1
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Kaulich PT, Tholey A. Top-Down Proteomics: Why and When? Proteomics 2025:e202400338. [PMID: 40289405 DOI: 10.1002/pmic.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Manifold biological processes at all levels of transcription and translation can lead to the formation of a high number of different protein species (i.e., proteoforms), which outnumber the sequences encoded in the genome by far. Due to the large number of protein molecules formed in this way, which span an enormous range of different physicochemical properties, proteoforms are the functional drivers of all biological processes, creating the need for powerful analytical approaches to decipher this language of life. While bottom-up proteomics has become the most widely used approach, providing features such as high sensitivity, depth of analysis, and throughput, it has its limitations when it comes to identifying, quantifying, and characterizing proteoforms. In particular, the major bottleneck is to assign peptide-level information to the original proteoforms. In contrast, top-down proteomics (TDP) targets the direct analysis of intact proteoforms. Despite being characterized by a number of technological challenges, the TDP community has established numerous protocols that allow easy implementation in any proteomics laboratory. In this viewpoint, we compare both approaches, argue that it is worth embedding TDP experiments, and show fields of research in which TDP can be successfully implemented to perform integrative multi-level proteoformics.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
3
|
Matzanke T, Kaulich PT, Jeong K, Takemori A, Takemori N, Kohlbacher O, Tholey A. Cysteine-Directed Isobaric Labeling Combined with GeLC-FAIMS-MS for Quantitative Top-Down Proteomics. J Proteome Res 2025; 24:1470-1480. [PMID: 39885717 PMCID: PMC11894657 DOI: 10.1021/acs.jproteome.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The quantification of proteoforms, i.e., all molecular forms in which proteins can be present, by top-down proteomics provides essential insights into biological processes at the molecular level. Isobaric labeling-based quantification strategies are suitable for multidimensional separation strategies and allow for multiplexing of the samples. Here, we investigated cysteine-directed isobaric labeling by iodoTMT in combination with a gel- and gas-phase fractionation (GeLC-FAIMS-MS) for in-depth quantitative proteoform analysis. We optimized the acquisition workflow (i.e., the FAIMS compensation voltages, isolation windows, acquisition strategy, and fragmentation method) using a two-proteome mix to increase the number of quantified proteoforms and reduce ratio compression. Additionally, we implemented a mass feature-based quantification strategy in the widely used deconvolution algorithm FLASHDeconv, which improves and facilitates data analysis. The optimized iodoTMT GeLC-FAIMS-MS workflow was applied to quantitatively analyze the proteome of Escherichia coli grown under glucose or acetate as the sole carbon source, resulting in the identification of 726 differentially abundant proteoforms.
Collapse
Affiliation(s)
- Theo Matzanke
- Systematic
Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T. Kaulich
- Systematic
Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Kyowon Jeong
- Applied
Bioinformatics, Computer Science Department, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Ayako Takemori
- Advanced
Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Toon 791-0295, Japan
| | - Nobuaki Takemori
- Advanced
Research Support Center, Institute for Promotion of Science and Technology, Ehime University, Toon 791-0295, Japan
| | - Oliver Kohlbacher
- Applied
Bioinformatics, Computer Science Department, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Translational
Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
| | - Andreas Tholey
- Systematic
Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
4
|
Takemori A, Sugiyama N, Kline JT, Fornelli L, Takemori N. Gel-Based Sample Fractionation with SP3-Purification for Top-Down Proteomics. J Proteome Res 2025; 24:850-860. [PMID: 39841590 PMCID: PMC11841991 DOI: 10.1021/acs.jproteome.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry. In this study, we developed a complete, robust, and simple sample preparation workflow named PEPPI-SP3 for top-down proteomics by combining PEPPI-MS with the magnetic bead-based protein purification approach used in SP3 (single-pot, solid-phase-enhanced sample preparation), now one of the standard sample preparation methods in bottom-up proteomics. In PEPPI-SP3, proteins extracted from the gel are collected on the surface of SP3 beads, washed with organic solvents, and recovered intact with 100 mM ammonium bicarbonate containing 0.05% (w/v) SDS. The recovered proteins are subjected to mass spectrometry after additional purification using an anion-exchange StageTip. Performance validation using human cell lysates showed a significant improvement in low-molecular-weight protein recovery with a lower coefficient of variation compared to conventional PEPPI workflows using organic solvent precipitation or ultrafiltration.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | - Naoyuki Sugiyama
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Oklahoma, United States
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Oklahoma, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma, United States
| | - Nobuaki Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| |
Collapse
|
5
|
Takemori A, Kaulich PT, Tholey A, Takemori N. PEPPI-MS: gel-based sample pre-fractionation for deep top-down and middle-down proteomics. Nat Protoc 2025:10.1038/s41596-024-01100-0. [PMID: 39820051 DOI: 10.1038/s41596-024-01100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/11/2024] [Indexed: 01/19/2025]
Abstract
Top-down analysis of intact proteins and middle-down analysis of proteins subjected to limited digestion require efficient detection of traces of proteoforms in samples, necessitating the reduction of sample complexity by thorough pre-fractionation of the proteome components in the sample. SDS-PAGE is a simple and inexpensive high-resolution protein-separation technique widely used in biochemical and molecular biology experiments. Although its effectiveness for sample preparation in bottom-up proteomics has been proven, establishing a method for highly efficient recovery of intact proteins from the gel matrix has long been a challenge for its implementation in top-down and middle-down proteomics. As a much-awaited solution to this problem, we present an experimental protocol for efficient proteoform fractionation from complex biological samples using passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry (PEPPI-MS), a rapid method for extraction of intact proteins separated by SDS-PAGE. PEPPI-MS allows recovery of proteins below 100 kDa separated by SDS-PAGE in solution with a median efficiency of 68% within 10 min and, unlike conventional electroelution methods, requires no special equipment, contributing to a remarkably economical implementation. The entire protocol from electrophoresis to protein purification can be performed in <5 h. By combining the resulting PEPPI fraction with other protein-separation techniques, such as reversed-phase liquid chromatography and ion mobility techniques, multidimensional proteome separations for in-depth proteoform analysis can be easily achieved.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Nobuaki Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan.
