samples, where the modifications can include cyclization, C-terminus diversification, etc. Many o-aminoaniline derivatives have also been developed to overcome the inherent limitations of previous versions. In this review, we attempt to summarize the recent developments of different o-aminoaniline derivatives, focusing on their application to the preparation of functional peptide and protein molecules.
Collapse
Affiliation(s)
- Ziyong Z Hong
- School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Wisconsin, USA
| |
Collapse
|
6
|
Nadal-Bufi F, Nithun RV, de Moliner F, Lin X, Habiballah S, Jbara M, Vendrell M. Late-Stage Minimal Labeling of Peptides and Proteins for Real-Time Imaging of Cellular Trafficking. ACS CENTRAL SCIENCE 2025; 11:66-75. [PMID: 39866693 PMCID: PMC11758221 DOI: 10.1021/acscentsci.4c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025]
Abstract
The cellular uptake routes of peptides and proteins are complex and diverse, often handicapping therapeutic success. Understanding their mechanisms of internalization requires chemical derivatization with approaches that are compatible with wash-free and real-time imaging. In this work, we developed a new late-stage labeling strategy for unprotected peptides and proteins, which retains their biological activity while enabling live-cell imaging of uptake and intracellular trafficking. Benzo-2,1,3-thiadiazoles were selectively incorporated into Cys residues of both linear and cyclic peptides via Pd-mediated arylation with good yields and high purities. The resulting labeled peptides are chemically stable under physiological conditions and display strong fluorogenic character for wash-free imaging studies. We utilized this approach to prepare native-like analogues of cell-penetrating peptides and performed time-course analysis of their internalization routes in live cells by fluorescence lifetime imaging. Furthermore, we applied our strategy to label the chemokine protein mCCL2 and monitor its internalization via receptor-mediated endocytosis in live macrophages. This study provides a straightforward strategy for late-stage fluorogenic labeling of intact peptides and small proteins and direct visualization of dynamic intracellular events.
Collapse
Affiliation(s)
- Ferran Nadal-Bufi
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Raj V. Nithun
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Fabio de Moliner
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Xiaoxi Lin
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | - Muhammad Jbara
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
7
|
Ellenbroek BD, Kahler JP, Arella D, Lin C, Jespers W, Züger EA, Drukker M, Pomplun SJ. Development of DuoMYC: a synthetic cell penetrant miniprotein that efficiently inhibits the oncogenic transcription factor MYC. Angew Chem Int Ed Engl 2025; 64:e202416082. [PMID: 39315681 PMCID: PMC11753601 DOI: 10.1002/anie.202416082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
The master regulator transcription factor MYC is implicated in numerous human cancers, and its targeting is a long-standing challenge in drug development. MYC is a typical 'undruggable' target, with no binding pockets on its DNA binding domain and extensive intrinsically disordered regions. Rather than trying to target MYC directly with classical modalities, here we engineer synthetic miniproteins that can bind to MYC's target DNA, the enhancer box (E-Box), and potently inhibit MYC-driven transcription. We crafted the miniproteins via structure-based design and a combination of solid phase peptide synthesis and site-specific crosslinking. Our lead variant, DuoMYC, binds to E-Box DNA with high affinity (KD ~0.1 μM) and is able to enter cells and inhibit MYC-driven transcription with submicromolar potency (IC50=464 nM) as shown by reporter gene assay and confirmed by RNA sequencing. Notably, DuoMYC surpasses the efficacy of several other recently developed MYC inhibitors. Our results highlight the potential of engineered synthetic protein therapeutics for addressing challenging intracellular targets.
