1
|
Endo T, Ikeda T, Muraoka K, Kita Y, Tamura M, Nakayama A. Lattice oxygen insertion mechanism in CeO 2-catalyzed reactions in water: nitrile hydration reaction. Chem Sci 2025; 16:939-951. [PMID: 39660288 PMCID: PMC11627105 DOI: 10.1039/d4sc06294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024] Open
Abstract
Cerium oxide (CeO2) exhibits prominent catalytic activity in various organic reactions owing to its unique acid-base and redox properties. One of the most interesting applications of pure CeO2-catalyzed organic reactions is the hydration of nitriles in water. The experimental results showed that the hydration of 2-cyanopyridine to picolinamide in water using CeO2 catalysts proceeds readily at low temperatures (30-100 °C) in high yields and that this reaction occurs exclusively on CeO2 among various metal-oxide catalysts. To elucidate the unique catalytic activity of CeO2, the reaction mechanism is dissected using the density functional theory-based molecular dynamics (DFT-MD) simulations. Based on the free energy analysis, it is demonstrated that the reaction proceeds with the involvement of the surface lattice oxygen, where the lattice oxygen atom is inserted into picolinamide. The involvement of the surface lattice oxygen is notably uncommon given the low temperatures of the reaction, and this computational prediction is verified by the two experiments using H2 18O solvent and 18O-exchanged CeO2 catalyst, where the introduction of surface lattice oxygen into picolinamide is confirmed. The inherent flexibility of the surface lattice oxygen and the unique acid-base properties of CeO2, which can favorably bind and activate both nitrile and water molecules, are key factors in the high reactivity for various organic reactions, which characterizes the outstanding catalytic activity of CeO2.
Collapse
Affiliation(s)
- Takaaki Endo
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Tatsushi Ikeda
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Koki Muraoka
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Yusuke Kita
- Department of Chemistry and Bioengineering, School of Engineering, Osaka Metropolitan University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masazumi Tamura
- Department of Chemistry and Bioengineering, School of Engineering, Osaka Metropolitan University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
2
|
Chen L, Zhu X, Yuan J, Wang R, Li J, Wang Y, Peng Y, Li J. Unveiling the Role of Hydrophobicity on Multilayer Carbon Nanosheets Enriched in sp 2-Carbon for Toluene Adsorption under Humid Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16175-16185. [PMID: 39118588 DOI: 10.1021/acs.est.4c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Carbon materials are regarded as a promising adsorbent for the adsorption of volatile organic compounds (VOCs). However, their adsorption behaviors are usually compromised at ambient conditions, attributed to the competitive VOCs adsorption with water vapor. In this study, we demonstrated that the selectivity for toluene than water of carbon can be effectively enhanced by introducing more sp2-carbon with two-dimensional nanosheets stacked. The multilayer carbon nanosheets enriched with sp2-carbon (CNS-MCA) exhibit a 151° H2O-contact angle, indicating hydrophobicity. Dynamic adsorption behaviors revealed that CNS-MCA retain 71% of their toluene adsorption capacity (91 mg/g) even at 60% relative humidity. Density functional theory (DFT) calculations, static adsorption studies, in situ Raman spectroscopy, and time-resolved in situ nuclear magnetic resonance (NMR) spectroscopy collectively indicate that toluene exhibits enhanced adsorption and selectivity due to π-π* interactions between its aromatic rings and the sp2-carbon. Conversely, water adsorption is attenuated, attributed to the reduced availability of surface-exposed hydrogen bonds associated with sp2-carbon and the inherent hydrophobic nature of multilayer graphene. This study extends a novel solution for the enhancement of VOCs adsorption under humid conditions.
Collapse
Affiliation(s)
- Lin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Yuan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaxing Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Agosta L, Briels W, Hermansson K, Dzugutov M. The entropic origin of the enhancement of liquid diffusion close to a neutral confining surface. J Chem Phys 2024; 161:091102. [PMID: 39225520 DOI: 10.1063/5.0224016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
It is known that, in the proximity of a neutral wall, liquids experience diffusion enhancement relative to their bulk diffusion, but the origin of this phenomenon is still unknown. We report a molecular dynamics simulation investigating the dynamics of a simple liquid in the proximity to a non-interacting smooth confining wall, which exhibits a strong diffusion enhancement within the liquid layers adjacent to the wall. We present an analysis of these results, demonstrating that the observed diffusion enhancement can be accounted for, with numerical accuracy, using the universal scaling law that relates the liquid diffusion rate to the excess entropy. These results show that the scaling law, which has so far only been used for the description of the bulk liquid diffusion, can be successfully used to describe the diffusion in liquids under nano-scale confinement.
