1
|
Shi W, Hu Y, Leanza L, Shchukin Y, Hoffmann PA, Li MH, Ning C, Cao ZY, Xu YQ, Du P, von Delius M, Pavan GM, Xu Y. Ring-in-Ring Assembly Facilitates the Synthesis of a [12]Cycloparaphenylene ABC-Type [3]Catenane. Angew Chem Int Ed Engl 2025; 64:e202421459. [PMID: 39789989 DOI: 10.1002/anie.202421459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researchers have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs. By threading a secondary ammonium salt through the crown ether and closing the third ring via CuAAC click reaction, we obtained a rare ABC-type hetero-[3]catenane comprising [12]CPP, 24-crown-8 and a dibenzylammonium macrocycle. X-ray crystallography shed light on the ring-in-ring pre-organization and the [3]catenane topology was confirmed by NMR and MS-MS studies. Molecular simulations provided insights into the intriguing ring-vs.-ring-vs.-ring dynamics of the [3]catenane, which are highly dependent on the protonation state of the dibenzylammonium site. This ring-in-ring assembly strategy opens new avenues for the synthesis of complex CPP architectures and their use in functional supramolecular systems.
Collapse
Affiliation(s)
- Wudi Shi
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yaning Hu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Luigi Leanza
- Department of Applied Science and Technology, Institution Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Yevhenii Shchukin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Patrick A Hoffmann
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Meng-Hua Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Chengbing Ning
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Province, 230026, China
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Institution Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
2
|
Li X, Liu L, Jia L, Lian Z, He J, Guo S, Wang Y, Chen X, Jiang H. Acceptor engineering of quinone-based cycloparaphenylenes via post-synthesis for achieving white-light emission in single-molecule. Nat Commun 2025; 16:467. [PMID: 39775102 PMCID: PMC11707345 DOI: 10.1038/s41467-025-55895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction. Fluorescence investigations reveal that the quinone-based [10]CPPs display distinctive acceptor-dependent dual-emission from both the locally excited state and charge transfer state after single-wavelength excitation in organic solvents, consequently leading to multicolor emissions, in particular, white-light emission in CHCl3 for Aq[10]CPP. In THF/water mixture, quinone-based [10]CPPs and oxTh[10]CPP display a wide range of fluorescence emissions including white-light emission as increasing the fraction of water, accompanying by the formation of nanoparticles as demonstrated by Tyndall effect and SEM. Interestingly, the fluorescence of Aq[10]CPP can be switched from white to blue in CHCl3 upon redox. Our investigations demonstrate that acceptor engineering not only endows quinone-based [10]CPPs with two distint emissive states for achieving white-light emission but also highlights an effective post-synthetic strategy for functionalizing CPP nanohoops with desirable properties.
Collapse
Affiliation(s)
- Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Luyang Jia
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| |
Collapse
|
3
|
Schwer F, Zank S, Freiberger M, Steudel FM, Geue N, Ye L, Barran PE, Drewello T, Guldi DM, von Delius M. Nanohoops Favour Light-Induced Energy Transfer over Charge Separation in Porphyrin/[10]CPP/Fullerene Rotaxanes. Angew Chem Int Ed Engl 2025; 64:e202413404. [PMID: 39313478 DOI: 10.1002/anie.202413404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C60 bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation. In contrast, the nanohoops completely prevented through-space charge separation. This result is likely due to supramolecular "shielding", because charge separation was observed in the thread that acted as reference dyad. On the other hand, the suppression of electron transfer allowed the observation of energy transfer from the porphyrin triplet to the fullerene triplet state with a lifetime of ca. 25 μs. The presence of the interlocked nanohoops therefore leads to a dramatic switch between charge separation and energy transfer. We suggest that our results explain observations made by others in photovoltaic devices comprising nanohoops and may pave the way toward strategic uses of mechanically interlocked architectures in devices that feature (triplet) energy transfer.
Collapse
Affiliation(s)
- Fabian Schwer
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Zank
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Markus Freiberger
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Fabian M Steudel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Niklas Geue
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lei Ye
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
4
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
5
|
Gao JN, Bu A, Chen Y, Huang M, Chen Z, Li X, Tung CH, Wu LZ, Cong H. Synthesis of All-Benzene Multi-Macrocyclic Nanocarbons by Post-Functionalization of meta-Cycloparaphenylenes. Angew Chem Int Ed Engl 2024; 63:e202408016. [PMID: 38828671 DOI: 10.1002/anie.202408016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Expanding the diversity of multi-macrocyclic nanocarbons, particularly those with all-benzene scaffolds, represents intriguing yet challenging synthetic tasks. Complementary to the existing synthetic approaches, here we report an efficient and modular post-functionalization strategy that employs iridium-catalyzed C-H borylation of the highly strained meta-cycloparaphenylenes (mCPPs) and an mCPP-derived catenane. Based on the functionalized macrocyclic synthons, a number of novel all-benzene topological structures including linear and cyclic chains, polycatenane, and pretzelane have been successfully prepared and characterized, thereby showcasing the synthetic utility and potential of the post-functionalization strategy.
Collapse
Affiliation(s)
- Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiming Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mianling Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Podh MB, Ratha R, Purohit CS. Template Assisted Synthesis of Linear [5]Catenane by Post-Functionalization of Templated [2]Catenane and Using Click Reaction. Chem Asian J 2024; 19:e202400351. [PMID: 38700467 DOI: 10.1002/asia.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Polymers with all mechanically interlocked rings, such as linear [n]catenanes, have great potential as functional materials due to possible higher degrees of freedom that may contribute to their flexibility but remain elusive. All the synthetic methods used to prepare such a polymer yield mixtures of products. In the absence of higher molecular weight linear [n]catenanes, emphasis on synthesizing low molecular weight oligomers is being pursued. Here, we have described the synthesis of a linear [5]catenane by post-functionalizing a Co(III) templated [2]catenane having a pyridine-diamide unit free for further metal ion coordination. Two molecules were synthesized with suitable threading groups: one, two terminal azide groups, and two, with two terminal alkyne groups to form two [3]pseudorotaxane utilizing Co(III) coordination. These units were then joined, forming a macrocycle, using click reaction, giving the desired metalated linear [5]catenane in 40 % yield. Removal of metal ions leads to linear [5]catenane. In addition, the formation of linear [3] and [2]catenane are also observed. All synthesized structures have been isolated by column chromatographic technique and characterized by 1H-NMR, 13C-NMR, and mass spectroscopy.
Collapse
Affiliation(s)
- Mana Bhanjan Podh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| |
Collapse
|
7
|
May JH, Fehr JM, Lorenz JC, Zakharov LN, Jasti R. A High-Yielding Active Template Click Reaction (AT-CuAAC) for the Synthesis of Mechanically Interlocked Nanohoops. Angew Chem Int Ed Engl 2024; 63:e202401823. [PMID: 38386798 DOI: 10.1002/anie.202401823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).
Collapse
Affiliation(s)
- James H May
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Julia M Fehr
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Jacob C Lorenz
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Lev N Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon, 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| |
Collapse
|