| |
Collapse
|
6
|
Chowdhury T, Cupp-Sutton KA, Guo Y, Gao K, Zhao Z, Burgett A, Wu S. Quantitative Top-down Proteomics Revealed Kinase Inhibitor-Induced Proteoform-Level Changes in Cancer Cells. J Proteome Res 2025; 24:303-314. [PMID: 39620430 PMCID: PMC11784628 DOI: 10.1021/acs.jproteome.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Quantitative analysis of proteins and their post-translational modifications (PTMs) in complex biological samples is critical to understanding cellular biology as well as disease detection and treatment. Top-down proteomics methods provide a "bird's eye" view of the proteome by directly detecting and quantifying intact proteoforms. Here, we developed a high-throughput quantitative top-down proteomics platform to probe intact proteoform and phosphoproteoform abundance changes in HeLa cells as a result of treatment with staurosporine (STS), a broad-spectrum kinase inhibitor. In total, we identified and quantified 1187 proteoforms from 215 proteoform families. Among them, 55 proteoforms from 37 proteoform families were significantly changed upon STS treatment. These proteoforms were primarily related to catabolic, metabolic, and apoptotic pathways that are expected to be impacted as a result of kinase inhibition. In addition, we manually evaluated 25 proteoform families that expressed one or more phosphorylated proteoforms. We observed that phosphorylated proteoforms in the same proteoform family, such as eukaryotic initiation factor 4E binding protein 1 (4EBP1), were differentially regulated relative to the unphosphorylated proteoforms. Combining relative profiling of proteoforms within these proteoform families with individual proteoform profiling results in a more comprehensive picture of STS treatment-induced proteoform abundance changes that cannot be achieved using bottom-up methods.
Collapse
Affiliation(s)
- Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of
Alabama, Tuscaloosa, AL 35401
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of
Alabama, Tuscaloosa, AL 35401
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| | - Kevin Gao
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| | - Anthony Burgett
- University of Oklahoma Health Science Center, Oklahoma
City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of
Alabama, Tuscaloosa, AL 35401
- Department of Chemistry and Biochemistry, University of
Oklahoma, Norman, OK 73019
| |
Collapse
|
7
|
Kaulich PT, Jeong K, Kohlbacher O, Tholey A. Influence of different sample preparation approaches on proteoform identification by top-down proteomics. Nat Methods 2024; 21:2397-2407. [PMID: 39438734 PMCID: PMC11621018 DOI: 10.1038/s41592-024-02481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Top-down proteomics using mass spectrometry facilitates the identification of intact proteoforms, that is, all molecular forms of proteins. Multiple past advances have lead to the development of numerous sample preparation workflows. Here we systematically investigated the influence of different sample preparation steps on proteoform and protein identifications, including cell lysis, reduction and alkylation, proteoform enrichment, purification and fractionation. We found that all steps in sample preparation influence the subset of proteoforms identified (for example, their number, confidence, physicochemical properties and artificially generated modifications). The various sample preparation strategies resulted in complementary identifications, substantially increasing the proteome coverage. Overall, we identified 13,975 proteoforms from 2,720 proteins of human Caco-2 cells. The results presented can serve as suggestions for designing and adapting top-down proteomics sample preparation strategies to particular research questions. Moreover, we expect that the sampling bias and modifications identified at the intact protein level will also be useful in improving bottom-up proteomics approaches.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kyowon Jeong
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
8
|
Wang Q, Gao G, Fang F, Wang Q, Lundquist PK, Sun L. A simple and efficient approach for preparing cationic coating with tunable electroosmotic flow for capillary zone electrophoresis-mass spectrometry-based top-down proteomics. Anal Chim Acta 2024; 1328:343162. [PMID: 39266194 PMCID: PMC11404064 DOI: 10.1016/j.aca.2024.343162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) has become a valuable analytical technique in top-down proteomics (TDP). CZE-MS/MS-based TDP typically employs separation capillaries with neutral coatings (i.e., linear polyacrylamide, LPA). However, issues related to separation resolution and reproducibility remain with the LPA-coated capillaries due to the unavoidable non-specific protein adsorption onto the capillary wall. Cationic coatings can be critical alternatives to LPA coating for CZE-MS/MS-based TDP due to the electrostatic repulsion between the positively charged capillary inner wall and proteoform molecules in the acidic separation buffer. Unfortunately, there are only very few studies using cationic coating-based CZE-MS/MS for TDP studies. RESULTS In this work, we aimed to develop a simple and efficient approach for preparing