Collapse
Affiliation(s)
- Brecht D. Ellenbroek
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| | - Jan Pascal Kahler
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| | - Damiano Arella
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| | - Cherina Lin
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| | - Willem Jespers
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| | | | - Micha Drukker
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| | - Sebastian J. Pomplun
- Leiden University2333CC LeidenThe Netherlands
- Oncode Institute3521AL UtrechtThe Netherlands
| |
Collapse
|
8
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
9
|
Lin X, Mandal S, Nithun RV, Kolla R, Bouri B, Lashuel HA, Jbara M. A Versatile Method for Site-Specific Chemical Installation of Aromatic Posttranslational Modification Analogs into Proteins. J Am Chem Soc 2024; 146:25788-25798. [PMID: 39224092 PMCID: PMC11421021 DOI: 10.1021/jacs.4c08416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Posttranslational modifications (PTMs) of proteins play central roles in regulating the protein structure, interactome, and functions. A notable modification site is the aromatic side chain of Tyr, which undergoes modifications such as phosphorylation and nitration. Despite the biological and physiological importance of Tyr-PTMs, our current understanding of the mechanisms by which these modifications contribute to human health and disease remains incomplete. This knowledge gap arises from the absence of natural amino acids that can mimic these PTMs and the lack of synthetic tools for the site-specific introduction of aromatic PTMs into proteins. Herein, we describe a facile method for the site-specific chemical installation of aromatic PTMs into proteins through palladium-mediated S-C(sp2) bond formation under ambient conditions. We demonstrate the incorporation of novel PTMs such as Tyr-nitration and phosphorylation analogs to synthetic and recombinantly expressed Cys-containing peptides and proteins within minutes and in good yields. To demonstrate the versatility of our approach, we employed it to prepare 10 site-specifically modified proteins, including nitrated and phosphorylated analogs of Myc and Max proteins. Furthermore, we prepared a focused library of site-specifically nitrated and phosphorylated α-synuclein (α-Syn) protein, which enabled, for the first time, deciphering the role of these competing modifications in regulating α-Syn conformation aggregation in vitro. Our strategy offers advantages over synthetic or semisynthetic approaches, as it enables rapid and selective transfer of rarely explored aromatic PTMs into recombinant proteins, thus facilitating the generation of novel libraries of homogeneous posttranslationally modified proteins for biomarker discovery, mechanistic studies, and drug discovery.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaswati Mandal
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rajasekhar Kolla
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Bouchra Bouri
- Protein
Production and Structure core facility, School of Life Sciences, École Polytechnique Fédérale
de Lausanne, Lausanne CH-1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Bachelart T, Kumar S, Jouin A, Yousef M, Kieffer B, Torbeev V. Design, Synthesis and Catalytic Activity of Protein Containing Thiotyrosine as an Active Site Residue. Chembiochem 2024; 25:e202400148. [PMID: 38629812 DOI: 10.1002/cbic.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Native chemical ligation is a key reaction in the toolbox of chemical methods for the synthesis of native and modified proteins. The catalysis of ligation is commonly performed by using small aryl-thiol molecules added at high concentrations. In this work, we incorporated thiotyrosine, a non-canonical amino acid containing an aryl-thiol moiety, into a designed cyclic protein « sans queue ni tête ». Importantly, the protein environment reduced the pKa of the thiol group to 5.8-5.9, which is significantly lower than the previously reported value for thiotyrosine in a short peptide (pKa 6.4). Furthermore, we demonstrated the catalytic activity of this protein both as hydrolase and in native chemical ligation of peptides. These results will be useful for the development of efficient protein catalysts (enzymes) for protein synthesis and modification.