Collapse
Affiliation(s)
- Lorenzo Agosta
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Uppsala University, Ångström Laboratory, Department of Chemistry, 75121 Uppsala, Sweden
| | - Wim Briels
- University of Twente, Computational Chemical Physics, Postbus 217, Enschede 7500AE, Netherlands
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, Juelich D-52428, Germany
| | - Kersti Hermansson
- Uppsala University, Ångström Laboratory, Department of Chemistry, 75121 Uppsala, Sweden
| | - Mikhail Dzugutov
- Uppsala University, Ångström Laboratory, Department of Chemistry, 75121 Uppsala, Sweden
| |
Collapse
|
4
|
Agosta L, Fiore L, Colozza N, Pérez-Ropero G, Lyubartsev A, Arduini F, Hermansson K. Adsorption of Glycine on TiO 2 in Water from On-the-fly Free-Energy Calculations and In Situ Electrochemical Impedance Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12009-12016. [PMID: 38771331 PMCID: PMC11171457 DOI: 10.1021/acs.langmuir.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
We report here an experimental-computational study of hydrated TiO2 anatase nanoparticles interacting with glycine, where we obtain quantitative agreement of the measured adsorption free energies. Ab initio simulations are performed within the tight binding and density functional theory in combination with enhanced free-energy sampling techniques, which exploit the thermodynamic integration of the unbiased mean forces collected on-the-fly along the molecular dynamics trajectories. The experiments adopt a new and efficient setup for electrochemical impedance spectroscopy measurements based on portable screen-printed gold electrodes, which allows fast and in situ signal assessment. The measured adsorption free energy is -30 kJ/mol (both from experiment and calculation), with preferential interaction of the charged NH3+ group which strongly adsorbs on the TiO2 bridging oxygens. This highlights the importance of the terminal amino groups in the adsorption mechanism of amino acids on hydrated metal oxides. The excellent agreement between computation and experiment for this amino acid opens the doors to the exploration of the interaction free energies for other moderately complex bionano systems.
Collapse
Affiliation(s)
- Lorenzo Agosta
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Luca Fiore
- Department
of Science and Chemical Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Noemi Colozza
- Department
of Science and Chemical Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Guillermo Pérez-Ropero
- Department
of Chemistry-BMC, Uppsala University, Ridgeview
Instruments AB, Uppsala 752 37, Sweden
| | - Alexander Lyubartsev
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Fabiana Arduini
- Department
of Science and Chemical Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Kersti Hermansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| |
Collapse
|
5
|
Zhang X, Blackman C, Palgrave RG, Ashraf S, Dey A, Blunt MO, Zhang X, Liu T, Sun S, Zhu L, Guan J, Lu Y, Keal TW, Buckeridge J, Catlow CRA, Sokol AA. Environment-Driven Variability in Absolute Band Edge Positions and Work Functions of Reduced Ceria. J Am Chem Soc 2024; 146:16814-16829. [PMID: 38837941 PMCID: PMC11191696 DOI: 10.1021/jacs.4c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
The absolute band edge positions and work function (Φ) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Φ. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Φ with significant sensitivity to defect distributions. In contrast, the IP and Φ are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions.
