1
|
Xu Z, Cen M, Chen Z, Yao L, Li C, Tang B, Liu L, Huang T, Chen T, Han LB. Palladium-Catalyzed Decarbonylative Michaelis-Arbuzov Reaction of Carboxylic Acids and Triaryl Phosphites. Org Lett 2024; 26:7004-7009. [PMID: 39133868 DOI: 10.1021/acs.orglett.4c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A Pd-catalyzed decarbonylative Michaelis-Arbuzov reaction of carboxylic acids and triaryl phosphites for preparing aryl phosphonates under anhydride-free conditions has been reported. In this context, triaryl phosphites serve as both reagents for activating the carboxylic acids and substrates for the reaction. There have been no reports to date of efficient and direct methods for the in situ activation of carboxylic acids using triaryl phosphites. In comparison to known methods, this reaction avoids the use of organohalides and has an excellent functional group tolerance for the synthesis of various aryl phosphonates from triaryl phosphites and carboxylic acids. This reaction is scalable and applicable to the synthesis of aryl phosphonates featuring bioactive fragments.
Collapse
Affiliation(s)
- Zhixuan Xu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Mengjie Cen
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Zihan Chen
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Linbin Yao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Chunya Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Bencan Tang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, Zhejiang 315100, People's Republic of China
| | - Long Liu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Tianzeng Huang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Tieqiao Chen
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Li-Biao Han
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, People's Republic of China
- Zhejiang Yangfan New Materials Company, Limited, Shangyu, Zhejiang 312369, People's Republic of China
| |
Collapse
|
2
|
Zhang J, Hu W, Chen Z, Wu N, Li C, Chen T, Han LB. Water-Promoted Mild and General Michaelis-Arbuzov Reaction of Triaryl Phosphites and Aryl Iodides by Palladium Catalysis. Org Lett 2024. [PMID: 38602481 DOI: 10.1021/acs.orglett.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A Pd-catalyzed relatively general Michaelis-Arbuzov reaction of triaryl phosphites and aryl iodides for preparing useful aryl phosphonates was developed. Interestingly, water can greatly facilitate the reaction through a water-participating phosphonium intermediate rearrangement process, which also makes the reaction conditions rather mild. In comparison with the known methods, this reaction is milder and more general, as it exhibits excellent functional group tolerance, can be applied to various triaryl phosphites and aryl iodides, and can be extended to aryl phosphonites and phosphinites. A gram-scale reaction with a low catalyst loading also revealed its practicality and potential in large-scale preparation.
Collapse
Affiliation(s)
- Jin Zhang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Zihan Chen
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Nuo Wu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunya Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Tieqiao Chen
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Li-Biao Han
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| |
Collapse
|
3
|
Yue HQ, Shi DW, Li M, Gao SQ, Sun MX, Zhang S, Yang SD, Yang B. Tf 2O/DMSO-mediated dual activation of aryl phosphinate to access various aryl phosphonates. Chem Commun (Camb) 2023; 59:10817-10820. [PMID: 37602683 DOI: 10.1039/d3cc03250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A metal-free method for the dual activation of aryl phosphinate has been developed; the P-H and P-O bonds are sequentially activated by the Tf2O/DMSO system. Without the requirement of metals and unstable P-reagents, this one-pot procedure provides a convenient and practical access to a variety of aryl phosphonates. A mechanism involving twice generation of electrophilic P-species and two SN-processes is proposed on the basis of the control experiments.
Collapse
Affiliation(s)
- Hui-Qi Yue
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Da-Wei Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Si-Qi Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Mu-Xin Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Shun Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
4
|
Micellar Suzuki Cross-Coupling between Thiophene and Aniline in Water and under Air. ORGANICS 2021. [DOI: 10.3390/org2040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Suzuki–Miyaura cross-coupling reaction plays a fundamental role in modern synthetic organic chemistry, both in academia and industry. For this reason, scientists continue to search for new, more effective, cheaper and environmentally friendly procedures. Recently, micellar synthetic chemistry has been demonstrated to be an excellent strategy for achieving chemical transformations in a more efficient way, thanks to the creation of nanoreactors in aqueous environments using selected surfactants. In particular, the cheap and commercially available surfactant Kolliphor EL (a polyethoxylated castor oil derivative) has been used with success to achieve metal-catalyzed transformations in water with high yields and short reaction times, with the advantage of using air-sensitive catalysts without the need for inert atmosphere. In this work, the Kolliphor EL methodology was applied to the Suzuki cross-coupling reaction between thiophene and aniline, using the highly effective catalyst Pd(dtbpf)Cl2. The cross-coupling products were achieved at up to 98% yield, with reaction times of up to only 15 min, working at room temperature and without the need for inert atmosphere.