Collapse
Affiliation(s)
- Thomas Bachelart
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Shailesh Kumar
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Alexis Jouin
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Mo'ath Yousef
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 1258, University of Strasbourg, 67400, Illkirch, France
| | - Vladimir Torbeev
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg, 67400, Illkirch, France
| |
Collapse
|
11
|
Liu H, Chow HY, Liu J, Shi P, Li X. Prior disulfide bond-mediated Ser/Thr ligation. Chem Sci 2024:d4sc04825c. [PMID: 39170718 PMCID: PMC11333947 DOI: 10.1039/d4sc04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In this work, we developed a novel strategy, prior disulfide bond-mediated Ser/Thr ligation (PD-STL), for the chemical synthesis of peptides and proteins. This approach combines disulfide bond-forming chemistry with Ser/Thr ligation (STL), converting intermolecular STL into intramolecular STL to effectively proceed regardless of concentrations. We demonstrated the effectiveness of PD-STL under high dilution conditions, even for the relatively inert C-terminal proline at the ligation site. Additionally, we applied this method to synthesize the N-terminal cytoplasmic domain (2-104) of caveolin-1 and its Tyr14 phosphorylated form.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
12
|
Liu Y, Maki Y, Okamoto R, Satoh A, Todokoro Y, Kanemitsu Y, Otani K, Kajihara Y. Uncovering a Latent Bioactive Interleukin-6 Glycoform. Angew Chem Int Ed Engl 2024:e202411213. [PMID: 39103293 DOI: 10.1002/anie.202411213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
A bioinspired semisynthesis of human-interleukin-6 bearing N-glycan at Asn143 (143glycosyl-IL-6) was performed by intentional glycosylation effects and protein folding chemistry for regioselective peptide-backbone activation. 143Glycosyl-IL-6 is a genetically coded cytokine, but isolation was difficult owing to a tiny amount. IL6-polypeptide (1-141-position) with an intentionally inserted cysteine at 142-position was expressed in E. coli. The expressed polypeptide was treated with a chemical folding process to make a specific helices bundle conformation through native two-disulfide bonds (43-49 and 72-82). Utilizing the successfully formed free-142-cysteine, sequential conversions using cyanylation of 142-cysteine, hydrazinolysis, and thioesterification created a long polypeptide (1-141)-thioester. However, the resultant polypeptide-thioester caused considerable aggregation owing to a highly hydrophobic peptide sequence. After the reduction of two-disulfide bonds of polypeptide (1-141)-thioester, an unprecedented hydrophilic N-glycan tag was inserted at the resultant cysteine thiols. The N-glycan tags greatly stabilized polypeptide-thioester. The subsequent native chemical ligation and desulfurization successfully gave a whole 143glycosyl-IL-6 polypeptide (183-amino acids). Removal of four N-glycan tags and immediate one-pot in vitro folding protocol efficiently produced the folded 143glycosyl-IL-6. The folded 143glycosyl-IL-6 exhibited potent cell proliferation activity. The combined studies with molecular dynamics simulation, semisynthesis, and bioassays predict the bioactive conformation of latent 143glycosyl-IL-6.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1, Tsushimanaka, Okayama, 700-0082, Japan
| | - Yasuto Todokoro
- Technical Support Division, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| | - Yurie Kanemitsu
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| | - Keito Otani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
| |
Collapse
|
13
|
Nithun RV, Yao YM, Harel O, Habiballah S, Afek A, Jbara M. Site-Specific Acetylation of the Transcription Factor Protein Max Modulates Its DNA Binding Activity. ACS CENTRAL SCIENCE 2024; 10:1295-1303. [PMID: 38947213 PMCID: PMC11212134 DOI: 10.1021/acscentsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.g., Lys-acetylation on the DNA binding activity of Max TF. We synthesized a focused library of singly, doubly, and triply modified Max variants including site-specifically acetylated and fluorescently tagged analogs. The resulting synthetic analogs were employed to decipher the molecular role of Lys-acetylation on the DNA binding activity and sequence specificity of Max. We provide evidence that the acetylation sites at Lys-31 and Lys-57 significantly inhibit the DNA binding activity of Max. Furthermore, by utilizing high-throughput binding measurements, we assessed the binding activities of the modified Max variants across diverse DNA sequences. Our results indicate that acetylation marks can alter the binding specificities of Max toward certain sequences flanking its consensus binding sites. Our work provides insight into the hidden molecular code of PTM-TFs and DNA interactions, paving the way to interpret gene expression regulation programs.
