1
|
Çomaklı V, Aygül İ, Sağlamtaş R, Kuzu M, Demirdağ R, Akincioğlu H, Adem Ş, Gülçin İ. Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An In vitro and In silico Approach. Curr Comput Aided Drug Des 2024; 20:441-451. [PMID: 37202895 DOI: 10.2174/1573409919666230518151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. BACKGROUND Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important. OBJECTIVES This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world. METHODS In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated. RESULTS All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively. CONCLUSION According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
Collapse
Affiliation(s)
- Veysel Çomaklı
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - İmdat Aygül
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Müslüm Kuzu
- Department of Nutrition and Dietetics, Karabük University, Karabük, Türkiye
| | - Ramazan Demirdağ
- Department of Nutrition and Dietetics, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Hülya Akincioğlu
- Department of Chemistry, İbrahim Çeçen University of Ağrı, Ağrı, Türkiye
| | - Şevki Adem
- Department of Chemistry, Çankırı Karatekin University, Çankırı, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Bora RE, Bilgicli HG, Üç EM, Alagöz MA, Zengin M, Gulcin İ. Synthesis, characterization, Evaluation of Metabolic Enzyme Inhibitors and in silico Studies of Thymol Based 2-Amino Thiol and Sulfonic Acid Compounds. Chem Biol Interact 2022; 366:110134. [DOI: 10.1016/j.cbi.2022.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/03/2022]
|
3
|
Gulcin İ, Petrova OV, Taslimi P, Malysheva SF, Schmidt EY, Sobenina LN, Gusarova NK, Trofimov BA, Tuzun B, Farzaliyev VM, Alwasel S, Sujayev AR. Synthesis, Characterization, Molecular Docking, Acetylcholinesterase and α‐Glycosidase Inhibition Profiles of Nitrogen‐Based Novel Heterocyclic Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- İlhami Gulcin
- Department of Chemistry Faculty of Science Ataturk University TR 25240 Erzurum Turkey
| | - Olga V. Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Parham Taslimi
- Department of Biotechnology Faculty of Science Bartin University 74100- Bartin Turkey
| | - Svetlana F. Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Elena Yu. Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Lyubov N. Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Nina K. Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Boris A. Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences Moskva 664033-Irkutsk Russia
| | - Burak Tuzun
- Plant and Animal Production Department Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Vagif M. Farzaliyev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| | - Saleh Alwasel
- Department of Zoology College of Science King Saud University Riyadh Saudi Arabia
| | - Afsun R. Sujayev
- Institute of Chemistry of Additives Azerbaijan National Academy of Sciences Bakı 1029-Baku Azerbaijan
| |
Collapse
|
4
|
Gümüş M, Babacan ŞN, Demir Y, Sert Y, Koca İ, Gülçin İ. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100242. [PMID: 34609760 DOI: 10.1002/ardp.202100242] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Şemsi N Babacan
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Akıncıoğlu A, Göksu S, Naderi A, Akıncıoğlu H, Kılınç N, Gülçin İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput Biol Chem 2021; 94:107565. [PMID: 34474201 DOI: 10.1016/j.compbiolchem.2021.107565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of novel urea, sulfamide and N,N-dipropargyl substituted benzylamines were synthesized from dihydrochalcones. The synthesized compounds were evaluated for their cholinesterases and carbonic anhydrase inhibitory actions. The known dihydrochalcones were converted into four new benzylamines via reductive amination. N,N-Dipropargylamines, ureas and sulfamides were synthesized following the reactions of benzylamines with propargyl bromide, N,N-dimethyl sulfamoyl chloride and N,N-dimethyl carbamoyl chloride. The novel substituted benzylamines derived from dihydrochalcones were evaluated against some enzymes such as human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The novel substituted benzylamines derived from dihydrochalcones exhibited Ki values in the range of 0.121-1.007 nM on hCA I, and 0.077-0.487 nM on hCA II closely related to several pathological processes. On the other hand, Ki values were found in the range of 0.112-0.558 nM on AChE, 0.061-0.388 nM on BChE. As a result, novel substituted benzylamines derived from dihydrochalcones showed potent inhibitory profiles against indicated metabolic enzymes. In addition, Induced-Fit Docking (IFD) simulations and ADME prediction studies have also been carried out to elucidate the inhibition mechanisms and drug-likeness of the synthesized compounds. Therefore, these results can make significant contributions to the treatment of some global diseases, especially Alzheimer's diseases and glaucoma, and the development of new drugs.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Agri Ibrahim Cecen University, Central Researching Laboratory, 04100 Agri, Turkey
| | - Süleyman Göksu
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey.