Collapse
|
5
|
Li C, Han LB. Palladium-Catalyzed Solvent-Free Preparation of Arylphosphonates ArP(O)(OAr) 2 from (ArO) 3P via the Michaelis–Arbuzov Rearrangement. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chunya Li
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
6
|
Abd El Aleem Ali Ali El‐Remaily M, Elhady OM. Green Bio‐organic and Recoverable Catalyst Taurine (2‐aminoethanesulfonic acid) for Synthesis of Bio‐active Compounds 3,4‐Dihydropyrimidin Derivatives in Aqueous Medium. ChemistrySelect 2020. [DOI: 10.1002/slct.202002575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Omar M. Elhady
- Department of Chemistry, Faculty of Science Sohag University- 82524 Sohag Egypt
| |
Collapse
|
7
|
Vatandoust Namanloo A, Akhlaghinia B, Mohammadinezhad A. Magnetically recoverable ferromagnetic 3D hierarchical core-shell Fe3O4@NiO/Co3O4 microspheres as an efficient and ligand-free catalyst for C–S bond formation in poly (ethylene glycol). J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1753743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Batool Akhlaghinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Mohammadinezhad A, Akhlaghinia B. Designing of Ferromagnetic 3D Hierarchical Core‐Shell Fe
3
O
4
@NiO/Co
3
O
4
Microspheres Derived from a MOF Precursor: As an Efficient Catalyst for C‐P Cross Coupling Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201903407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Arezou Mohammadinezhad
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Batool Akhlaghinia
- Department of ChemistryFaculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| |
Collapse
|
9
|
Microwave-Assisted Domino Heck Cyclization and Phosphorylation: Synthesis of Phosphorus Containing Heterocycles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Sobhani S, Habibollahi A, Zeraatkar Z. A Novel Water-Dispersible/Magnetically Recyclable Pd Catalyst for C–C Cross-Coupling Reactions in Pure Water. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00426] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Azam Habibollahi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Zohre Zeraatkar
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| |
Collapse
|
11
|
Xiong B, Wang G, Zhou C, Liu Y, Yang CA, Zhang P, Tang K, Zhou Q. Organocatalytic, regioselective allylic- and 1,6-substitution of quinone monoketals with diaryl H-phosphine oxides. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Reddy SMK, Kothandapani J, Sengan M, Veerappan A, Selva Ganesan S. Exploring the influence of designer surfactant hydrophobicity in key C C/C N bond forming reactions. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Ghasemzadeh MS, Akhlaghinia B. C–P bond construction catalyzed by NiII immobilized on aminated Fe3O4@TiO2 yolk–shell NPs functionalized by (3-glycidyloxypropyl)trimethoxysilane (Fe3O4@TiO2 YS-GLYMO-UNNiII) in green media. NEW J CHEM 2019. [DOI: 10.1039/c9nj00352e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient, versatile and novel method for the C–P cross-coupling reaction with a high yield of products using Fe3O4@TiO2YS-GLYMO-UNNiII as a magnetic nanostructured catalyst in the presence of WERSA was reported.
Collapse
Affiliation(s)
- Maryam Sadat Ghasemzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| | - Batool Akhlaghinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad
- Mashhad 9177948974
- Iran
| |
Collapse
|
14
|
Henyecz R, Keglevich G. New Developments on the Hirao Reactions, Especially from "Green" Point of View. Curr Org Synth 2019; 16:523-545. [PMID: 31984929 PMCID: PMC7432197 DOI: 10.2174/1570179416666190415110834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The Hirao reaction discovered ca. 35 years ago is an important P-C coupling protocol between dialkyl phosphites and aryl halides in the presence of Pd(PPh3)4 as the catalyst and a base to provide aryl phosphonates. Then, the reaction was extended to other Preagents, such as secondary phosphine oxides and H-phosphinates and to other aryl and hetaryl derivatives to afford also phosphinic esters and tertiary phosphine oxides. Instead of the Pd(PPh3)4 catalyst, Pd(OAc)2 and Ni-salts were also applied as catalyst precursors together with a number of mono- and bidentate P-ligands. OBJECTIVE In our review, we undertook to summarize the target reaction with a special stress on the developments attained in the last 6 years, hence this paper is an update of our earlier reviews in a similar topic. CONCLUSIONS "Greener" syntheses aimed at utilizing phase transfer catalytic and microwave-assisted approaches, even under "P-ligand-free. or even solvent-free conditions are the up-to date versions of the classical Hirao reaction. The mechanism of the reaction is also in the focus these days.
Collapse
Affiliation(s)
- Réka Henyecz
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521Budapest, Hungary
| |
Collapse
|
15
|
Lipshutz BH, Ghorai S, Cortes-Clerget M. The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry "in Water". Chemistry 2018; 24:6672-6695. [PMID: 29465785 DOI: 10.1002/chem.201705499] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Indexed: 12/19/2022]
Abstract
Recent developments over the past few years in aqueous micellar catalysis are discussed. Applications to problems in synthesis are highlighted, enabled by the use of surfactants that self-aggregate in water into micelles as nanoreactors. These include amphiphiles that have been available for some time, as well as those that have been newly designed. Reactions catalyzed by transition metals, including Pd, Cu, Rh, and Au, are of particular focus.
Collapse
Affiliation(s)
- Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Subir Ghorai
- Chemistry Research & Development, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, WI, 53209, USA
| | - Margery Cortes-Clerget
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
16
|
Abstract
In this paper, palladium–DABCO complex supported on magnetic nanoparticles was successfully used as a new magnetically recoverable heterogeneous catalyst for the synthesis of arylphosphonates via P-arylation of different types of aryl halides (aryl iodides/bromides/chlorides and benzene boronic acid/sulfonate), with phosphite esters (triethyl/triphenyl/tri-iso-propyl/diethyl/diphenyl/di-iso-propyl phosphite) in neat water without using any additive. The heterogeneous catalyst was easily isolated from the reaction mixture by an external magnet and reused five times without significant degradation in its activity.
Collapse
Affiliation(s)
- Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Zahra Vahidi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| |
Collapse
|
17
|
Pd nanoparticles on reverse phase silica gel as recyclable catalyst for Suzuki-Miyaura cross coupling reaction and hydrogenation in water. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Sobhani S, Ramezani Z. Synthesis of arylphosphonates catalyzed by Pd-imino-Py-γ-Fe2O3 as a new magnetically recyclable heterogeneous catalyst in pure water without requiring any additive. RSC Adv 2016. [DOI: 10.1039/c5ra27330g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arylphosphonates were synthesized in the presence of Pd-imino-Py-γ-Fe2O3 in pure water without using any additive.
Collapse
Affiliation(s)
- Sara Sobhani
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| | - Zohreh Ramezani
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| |
Collapse
|