Collapse
Affiliation(s)
- Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yumi Minyi Yao
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Omer Harel
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Shaimaa Habiballah
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Ariel Afek
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
14
|
Wang T, Tong J, Zhang X, Wang Z, Xu L, Pan P, Hou T. Structure-based virtual screening of novel USP5 inhibitors targeting the zinc finger ubiquitin-binding domain. Comput Biol Med 2024; 174:108397. [PMID: 38603896 DOI: 10.1016/j.compbiomed.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The equilibrium of cellular protein levels is pivotal for maintaining normal physiological functions. USP5 belongs to the deubiquitination enzyme (DUBs) family, controlling protein degradation and preserving cellular protein homeostasis. Aberrant expression of USP5 is implicated in a variety of diseases, including cancer, neurodegenerative diseases, and inflammatory diseases. In this paper, a multi-level virtual screening (VS) approach was employed to target the zinc finger ubiquitin-binding domain (ZnF-UBD) of USP5, leading to the identification of a highly promising candidate compound 0456-0049. Molecular dynamics (MD) simulations were then employed to assess the stability of complex binding and predict hotspot residues in interactions. The results indicated that the candidate stably binds to the ZnF-UBD of USP5 through crucial interactions with residues ARG221, TRP209, GLY220, ASN207, TYR261, TYR259, and MET266. Binding free energy calculations, along with umbrella sampling (US) simulations, underscored a superior binding affinity of the candidate relative to known inhibitors. Moreover, US simulations revealed conformational changes of USP5 during ligand dissociation. These insights provide a valuable foundation for the development of novel inhibitors targeting USP5.
Collapse
Affiliation(s)
- Tianhao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jianbo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Xing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 310058, Zhejiang, PR China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
15
|
Lin X, Harel O, Jbara M. Chemical Engineering of Artificial Transcription Factors by Orthogonal Palladium(II)-Mediated S-Arylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202317511. [PMID: 38085105 DOI: 10.1002/anie.202317511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Site-selective functionalization strategies are in high demand to prepare well-defined homogeneous proteins for basic research and biomedical applications. In this regard, cysteine-based reactions have enabled a broad set of transformations to produce modified proteins for various applications. However, these approaches were mainly employed to modify a single reactive site with a specific transformation. Achieving site selectivity or multiple transformations, essential for preparing complex biomolecules, remains challenging. Herein we demonstrate the power of combining palladium(II)-mediated C-S bond formation and C-S bond cleavage reactions to selectively edit desired cysteine sites in complex and uniquely modified proteins. We developed an orthogonal palladium(II) strategy for rapid and effective diversification of multiple cysteine sites (3-6 residues) with various transformations. Importantly, we employed our approach to prepare 10 complex analogues, including modified, stapled, and multimeric proteins on a milligram scale. Furthermore, we also synthesized a focused library of stabilized artificial transcription factors that displayed enhanced stability and potent DNA binding activity. Our approach enables rapid and effective protein editing and opens new avenues to engineer new biomolecules for fundamental research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
16
|
Kar A, Jana M, Malik V, Sarkar A, Mandal K. Total Chemical Synthesis of the SARS-CoV-2 Spike Receptor-Binding Domain. Chemistry 2024; 30:e202302969. [PMID: 37815536 DOI: 10.1002/chem.202302969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them. Appropriate utilization of advanced solid phase peptide synthesis and cutting-edge native chemical ligation methods have facilitated the synthesis of this moderately large protein molecule. We discuss the problems encountered during the chemical synthesis and approaches taken to optimize the yield and the purity of the synthetic protein molecule. Furthermore, we demonstrate that the chemically synthesized homogeneous spike RBD efficiently binds to the known mini-protein binder LCB1. The successful chemical synthesis of the spike RBD presented here can be utilized to gain valuable insights into SARS-CoV-2 spike RBD biology, advancing our understanding and aiding the development of intervention strategies to combat future coronavirus outbreaks. The modular synthetic approach described in this study can be effectively implemented in the synthesis of other mutated variants or enantiomer of the spike RBD for mirror-image drug discovery.