| | - Ali Naderi
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| | - Hülya Akıncıoğlu
- Agri Ibrahim Cecen University, Faculty of Arts and Science, Agri, Turkey
| | - Namık Kılınç
- Igdir University, Vocational School of Health Services, Department of Medical Services and Techniques, Igdir, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| |
Collapse
|
6
|
Gülçin İ, Trofimov B, Kaya R, Taslimi P, Sobenina L, Schmidt E, Petrova O, Malysheva S, Gusarova N, Farzaliyev V, Sujayev A, Alwasel S, Supuran CT. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg Chem 2020; 103:104171. [PMID: 32891857 DOI: 10.1016/j.bioorg.2020.104171] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Sulfur-containing pyrroles (1-3), tris(2-pyridyl)phosphine(selenide) sulfide (4-5) and 4-benzyl-6-(thiophen-2-yl)pyrimidin-2-amine (6) were synthesized and characterized by elemental analysis, IR and NMR spectra. In this study, the synthesized compounds of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) were evaluated against the human erythrocyte carbonic anhydrase I, and II isoenzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase enzymes. The synthesized heterocyclic compounds showed IC50 values in range of 33.32-60.79 nM against hCA I, and 37.05-66.64 nM against hCA II closely associated with various physiological and pathological processes. On the other hand, IC50 values were found in range of 13.13-22.21 nM against AChE, 0.54-31.22 nM against BChE, and 13.51-26.55 nM against α-glycosidase as a hydrolytic enzyme. As a result, nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) demonstrated potent inhibition profiles against indicated metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some global disorders including glaucoma, Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- İlhami Gülçin
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey.
| | - Boris Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Ruya Kaya
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Lyubov Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Elena Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Olga Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Svetlana Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nina Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Vagif Farzaliyev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Afsun Sujayev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Dipartimento di Chimica Ugo Schiff, Universita degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy; Neurofarba Department and Laboratorio di Chimica Bioinorganica Universita' degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Sepehri N, Mohammadi‐Khanaposhtani M, Asemanipoor N, Hosseini S, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Taslimi P, Sadeghian N, Gulcin I. Synthesis, characterization, molecular docking, and biological activities of coumarin–1,2,3‐triazole‐acetamide hybrid derivatives. Arch Pharm (Weinheim) 2020; 353:e2000109. [DOI: 10.1002/ardp.202000109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park Tehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center Alborz University of Medical Sciences Karaj Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| |
Collapse
|
8
|
Artunc T, Menzek A, Taslimi P, Gulcin I, Kazaz C, Sahin E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg Chem 2020; 100:103884. [PMID: 32388430 DOI: 10.1016/j.bioorg.2020.103884] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Starting from the compound (3,4-dimethoxyphenyl)(2-(3,4-dimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4), two diols and three tetrol derivatives were synthesised. Morover, from the reactions of 1,3-dimethoxybenzene and 1,4-dimethoxybenzene with adipoyl chloride, fifteen new along with nine known compounds were obtained. For the characterizations of compounds, spectroscopic methods such as NMR including DEPT, COSY, HMQC and HMBC experiments and X-ray diffraction were used. The antioxidant activities of novel synthesized seventeen molecules were investigated by analytical methods like ABTS•+ and DPPH• scavenging. Also, reducing power these molecules were investigated by Fe3+, Cu2+, and [Fe3+-(TPTZ)2]3+. Some of the molecules record powerful antioxidant profile when compared to putative standards. The inhibition effects of the phenols compounds against AChE and BChE activities were analysed. Also, these phenols were found as effective inhibitors for AChE, hCA I, hCA II, and BChE with Kis in the range of 122.95 ± 18.41-351.31 ± 69.12 nM for hCA I, 62.35 ± 9.03-363.17 ± 180.1 nM for hCA II, 134.57 ± 3.99-457.43 ± 220.10 nM for AChE, and 27.06 ± 9.12-72.98 ± 9.53 nM for BChE, respectively.
Collapse
Affiliation(s)
- Tekin Artunc
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|