separation capillaries with a cationic coating, i.e., poly (acrylamide-co-(3-acrylamidopropyl) trimethylammonium chloride [PAMAPTAC]) for CZE-MS/MS-based TDP. The PAMAPTAC coating-based CZE-MS produced significantly better separation resolution of proteoforms compared to the traditionally used LPA-coated approach. It achieved reproducible separation and measurement of a simple proteoform mixture and a complex proteome sample (i.e., a yeast cell lysate) regarding migration time, proteoform intensity, and the number of proteoform identifications. The PAMAPTAC coating-based CZE-MS enabled the detection of large proteoforms (≥30 kDa) from the yeast cell lysate reproducibly without any size-based prefractionation. Interestingly, the mobility of proteoforms using the PAMAPTAC coating can be predicted accurately using a simple semi-empirical model. SIGNIFICANCE The results render the PAMAPTAC coating as a valuable alternative to the LPA coating to advance CZE-MS-based TDP towards high-resolution separation and highly reproducible measurement of proteoforms in complex samples.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangyao Gao
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Ramirez-Sagredo A, Sunny AT, Cupp-Sutton KA, Chowdhury T, Zhao Z, Wu S, Chiao YA. Characterizing age-related changes in intact mitochondrial proteoforms in murine hearts using quantitative top-down proteomics. Clin Proteomics 2024; 21:57. [PMID: 39343872 PMCID: PMC11440756 DOI: 10.1186/s12014-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying proteoform sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. Data are available via ProteomeXchange with the identifier PXD051505. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
Affiliation(s)
- Andrea Ramirez-Sagredo
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Anju Teresa Sunny
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA.
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
10
|
Mendes GM, d'Orlye F, Trapiella-Alfonso L, Duarte GRM, Varenne A. Streamlined integrated protein isoelectric focusing using microfluidic paper-based device. J Chromatogr A 2024; 1732:465222. [PMID: 39111183 DOI: 10.1016/j.chroma.2024.465222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
An innovative integrated paper-based microdevice was developed for protein separation by isoelectric focusing (IEF), allowing for robust design thanks to a 3D-printed holder integrating separation channel, reservoirs, and electrodes. To reach robustness and precision, the optimization focused on the holder geometry, the paper nature, the reservoir design, the IEF medium, and various focusing parameters. A well-established and stable pH gradient was obtained on a glass-fiber paper substrate with simple sponge reservoirs, and the integration of the electrodes in the holder led to a straightforward system. The separation medium composed of water/glycerol (85/15, v/v) allowed for reducing medium evaporation while being an efficient medium for most hydrophobic and hydrophilic proteins, compatible with mass spectrometry detection for further proteomics developments. To our knowledge, this is the first report of the use of glycerol solutions as a separation medium in a paper-based microdevice. Analytical performances regarding pH gradient generation, pI determination, separation efficiency, and resolution were estimated while varying the IEF experimental parameters. The overall process led to an efficient separation within 25 min. Then, this methodology was applied to a sample composed of saliva doped with proteins. A minimal matrix effect was evidenced, underscoring the practical viability of our platform. This low-cost, versatile and robust paper-based IEF microdevice opens the way to various applications, ranging from sample pre-treatment to integration in an overall proteomic-on-a-chip device.
Collapse
Affiliation(s)
- Geovana M Mendes
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France; Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Fanny d'Orlye
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France.
| | - Laura Trapiella-Alfonso
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gabriela R M Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Anne Varenne
- Chimie ParisTech, PSL University, CNRS 8060, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France.
| |
Collapse
|
11
|
LIU W, WENG L, GAO M, ZHANG X. [Applications of high performance liquid chromatography-mass spectrometry in proteomics]. Se Pu 2024; 42:601-612. [PMID: 38966969 PMCID: PMC11224944 DOI: 10.3724/sp.j.1123.2023.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 07/06/2024] Open
Abstract
Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.
Collapse
|
12
|
Ramirez-Sagredo A, Sunny A, Cupp-Sutton K, Chowdhury T, Zhao Z, Wu S, Ann Chiao Y. Characterizing Age-related Changes in Intact Mitochondrial Proteoforms in Murine Hearts using Quantitative Top-Down Proteomics. RESEARCH SQUARE 2024:rs.3.rs-3868218. [PMID: 38313302 PMCID: PMC10836115 DOI: 10.21203/rs.3.rs-3868218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational protein modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying all protein sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
|