Collapse
Affiliation(s)
- Abhisek Kar
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Mrinmoy Jana
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Arighna Sarkar
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| | - Kalyaneswar Mandal
- Tata Institute of Fundamental Research Hyderabad, 36/p Gopanpally, Hyderabad, Telangana, 500046, India
| |
Collapse
|
17
|
Yao Y, Shi X, Zhao Z, Zhang A, Li W. Dendronization of chitosan to afford unprecedent thermoresponsiveness and tunable microconfinement. J Mater Chem B 2023; 11:11024-11034. [PMID: 37975703 DOI: 10.1039/d3tb01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Convenient chemical modification of biomacromolecules to create novel biocompatible functional materials satisfies the current requirements of sustainable chemistry. Dendronization of chitosan with dendritic oligoethylene glycols (OEGs) paves a strategy for the preparation of functional dendronized chitosans (DCSs) with unprecedent thermoresponsive behavior, which inherit biological features from polysaccharides and the topological features from dendritic OEGs. In addition, densely packed dendritic OEG chains around the backbone provide efficient cooperative interactions and form an intriguing confined microenvironment based on the degradable biopolymers. In this perspective, we describe the principle for the preparation of the thermoresponsive DCSs, and focus on the molecular envelop effect from the hydrophobic microconfinement to the encapsulated guest molecules or moieties. Particular attention is put on their capacity to regulate behavior and the functions of the encapsulated guests through thermally-mediated dehydration and collapse of the densely packed dendritic OEGs. We believe that the methodology described here may provide prospects for the fabrication of functional materials from biomacromolecules, especially when used as environmentally friendly nanomaterials or in accurate diagnosis and therapy.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Xiaoxin Shi
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Zihong Zhao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
18
|
Nithun RV, Yao YM, Lin X, Habiballah S, Afek A, Jbara M. Deciphering the Role of the Ser-Phosphorylation Pattern on the DNA-Binding Activity of Max Transcription Factor Using Chemical Protein Synthesis. Angew Chem Int Ed Engl 2023; 62:e202310913. [PMID: 37642402 DOI: 10.1002/anie.202310913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The chemical synthesis of site-specifically modified transcription factors (TFs) is a powerful method to investigate how post-translational modifications (PTMs) influence TF-DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser-phosphorylation at the N-terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full-length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono-phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA-binding activity of Max. Furthermore, in vitro high-throughput analysis using DNA microarrays revealed that the N-terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max's phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
Collapse
Affiliation(s)
- Raj V Nithun
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shaimaa Habiballah
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
19
|
Wu H, Sun Z, Li X. N,O-Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angew Chem Int Ed Engl 2023; 62:e202310624. [PMID: 37694822 DOI: 10.1002/anie.202310624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Proteins with highly hydrophobic regions or aggregation-prone sequences are typically difficult targets for chemical synthesis at the current stage, as obtaining such type of peptides via solid-phase peptide synthesis requires sophisticated operations. Herein, we report N,O-benzylidene acetal dipeptides (NBDs) as robust and effective building blocks to allow the direct synthesis of difficult peptides and proteins via a kinked backbone strategy. The effectiveness and easy accessibility of NBDs have been well demonstrated in our chemical syntheses of various challenging peptides and proteins, including chemokine, therapeutic hormones, histone, and glycosylated erythropoietin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
20
|
Lin X, Nithun RV, Samanta R, Harel O, Jbara M. Enabling Peptide Ligation at Aromatic Junction Mimics via Native Chemical Ligation and Palladium-Mediated S-Arylation. Org Lett 2023; 25:4715-4719. [PMID: 37318270 PMCID: PMC10324392 DOI: 10.1021/acs.orglett.3c01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Synthetic strategies to assemble peptide fragments are in high demand to access homogeneous proteins for various applications. Here, we combined native chemical ligation (NCL) and Pd-mediated Cys arylation to enable practical peptide ligation at aromatic junctions. The utility of one-pot NCL and S-arylation at the Phe and Tyr junctions was demonstrated and employed for the rapid chemical synthesis of the DNA-binding domains of the transcription factors Myc and Max. Organometallic palladium reagents coupled with NCL enabled a practical strategy to assemble peptides at aromatic junctions.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raj V. Nithun
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raju Samanta
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Omer Harel
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|