Collapse
Affiliation(s)
- Xingfan Zhang
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Christopher Blackman
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Robert G. Palgrave
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Sobia Ashraf
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Avishek Dey
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Matthew O. Blunt
- Department
of Chemistry, University College London, Christopher Ingold Building, 20
Gordon Street, London WC1H
0AJ, U.K.
| | - Xu Zhang
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- School of
Chemical Engineering and Technology, Tianjin
University, Tianjin 300350, P. R. China
| | - Taifeng Liu
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- National
& Local Joint Engineering Research Center for Applied Technology
of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China
| | - Shijia Sun
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Lei Zhu
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Jingcheng Guan
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - You Lu
- Scientific
Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, Cheshire, U.K.
| | - Thomas W. Keal
- Scientific
Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, Cheshire, U.K.
| | - John Buckeridge
- School
of Engineering, London South Bank University, London SE1 OAA, U.K.
| | - C. Richard A. Catlow
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 1AT, U.K.
| | - Alexey A. Sokol
- Kathleen
Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
| |
Collapse
|
6
|
Kobayashi T, Ikeda T, Nakayama A. Long-range proton and hydroxide ion transfer dynamics at the water/CeO 2 interface in the nanosecond regime: reactive molecular dynamics simulations and kinetic analysis. Chem Sci 2024; 15:6816-6832. [PMID: 38725504 PMCID: PMC11077578 DOI: 10.1039/d4sc01422g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
The structural properties, dynamical behaviors, and ion transport phenomena at the interface between water and cerium oxide are investigated by reactive molecular dynamics (MD) simulations employing neural network potentials (NNPs). The NNPs are trained to reproduce density functional theory (DFT) results, and DFT-based MD (DFT-MD) simulations with enhanced sampling techniques and refinement schemes are employed to efficiently and systematically acquire training data that include diverse hydrogen-bonding configurations caused by proton hopping events. The water interfaces with two low-index surfaces of (111) and (110) are explored with these NNPs, and the structure and long-range proton and hydroxide ion transfer dynamics are examined with unprecedented system sizes and long simulation times. Various types of proton hopping events at the interface are categorized and analyzed in detail. Furthermore, in order to decipher the proton and hydroxide ion transport phenomena along the surface, a counting analysis based on the semi-Markov process is formulated and applied to the MD trajectories to obtain reaction rates by considering the transport as stochastic jump processes. Through this model, the coupling between hopping events, vibrational motions, and hydrogen bond networks at the interface are quantitatively examined, and the high activity and ion transport phenomena at the water/CeO2 interface are unequivocally revealed in the nanosecond regime.
Collapse
Affiliation(s)
- Taro Kobayashi
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Tatsushi Ikeda
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
7
|
Zhu Z, Zhu J, Chang C, Qi C, Zhu Z, Zhao H, Zhang D, Zeng XC, Wang C. Tunable Surface Wettability via Terahertz Electrowave Controlled Vicinal Subnanoscale Water Layer. NANO LETTERS 2024; 24:3243-3248. [PMID: 38427592 DOI: 10.1021/acs.nanolett.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Achieving timely, reversible, and long-range remote tunability over surface wettability is highly demanded across diverse fields, including nanofluidic systems, drug delivery, and heterogeneous catalysis. Herein, using molecular dynamic simulations, we show, for the first time, a theoretical design of electrowetting to achieve remotely controllable surface wettability via using a terahertz wave. The key idea driving the design is the unique terahertz collective vibration identified in the vicinal subnanoscale water layer, which is absent in bulk water, enabling efficient energy transfer from the terahertz wave to the rotational motion of the vicinal subnanoscale water layer. Consequently, a frequency-specific alternating terahertz electric field near the critical strength can significantly affect the local hydrogen-bonding network of the contact water layer on the solid surface, thereby achieving tunable surface wettability.
Collapse
Affiliation(s)
- Zhi Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junquan Zhu
- College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics, Peking University, Beijing 100871, China
| | - Chonghai Qi
- School of Physical and Intelligent Engineering, Jining University, Qufu 273155, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hongwei Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Ribić V, Jordan V, Drev S, Kovač J, Dražić G, Rečnik A. Mnemonic Rutile-Rutile Interfaces Triggering Spontaneous Dissociation of Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308027. [PMID: 37935053 DOI: 10.1002/adma.202308027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral-water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2 , grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re-immersed. This is thought to be the first demonstration of quantum-confined mineral-water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment.
Collapse
Affiliation(s)
- Vesna Ribić
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Vanja Jordan
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Sandra Drev
- Center for Electron Microscopy and Microanalysis, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Janez Kovač
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
| | - Aleksander Rečnik
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia
| |
Collapse
|