1
|
Carsten A, Failla AV, Aepfelbacher M. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J Microsc 2025; 298:219-231. [PMID: 38661499 PMCID: PMC11987580 DOI: 10.1111/jmi.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| |
Collapse
|
2
|
Abuhadba S, Fuqua C, Maltese A, Schwinn C, Lin N, Chen A, Martzloff R, Esipova TV, Mani T. Singlets-Driven Photoredox Catalysts: Transforming Noncatalytic Red Fluorophores to Efficient Catalysts. JACS AU 2024; 4:4892-4898. [PMID: 39735906 PMCID: PMC11672537 DOI: 10.1021/jacsau.4c00877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024]
Abstract
Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates. However, triplets of π-conjugated molecules are often significantly lower in energy than photogenerated singlet excited states (singlets). Combined with the inherent low energy of red light, this could limit the reductive/oxidative powers. Here, we introduce a series of sustainable heavy atom-free photoredox catalysts based on red-light absorbing dibenzo-fused BODIPY. The catalysts consist of two covalently linked units: a dibenzo-fused BODIPY fluorophore and an electron donor, arranged orthogonally. Excitation of the dibenzoBODIPY unit induces charge separation (CS) from the donor to the dibenzoBODIPY unit, forming a radical pair (RP) state. Unlike the regular BODIPY counterparts, these catalysts do not form triplets. Instead, SET occurs from the high-energy singlet-born RP states, preventing energy loss and effectively utilizing the low-energy red light. The proximity of donor molecules allows efficient charge separation despite the CS being uphill in energy. The molecules demonstrate efficient catalysis of Atom Transfer Radical Addition (ATRA) reaction, yielding products with high yields ranging from 70 to 90%, while the molecule without a donor group does not exhibit catalytic activity. The mechanistic studies by transient absorption and electron paramagnetic resonance (EPR) spectroscopy methods support the proposed mechanism. The study presents a new molecular design strategy for converting noncatalytic fluorophores to efficient photoredox catalysts operating in the red spectral region.
Collapse
Affiliation(s)
- Sara Abuhadba
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| | - Charlotte Fuqua
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| | - Anthony Maltese
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| | - Caroline Schwinn
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| | - Neo Lin
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| | - Angela Chen
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| | - Rilee Martzloff
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| | - Tatiana V. Esipova
- Department
of Chemistry and Biochemistry, Loyola University
Chicago, Chicago, Illinois 60660, United States
| | - Tomoyasu Mani
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United
States
| |
Collapse
|
3
|
Khan TA, Stoldt S, Bossi ML, Belov VN, Hell SW. β-Galactosidase- and Photo-Activatable Fluorescent Probes for Protein Labeling and Super-Resolution STED Microscopy in Living Cells. Molecules 2024; 29:3596. [PMID: 39125001 PMCID: PMC11314211 DOI: 10.3390/molecules29153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin-Halo fusion protein in live cells with overexpressed β-galactosidase. The dye fluorescence afforded the observation of enzyme activity by means of confocal and super-resolution optical microscopy based on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of activated fluorescent products inside cells was combined with super-resolution imaging as a tool for use in biomedicine and life science.
Collapse
Affiliation(s)
- Taukeer A. Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Mariano L. Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120 Heidelberg, Germany;
| | - Vladimir N. Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120 Heidelberg, Germany;
| |
Collapse
|
4
|
Torii K, Benson S, Hori Y, Vendrell M, Kikuchi K. No-wash fluorogenic labeling of proteins for reversible photoswitching in live cells. Chem Sci 2024; 15:1393-1401. [PMID: 38274070 PMCID: PMC10806661 DOI: 10.1039/d3sc04953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Photoswitchable fluorescent molecules (PSFMs) are positioned as valuable tools for biomolecule localization tracking and super-resolution imaging technologies due to their unique ability to reversibly control fluorescence intensity upon light irradiation. Despite the high demand for PSFMs that are suitable for live-cell imaging, no general method has been reported that enables reversible fluorescence control on proteins of interest in living cells. Herein, we have established a platform to realize reversible fluorescence switching in living cells by adapting a protein labeling system. We have developed a new PSFM, named HTL-Trp-BODIPY-FF, which exhibits strong fluorogenicity upon recognition of Halo-tag protein and reversible fluorescence photoswitching in living cells. This is the first example of a PSFM that can be applicable to a general-purpose Halo-tag protein labeling system for no-wash live-cell imaging.
Collapse
Affiliation(s)
- Kenji Torii
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Yuichiro Hori
- Faculty of Science, Kyushu University Fukuoka Fukuoka 819-0395 Japan
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|